
A strategy for validation of variables derived from large-scale 
electronic health record data

Lin Liua,b,*, Ranier Bustamanteb, Ashley Earlesc, Joshua Dembb, Karen Messerb, Samir 
Guptaa,b,*

aVA San Diego Healthcare System, 3500 La Jolla Village Dr, San Diego, CA 92161, USA

bUniversity of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA

cVeterans Medical Research Foundation, 3350 La Jolla Village Dr, San Diego, CA 92161, USA

Abstract

Purpose: Standardized approaches for rigorous validation of phenotyping from large-scale 

electronic health record (EHR) data have not been widely reported. We proposed a 

methodologically rigorous and efficient approach to guide such validation, including strategies 

for sampling cases and controls, determining sample sizes, estimating algorithm performance, and 

terminating the validation process, hereafter referred to as the San Diego Approach to Variable 

Validation (SDAVV).

Methods: We propose sample size formulae which should be used prior to chart review, based 

on pre-specified critical lower bounds for positive predictive value (PPV) and negative predictive 

value (NPV). We also propose a stepwise strategy for iterative algorithm development/validation 

cycles, updating sample sizes for data abstraction until both PPV and NPV achieve target 

performance.

Results: We applied the SDAVV to a Department of Veterans Affairs study in which we created 

two phenotyping algorithms, one for distinguishing normal colonoscopy cases from abnormal 

colonoscopy controls and one for identifying aspirin exposure. Estimated PPV and NPV both 

reached 0.970 with a 95% confidence lower bound of 0.915, estimated sensitivity was 0.963 and 

specificity was 0.975 for identifying normal colonoscopy cases. The phenotyping algorithm for 
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identifying aspirin exposure reached a PPV of 0.990 (a 95% lower bound of 0.950), an NPV of 

0.980 (a 95% lower bound of 0.930), and sensitivity and specificity were 0.960 and 1.000.

Conclusions: A structured approach for prospectively developing and validating phenotyping 

algorithms from large-scale EHR data can be successfully implemented, and should be considered 

to improve the quality of “big data” research.

Keywords

Electronic phenotyping; Large-scale electronic health records; Data abstraction validation; Sample 
size; Positive predictive value; Negative predictive value

1. Introduction

Large-scale electronic health records (EHRs) contain a wide array of data that can 

be leveraged to conduct epidemiologic and quality improvement research [1,2]. Data 

abstraction algorithms are often used to extract variables from large-scale EHR data and 

can be used for a variety of purposes, such as to identify a study cohort [3–6] or define 

predictors and outcomes of interest [7–10]. This process is commonly referred as electronic 

phenotyping [11]. The accuracy and precision of results from analyses using the variable via 

electronic phenotyping depend heavily on the performance of the algorithms used to create 

the phenotype of interest.

Validation of electronic phenotyping is a major challenge. Validation typically consists of 

comparing the resulting phenotype against manual chart review as the reference standard 

[12,13]. However, this is logistically difficult when using large-scale EHR data because 

such datasets typically contain hundreds of thousands to millions of patients, with multiple 

variables of interest and multiple potential values for each variable. Reviewing more than a 

small fraction of records through manual chart review is not feasible, thus raising questions 

about the size and scope of the sample size required to achieve an accurate estimate of an 

electronic phenotyping algorithm’s performance.

A structured approach for validation of electronic phenotyping is required to ensure 

high quality research. The strategy should include an unbiased approach to 1) select a 

representative sample, 2) determine sample size required for review, 3) estimate phenotyping 

algorithm performance, and 4) define parameters for stopping iterative development once 

target performance is achieved. Sample size selection is a challenge in large-scale EHR 

datasets because the true value of the variable of interest is only knowable through chart 

review. In smaller scale datasets, true values are often known prior to validation, as is 

common in research focused on diagnostic tests [14,15]. In the setting of evaluating a 

diagnostic test with known true case and control status, sensitivity and specificity serve as 

the target performance measures (Table 1), and the minimum number of true cases and 

true controls required for review are determined by pre-specified targets for sensitivity and 

specificity [15,16].

Subsamples of true cases and true controls can be sampled separately from the study 

population. When the prevalence of cases is moderately common within the study 
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population (e.g. 0.20–0.80), the total sample size of a random sample of the population can 

be estimated by accounting for the prevalence of the true cases, and the researcher can select 

a subsample with both true cases and true controls together [16,17]. However, when the 

prevalence of cases is extremely low or high in the study population (e.g. <0.10 or >0.90), 

using a random sample under the assumption that a sufficient number of true cases and 

controls will be included may not be an efficient or even feasible approach. Since achieving 

a sufficiently sized subsample of combined true cases and true controls could result in a 

need for a very large projected sample, manual chart review may incur substantial costs. An 

additional challenge for big data research pertains to estimation of sensitivity and specificity. 

