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HRSV (human respiratory syncytial virus) is a serious cause of lower respiratory tract illness in infants and young children.
Designing inhibitors from the proteins involved in virus replication and infection process provides target for new therapeutic
treatments. In the present study, in silico docking was performed using motavizumab as a template to design motavizumab
derived oligopeptides for developing novel anti-HRSV agents. Additional simulations were conducted to study the conformational
propensities of the oligopeptides and confirmed the hypothesis that the designed oligopeptide is highly flexible and capable
of assuming stable confirmation. Our study demonstrated the best specific interaction of GEKKLVEAPKS oligopeptide for
glycoprotein strain A among various screened oligopeptides. Encouraged by the results, we expect that the proposed scheme will
provide rational choices for antibody reengineering which is useful for systematically identifying the possible ways to improve

efficacy of existing antibody drugs.

1. Introduction

HRSV, a Pneumovirus in the family Paramyxoviridae, is the
single most important cause of serious lower respiratory
tract illnesses such as bronchiolitis and pneumonia in infants
and young children [1-3]. RSV is increasingly recognized
as an important nosocomial pathogen causing morbidity
in immune compromised patients [4]. Estimated number
of individuals infected from lower respiratory tract infec-
tions in 2005 accounted for more than 30 million, each
year resulting in nearly 3 million hospitalizations under 5
years of age, which makes it the most common cause of
hospitalization in children [5]. Nonspecific antiviral, that
is, Ribavirin, hampers virus transcription; however, many
symptoms are grouped and its viability represents the need
for more potent and safe therapeutics to treat HRSV infection
[6, 7]. Humanized monoclonal antibody called palivizumab
is used to prevent HRSV-induced respiratory tract disease in
high-risk infants [8, 9], while motavizumab is an affinity opti-
mized monoclonal antibody developed from palivizumab
and has been assessed clinically [9-11]. In later research,

both palivizumab and motavizumab failed in virus attach-
ment and were incapable of interacting with the target cell
membrane. Besides this, Food and Drug Administrations
(FDA’) Antiviral Drugs Advisory Committee panel voted not
to suggest motavizumab for licensure, raising concerns about
hypersensitivity and skin rash occurring within two days of
dosing. MedImmune withdrew its requisition for licensure
of motavizumab and affirmed that the product will not be
further developed for immunoprophylaxis of serious HRSV
infection [12].

Endeavours to develop an HRSV vaccine have so far
floundered owing to issues with no long term cure and
potency. Next generation antibodies in which antibody struc-
tural modifications are adopted are an exertion to enhance
immunoprophylactic therapy and few antibodies are being
developed and as of now advancing through clinical develop-
ment. Present study has implemented in silico methodologies
to design oligopeptide derived from the interacting residues
of surface proteins and the antibody. Surface proteins such
as glycoprotein (involved in host cell attachment), F protein
(directs viral penetration by membrane fusion and also
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FIGURE 1: Modeled structures of (a) glycoprotein A, (b) glycoprotein B, (c) matrix protein, and (d) small hydrophobic protein.

mediates fusion of infected cells with their neighbours to
form syncytia), matrix protein (important in virion mor-
phogenesis), and small hydrophobic protein (involved in
infection and replication) were targeted for the present
study since these viruses are involved in fusion and repli-
cation and infection processes. Binding affinity was cross-
checked further by studying interaction from motavizumab
derived interacting residues (hereafter referred to as original
oligopeptides) and designed oligopeptides (random shuffling
of original oligopeptides); on the other hand, simulation
studies were performed to ensure the stability of the designed
oligopeptides adding the peptide property calculations to
validate it, thus proving designed oligopeptides mimicking
the role of motavizumab in a better way.