When true case/control status is known prior to validation, sensitivity and specificity can be 

estimated directly from the validation sample. However, this approach is not feasible when 

using large-scale EHR data, because the true case or control status is often not known prior 

to review.

To address this challenge, some have chosen to review subsamples of putative cases and 

putative controls ranging from 50 to 1,200 as identified by an electronic phenotyping 

algorithm instead [8,18–21]. For example, Mamtani and colleagues identified 18,000 

putative bladder cancer cases from a database with over 11 million patients, and then 

manually reviewed a random sample of 210 putative bladder cancer cases to assess 

the performance of the phenotyping algorithm using positive predictive value (PPV) [8]. 

Nadkarni et al. (2014) validated an algorithm that abstracted chronic kidney disease status 

using a random sample of 600 predicted disease and non-disease patients, respectively, for 

the primary study site, and then reduced the sample size to 25 disease and 25 non-disease 

patients for the secondary site [21]. Both PPV and negative predictive value (NPV) were 

used to examine the algorithm performance. To examine the performance of an EHR 

based phenotyping algorithm of community associated methicillin-resistant Staphylococcus 
aureus, Jackson et al. (2016) selected a random sample of 25 to 50 potential cases and 

controls for each site for chart review and estimated the PPV and NPV [20]. Although the 

strategy of selecting putative cases and controls has been used for these and other studies in 

practice, from our literature review, there are no published methods to provide standardized 

guidance on how to select subsamples and determine the sample size for validation of a 

phenotyping algorithm when using large-scale EHR data with an unknown case/control 

prevalence [20–23]. In this scenario, PPV and NPV would be selected as the primary 

performance measures.

As previously mentioned, the sampling strategy, sample size and performance criteria 

should be specified prior to chart review using well-established statistical principles. 

Without such pre-specification, sample sizes may be too small, resulting in imprecise 

performance estimates with a large variance (a wide confidence interval), or alternatively 

sample sizes may be unnecessarily large, resulting in inefficient and labor intensive chart 

reviews. Furthermore, an electronic phenotyping algorithm usually needs to go through 

several development and validation iterations [24] before achieving the target performance. 

These iterations might include modification of the phenotyping algorithm, lowering the 

target performance values and/or increasing the sample size to improve precision of the 

performance estimates. To our knowledge, there are no published approaches to guide how 

this stepwise process might be conducted, or how many iterations of the development 
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and validation cycle are required. A pre-specified approach is desirable in order to avoid 

potential early cessation of algorithm development when informal “favorable” performance 

estimates are produced. Additionally, a pre-specified approach can also avoid continued, 

labor intensive chart review when additional sampling alone is unlikely to achieve adequate 

performance, and a new development cycle is needed. Finally, we postulate a need to 

establish pre-specified well thought out criteria for stopping for both success and for 

failure after an independent validation step, in order to produce more reliable performance 

estimates at the end of the development and validation process. Development of novel 

methodology is necessary, given the burgeoning use of large-scale EHR data for research 

and the need to ensure that results are optimally interpreted.

In this paper, we propose a methodologically rigorous and efficient approach for the 

validation of phenotypes derived from large-scale EHR data using PPV and NPV as 

performance measures, hereafter referred to as the San Diego Approach for Variable 

Validation (SDAVV). Specifically, we outline 1) a sampling strategy for cases and controls, 

2) minimum sample size required to achieve target performance estimates, 3) an approach 

to estimate phenotyping algorithm performance, and 4) a stepwise process for validating 

variables of interest. As illustrative examples, we applied the SDAVV to validate two 

phenotyping algorithms, one for identifying normal colonoscopy cases and abnormal 

colonoscopy controls, and one for identifying aspirin exposure within the Department of 

Veterans Affairs (VA) healthcare system utilizing a large national dataset encompassing over 

two million records and 15 years of data.

2. Methods

2.1. Sampling strategy and preliminary estimates

We first determined the sampling strategy, selected the primary performance measures to 

be used to validate the phenotyping algorithm, and pre-specified the target performance of 

the measures. The primary performance measures were PPV and NPV. PPV was defined 

as the proportion of true cases (as identified by blinded manual chart review) among all 

those classified as putative cases by the phenotyping algorithm, and NPV as the proportion 

of true controls among those classified as putative controls by the phenotyping algorithm. 