2. Materials and Methods

2.1. Molecular Interaction of Antibody with Viral Proteins. The
structure of fusion protein was retrieved from Protein Data
Bank (PDB ID: 1G2C) whereas structure of glycoproteins
A and B, matrix protein, and small hydrophobic protein
was modeled using I-TASSER [13] and has been validated
by SAVES (structural analysis and verification server). The
structure of motavizumab (PDB ID: 4JLR) was subjected
to dock against the surface protein structures, that is, gly-
coproteins A and B, fusion, matrix, and small hydrophobic
protein through BioLuminate module; it integrates PIPER,
a protein-protein docking module by Schrédinger software
suite. Energies of billions of docked conformations can be
evaluated on a grid using fast Fourier transform (FFT)

correlation approach embedded in PIPER. The retained
structures were clustered using the pairwise root mean square
deviation (RMSD) as the distance measure with a fixed
or variable clustering radius through PIPER. Interaction of
the antibody and surface proteins was then analysed using
PDBsum generate [14]. Interacting residues were taken and
arranged according to their occurrence in the main sequence
and oligopeptides were designed. To get insights into the
binding affinity of the designed oligopeptide, amino acid
positions within the oligopeptide were altered randomly and
possible oligopeptides were created.

2.2. Modeling of Interacting Residues of Antibodies. Structure
modeling of the designed oligopeptides was done with
PEPstr [15] which predicts tertiary structures of the inter-
acting residues; it uses predictions from PSIPRED and beta-
turns (B-turns) for regular secondary structure information
and fB-turns information, respectively. Backbone-dependent
rotamer library was used for placing side-chain angles with
energy minimization and molecular dynamic simulations by
using Amber version 6.

2.3. Analysis of Oligopeptides and Their Residues Properties.
Properties of predicted oligopeptide structure were calcu-
lated using peptide-property-calculator [16] which includes
isoelectric point, log P (octanol-water partition coeflicient),
log$ (water solubility), and hydropathy plots and which
allows for the visualization of hydrophobicity over the length
of a peptide sequence. Hydrophobic and hydrophilic proper-
ties of the amino acids are plotted on hydropathy scale [17].
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FIGURE 2: Ramachandran plot of (a) glycoprotein A, (b) glycoprotein B, (c) matrix protein, and (d) small hydrophobic protein. 89.7% of the
residues from glycoprotein A, 90.3% of the residues from glycoprotein B, 79.3% of the residues of matrix protein, and 89.9% of the residues

from small hydrophobic protein present in most favoured regions.

2.4. Conformation and Potential Energy Prediction. Amino
acid sequence was shuffled and number of variants was
produced. MD simulation of the variants produced was
performed using Macromodel Version 9.0 from Schrédinger
suite. The OPLS_2005 force field was used for the energy
calculation. Constant temperature was 300K and in the
integration step 1.0 fs was given. MD simulation with position
restraints was carried out for a period of 1 ns in order to allow
the accommodation of the water molecules in the system.

2.5. Interaction Studies of Proteins and Oligopeptides. Inter-
action studies were carried out using ZDOCK server [18].
It searches all rotational and translational space for the

ligand protein relative to the receptor protein. Original and
designed oligopeptides of each protein were docked taking
motavizumab structure from PDB (PDB ID: 4JLR) as a target
protein, only heavy chain and light chain were considered
for docking, and Z-score was calculated on the basis of
pairwise shape complementarity function (total number of
receptor-ligand atom pairs within a distance cutoff minus
a clash penalty), desolvation energy (free energy change
of breaking two protein atom-water contacts and forming
a protein atom-protein atom contact and a water-water
contact), and electrostatic energy (function of the electrical
potential generated by the receptor and the partial charges of
ligand atoms).
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FIGURE 3: Interaction of glycoprotein A and motavizumab showing interaction of residues with heavy and light chain through various bonds".

3. Results

Modeled structures of glycoproteins A and B, matrix protein,
and small hydrophobic proteins were represented in Figure 1.
All modeled structures were validated through Structural
Analysis and Verification Server (SAVES) [19]. Ramachan-
dran plot showed that 90.3% of the residues from glycopro-
tein A, 83.4% of the residues from glycoprotein B, 86.5% of
the residues of matrix protein, and 88.3% of the residues from
small hydrophobic protein were present in most favoured
regions (Figure 2). Motavizumab was subjected to inter-
act with all surface proteins. Heavy chain (H chain) of
motavizumab interacted with glycoprotein A through five
hydrogen bonds and nonbond interactions while light chain
(L chain) interacted with one hydrogen bond and nonbond
interactions (Figure 3). H chain of motavizumab bound with
glycoprotein B by four hydrogen bonds and nonbond inter-
actions while no hydrogen bond was found in the interaction
with L chain showing all nonbond interactions in Figure 4.
H chain of motavizumab formed three hydrogen bonds
and nonbonded interaction whereas no hydrogen bond was
found when motavizumab interacted with L chain of fusion
protein (Figure 5). H chain of motavizumab interacted with