Since the true cases and true controls were unknown before the chart review, we planned to 

use random sampling of putative cases and putative controls, as identified by the electronic 

phenotyping algorithm. Once the phenotyping algorithm was judged to have sufficient 

performance (or not amenable to improved performance) within the current development 

cycle [24], we estimated prevalence of cases as identified by the algorithm. Then, we 

determined the minimum sample size required for manual chart review using an estimated 

or assumed true PPV/NPV, and a pre-specified target critical value, as is described in further 

detail below.

2.2. Determine sample size

Target performance was set by requiring the one-sided α-level lower confidence bounds for 

the estimated population PPV and NPV to be above a pre-specified critical threshold p0, as 

the criterion for a successful validation. The number of putative cases and putative controls 
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needed for review was then determined. Since two potentially correlated performance 

measures were estimated, a Bonferroni correction was used for multiple comparison 

adjustment to ensure an overall confidence of (1 −α)%. Therefore, the one-sided (1 −α/2)% 

confidence lower bounds for the population PPV/NPV would be calculated as

p − zα/2 p(1 − p)/n (1)

where p is the estimated PPV/NPV from the to-be reviewed sample, n is the number of 

putative cases and putative controls required for review, and zα/2 is the critical value of 

the standard normal distribution. If α = 0.05, then the critical value z.025 = 1.96 would be 

used because of the Bonferroni correction. Now, we select our best guess for an assumed or 

anticipated target PPV/NPV of our phenotyping algorithm, perhaps using a current estimate 

from a current validation sample and substitute this for p in formula (1). In order for the 

confidence lower bounds in formula (1) to lie above a critical value of p0, the number of 

putative cases and putative controls needed for chart review would be

n =
z ∝ /2

2 p(1 − p)
p − p0

2 (2)

The difference between sample PPV/NPV and the critical threshold of the lower bounds for 

estimated population PPV/NPV p − p0  is called the margin of error. To demonstrate how 

to use formula (2), let us assume the anticipated PPV/NPV are 0.950. If we set the critical 

lower bounds at 0.900 (equivalent to the margin of error at 0.05), we would estimate the 

needed sample size as n = 1.962*0.950*(1 − 0.950) ÷ (0.950 − 0.900)2 = 73 using formula 

(2). Thus, a minimum of 73 putative cases and 73 putative controls would be required for 

review.

Table 2 presents a range of reasonable sample sizes for chart review (100−250) and 

critical lower bounds for a range of anticipated PPV/NPVs (0.850−0.950). For example, 

if 100 putative cases and 100 putative controls were randomly sampled and the anticipated 

PPV/NPV were both 0.950 or above, then the critical lower bounds for the population 

PPV/NPV would be 0.907 or above. If the validation was successful, the lower bound of 

the estimated PPV/NPV would lie above 0.907 and we would claim with 95% confidence 

that population PPV/NPV are both greater than 0.907. Furthermore, if the true PPV/NPV are 

at least as great as anticipated, then at the computed sample size the validation study has a 

95% chance of being successful. Table 2 can be easily expanded using formula (1) above 

to provide projections of critical lower bounds for a wider range of sample sizes and/or 

anticipated PPV/NPVs.

2.3. Estimate phenotyping algorithm performance

Phenotyping algorithm performance was summarized primarily using the selected 

performance measures PPV and NPV, and their one-sided (1 −α/2)% confidence lower 

bounds. Successful validation was declared if the confidence intervals for both measures 

were above the pre-specified critical lower bounds. After completing manual chart review, 

PPV and NPV were estimated directly from the subsample of putative cases and putative 
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controls. Sensitivity and specificity could also be estimated, given that these have been 

recommended as performance measures when validating discrete variables of interest [25]. 

Sensitivity was defined as the proportion classified as putative cases by the algorithm 

among the true cases, and specificity as the proportion classified as putative controls by 

the phenotyping algorithm among the true controls. Sensitivity and specificity could not be 

directly estimated from the subsample of putative cases and controls. However, they could 

be calculated by combining PPV and NPV with the prevalence of cases identified by the 

phenotyping algorithm (w) as follows:

Sensitivity = PPV * w
PPV * w + (1 − NPV ) * (1 − w) (3)

Specificity = NPV * (1 − w)
NPV * (1 − w) + (1 − PPV ) * w (4)

Computations of sensitivity and specificity using Bayes’ theorem [26] are provided in 

Appendix A. In practice, PPV and NPV would be estimated from the reviewed samples, and 

the prevalence of cases identified by the phenotyping algorithm over the study population 

(w) could be calculated directly.