matrix protein and formed one hydrogen bond and nonbond
interactions whereas L chain of motavizumab interacted with
matrix protein and formed eight hydrogen bonds, one salt
bridge, and nonbond interaction (Figure 6). Finally H chain
of motavizumab bound with small hydrophobic protein with
three hydrogen bonds and other nonbond interactions while
no hydrogen bond was formed when it interacted with L
chain of motavizumab; only nonbonded interactions were
seen (Figure 7).

Interacting residues of motavizumab with all proteins
were retrieved and arranged in sequential order (Table 1).
3D structure of oligopeptide modeled from interacting
residues was represented in Figure 8. Properties such as
isoelectric point, log P (octanol-water partition coefficient),
logS (pH dependent aqueous solubility), and water solu-
bility of oligopeptides were calculated, which shows that
PGKYKLAVSEK (derived from motavizumab and glyco-
protein A interaction), SGVQPDAPSNDSKDT (derived
from motavizumab and fusion protein interaction), PST-
LSVSSGTVYEKHEGLS (derived from motavizumab and
matrix protein interaction), and KREAKQEE (derived from
motavizumab and small hydrophobic protein interaction)
have good water solubility while all others show poor water
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FIGURE 4: Interaction of glycoprotein B and motavizumab showing interaction of residues with heavy and light chain through various bonds™.

TABLE 2: Interacting oligopeptides from proteins and their properties.

Peptide Average log P Average log S Water solubility Isoelectric point
PGKYKLAVSEK -2.69 —4.82 Good pH 10.05
PGKFYVSSGATTFPAVYL -0.40 —-6.28 Poor pH 9.52
QVGFSSTAMWNKTFDVSGATQ —2.47 -4.75 Poor pH 6.75
QTAMRMIFTALTSPS -2.50 —4.49 Poor pH 11.04
SGVQPDAPSNDSKDT 21245 (+-6.32) -1.82 Good pH 3.59
PSTLSVSSGTVYEKHEGLS -1.92 -3.95 Good pH5.3
KREAKQEE —6.03 (+—2.50) -3.35 Good pH 715
PGPTVFPAVLY 1.70 (+-1.45) -5.16 Poor pH 5.93

Properties such as log P (octanol-water coefficient), log S (solubility), and isoelectric point determine the oral absorption capability of oligopeptides.

solubility (Table 2). These oligopeptides (original oligopep-
tide) were further targeted and residues were shuftled ran-
domly and possible oligopeptides were designed (designed
oligopeptides) (Table 3).

Simulation studies were performed for all original and
designed oligopeptides using Macromodel Schrodinger suite
for 1ns and scatter plot was plotted. We seek to optimize
the propensity of the oligopeptides to assume the stable
conformation and thus by considering the potential energy
for all original and designed oligopeptides a combined graph
was plotted for each oligopeptide. The graph shows that,

among all designed oligopeptides, SSGAY VT TFPKFAVY-
GLP from PGKFYVSSGATTFPAVYL and GEKKLVEAPKS
from PGKYKLAVSEK (derived from motavizumab and
glycoprotein A interaction), NKATATGVQGMTDEFGSVS-
SQW from QVGFSSTAMWNKTFDVSGATQ (derived from
motavizumab and glycoprotein B interaction), MIFQLTTS-
SAPARTM from QTAMRMIFTALTSPS and PDAPSQN-
DGKDSSTV from SGVQPDAPSNDSKDT (derived from
motavizumab and fusion protein interaction), YHTGSSVSL-
TSPSLGEVKE from PSTLSVSSGTVYEKHEGLS (derived
from motavizumab and matrix protein interaction), and
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FIGURE 5: Interaction of fusion protein and motavizumab showing interaction of residues with heavy and light chain through various bonds™.

PPVAYLTPFVG from PGPTVFPAVLY and AEKREKQE
from KREAKQEE (derived from motavizumab and small
hydrophobic protein interaction) were the most stable in
terms of potential energy as represented in supplementary
figure (see Supplementary Material available online at http://
dx.doi.org/10.1155/2014/613293). Among them, the oligopep-
tides which are the most stable and have good water solu-
bility were GEKKLVEAPKS, PDAPSQNDGKDSSTV, YHT-
GSSVSLTSPSLGEVKE, and AEKREKQE; hydropathy plot in
Figure 9 represents top region as hydrophilic and bottom
region as hydrophobic [20].

For further screening among these designed
oligopeptides, molecular docking procedure was performed
by ZDOCK server for original oligopeptide and designed
oligopeptide to check their affinity towards respective
proteins (Figure 10) which showed that Z-score of PGKYKL-
AVSEK is 964.281 and designed oligopeptide (GEKKLVEA-
PKS) Z-score is 994.764, whereas the Z-score of SGVQP-
DAPSNDSKDT is 937.834 and designed oligopeptide (PDA-
PSQNDGKDSSTV) Z-score is 632.903, similarly PSTLSVS-
SGTVYEKHEGLS Z-score is 868.628 and designed

oligopeptide (YHTGSSVSLTSPSLGEVKE) Z-score is
654.164, and finally KREAKQEE Z-score is 576.178 and
designed oligopeptide (AEKREKQE) Z-score is 572.8880.
Based on the binding efficacy and peptide properties of
the designed oligopeptide from PGKYKLAVSEK, GEKKL-
VEAPKS can be considered for further studies.

4. Discussion

Antibodies can neutralize HRSV either by binding the virus
surface and preventing its ability to interact with cellular
receptors or by binding after virion attachment and blocking
the subsequent steps involved with virus entry. Efficacy issues
of motavizumab have been demonstrated and its application
needs further improvement. Understanding molecular basis
for designing and synthesizing new antibody is necessary
for better treatment. For the same reason, understanding
structural rules governing antigen-antibody interactions of
a virus is also necessary [21]. In silico approaches were
used in present study where computational docking was
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FIGURE 6: Interaction of matrix protein and motavizumab showing interaction of residues with heavy and light chain through various bonds™.

TaBLE 3: Shuffled amino acid residues from oligopeptides.

KYKLAPGVSEK, GEKKLVEAPKS, LKYKGPKESVA, YLASEKVKKGP, EKGSAVYGLPK,

PGRYKLAVSEK SPYVEKKAGKL
GPKFVYSGSTATPAFYVL, FGKPSVYSTAGTPAFVYL,
PGKFYVSSGATTFPAVYL SSGAYVTTFPKFAVYGLP, PPGVAKYLVSSGATTFFY,

SVYGASVAPKYPLGTFTE TTFPKFAAYVPLGYVGSS

WNKTAMTFDESSVSGQVGATQ, NKATATGVQGMTDFGSVSSQW,
QVGESSTAMWNKTFDVSGATQ MTFDSGSVSWQGQVGTATANK, MTNKATFDATSGGVSVQGSWQ,
QVGQTAFSSGSVTAMWKTEDN, SGATQKTDFVQVGFSSNWMAT

MIFTALTAMRSPSQT, TAMRPSSTALQTMIE FMIQTLTSASPRAMT,

QTAMRMIFTALTSPS MIFQLTTSSAPARTM, SSTTPALQRAFIMMT, TSMSMTITFPAALQR
VGQPADPNSDSKDTS, PDAPSQNDGKDSSTV, QVPGSAPSDNDSKTD,
SGVQPDAPSNDSKDT DKGVSDQPSNDAPST, PSANDDPSQKVDTGS, SNDSGVSDTQPDTAP
VSSGTEKHEGLSPSTLSYV, KEHGLSSPLTVSGSSTVYE, GSVSSTLPSLGEHKEVYTS,
PSTLSVSSGTVYEKHEGLS SVSSLTPSKGEHLSGVYTE, YHTGSSVSLTSPSLGEVKE, SSSTPELHSGEYTGVSKVL
KREAKQEE AEKREKQE, QEKRAEKE, EEKREKQA, EKQEREAK, KKREAQEE,
AKREEEQK, EKEQKRAE, KEAKEREQ
PGPTVEPAVLY PPVAYLTPFVG, LPTPFGVYVAP, FVPTGVYLPPA, AVPTGYPFVLP,

PTFVGYLVAPP, GTYPFVAVLPP

All oligopeptides were shuffled and possible residues were generated randomly.
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FIGURE 7: Interaction of small hydrophobic protein and motavizumab showing interaction of residues with heavy and light chain through
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implemented predicting docked complex of viral surface pro-
teins and motavizumab through which interacting residues
were obtained. Knowing which residues bind to the virus
protein can be beneficial in antibody engineering. These
residues were found to be present in CDRs (complementary
determining regions) and outside the CDRs; among them,
the residues that fall outside of the traditionally defined
CDRs are at least as important to antigen binding as
residues within the CDRs, and, in some cases, they are
even more important energetically; hence we have consid-
ered all interacting residues irrespective of their occurrence
[22].

Moreover, low solubility of therapeutic antibodies is
more difficult in formulations and may lead to poor
biodistribution, undesirable pharmacokinetics behavior, and
immunogenicity [23]; for the same purpose, oligopeptides
which were having good water solubility were taken in
consideration; moreover, the intrinsic properties of pro-
teins such as size, hydrophobicity, lipophilicity, and isoelec-
tric point play important roles in absorption of antibody

[23-28] which favors our findings. ZDOCK scores based
on knowledge-based statistical potentials have additionally
demonstrated that a modest increase in affinity through
docking of GEKKLVEAPKS, a designed oligopeptide from
PGKYKLAVSEK, can enhance the functional properties of
motavizumab for therapeutic targeting to the HRSV cause.
The use of these in silico techniques may provide a valuable
addition to conventional experimental methods in develop-
ing improved antibodies for the treatment of HRSV cause as
well as other endemic diseases.

5. Conclusion

Strategies for optimizing and improving antibody properties
are highly desirable, either to increase their efficacy or
to alter their binding specificity. Understanding sequence-
structure relationships in antibodies and advances in com-
putational methods has enabled progress that can assist in
redesigning antibodies for higher affinity or other desired
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(d)
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(h)

FIGURE 8: Ribbon representation of the modeled oligopeptides. (a) KREAKQEE, (b) PGKFYVSSGATTFPAVYL, (c) PGKYKLAVSEK, (d)
PGPTVFPAVLY, (e) PSTLSVSSGTVYEKHEGLS, (f) QTAMRMIFTALTSPS, (g) QVGFSSTAMWNKTFDVSGATQ, and (h) SGVQPDAP-

SNDSKDT.

modifications. Using experimentally determined structure,
we have performed interaction studies of antibody and
protein followed by redesigning the oligopeptides derived
from interacting residues, thus improving binding affin-
ity, specificity, and other properties such as solubility.

However, more validation studies are desired to know the
real efficacy of the oligopeptides as an anti-HRSV drug in
the future. We have generated testable hypothesis which can
help to interpret and guide in vivo and in vitro experi-
ments.
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FIGURE 9: Hydropathy plot of GEKKLVEAPKS, PDAPSQNDGKDSSTV, YHTGSSVSLTSPSLGEVKE, and AEKREKQE. Composition of
amino acid in a peptide is represented in coloured format showing top region as hydrophilic and bottom region as hydrophobic.
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FIGURE 10: Interaction of antibody with original and designed oligopeptides; arrow represents binding site of oligopeptide with antibody, as
shown in the lower right side of each figure. (al) represents original PGKYKLAVSEK, (a2) represents designed oligopeptide GEKKLVEAPKS,

(bl) represents original SGVQPDAPSNDSKDT, (b2) represents designed oligopeptide PDAPSQNDGKDSSTYV, (cl) represents original
PSTLSVSSGTVYEKHEGLS, (c2) represents designed oligopeptide YHTGSSVSLTSPSLGEVKE, (d1) represents original KREAKQEE, and

(d2) designed oligopeptide AEKREKQE.
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