We explored possible values for sensitivity and specificity given a wide range of PPV/NPV 

(0.850–0.990) and prevalence of cases identified by a phenotyping algorithm (0.05–0.95). 

Only values for sensitivity are shown in Table 3 below since specificity is inversely related 

to sensitivity with the prevalence of 1 – w (see Appendix B for specificity values). We 

found that for a moderate prevalence between 0.20 and 0.80, and a PPV and NPV of 0.90 or 

above, that estimated sensitivity and specificity would both be ≥ 0.692. If higher sensitivity 

and specificity are required, a higher PPV/NPV should be targeted when developing the 

phenotyping algorithm.

2.4. Stepwise validation process

Using Table 2 and Table 3 as guides, we propose a stepwise validation process in which 

we estimate sample PPV and NPV during the phenotyping algorithm development stage, 

set the critical lower bounds for PPV/NPV, and then identify the validation sample size that 

could achieve the closest value to the target lower bounds in Table 2. For simplicity, Table 

2 includes feasible sample sizes commonly used in clinical research, but the exact sample 

size for each step could be calculated directly using formula (2). If the lower bounds of 

PPV/NPV estimated from the reviewed sample do not reach their target values, we cannot 

claim that population PPV/NPV are greater than the lower bound thresholds with 95% 

confidence, and we would conclude inadequate phenotyping algorithm performance at this 

stage. If considerations suggest the phenotyping algorithm could be improved, we would 

propose modification of the algorithm with another round of review.

During the second round of review, we would also consider lowering the targets, increasing 

the sample size, or implementing both simultaneously and then continuing until the 

desired targets were reached or further improvement was not feasible. If the initial targets 
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were missed because the phenotyping algorithm was unlikely to achieve them even after 

modification, lowering the targets is recommended. If the initial targets were missed because 

the lower bound was not estimated efficiently due to small sample size of the reviewed 

sample, increasing the number of cases and controls for the next round of review is 

recommended. To be conservative, we could also adjust both. The following is a step-by-

step example of the proposed process.

1. Set initial critical lower bounds and determine minimum sample size 
required. If anticipated PPV and NPV during the algorithm development stage 

were 0.950, we would set the initial critical lower bounds at 0.900. According to 

Table 2, we would manually review 100 putative cases and 100 putative controls. 

If the estimated PPV and PPV from the reviewed samples reach 0.95 or greater, 

the lower bounds of PPV/NPV would be at least 0.907 and the initial critical 

lower bounds of 0.900 would be achieved, indicating successful validation at the 

first step.

2. If initial critical lower bounds are not met, modify phenotyping algorithm, 
lower critical lower bounds, and increase sample size. If critical lower bounds 

were not reached during the first iteration, we would simultaneously lower the 

critical lower bounds and increase the sample size during the second round of 

review. If anticipated PPV/NPV were lowered to 0.900, we would set the revised 

target lower bounds at 0.850 (if clinically acceptable). According to Table 2, 

we would manually review 150 putative cases and 150 putative controls. If 

the estimated PPV/NPV from the reviewed samples reach 0.900 or greater, the 

resulting lower bounds of PPV/NPV would be at least 0.852 and the revised 

critical lower bounds of 0.850 would be achieved, again indicating successful 

validation at the second step.

3. Repeat process until critical lower bounds are reached or further 
improvement is not feasible. If the critical lower bounds were not reached, 

we would continue to modify the algorithm, lower the critical lower bounds, 

increase the sample size, and complete another iteration until the desired targets 

were reached or further improvement was not feasible.

4. Calculate all four performance measures and the validation process is 
completed. Finally we would calculate PPV, NPV, sensitivity and specificity 

with lower one-sided 95% confidence intervals and the validation process would 

be completed.

Note: Because of the sequential nature of the validation process, multiple testing would 

inflate the family-wise error rate such that the nominal confidence level for the 95% 

confidence interval would not hold as expected if two or more steps were conducted.

3. Illustrative examples

We applied the SDAVV described above to validate two phenotyping algorithms – one 

for identifying normal colonoscopy cases and abnormal colonoscopy controls, and one 
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for identifying aspirin exposure using a combination of structured medication data and 

unstructured free-text progress notes – within the VA healthcare system.

3.1. Identifying normal colonoscopy cases and abnormal colonoscopy controls

In this first illustrative example, we implemented the SDAVV to validate an approach for 

identifying normal colonoscopy cases and abnormal colonoscopy controls.

3.1.1. Sampling strategy and preliminary estimates—Our study base, which has 

been previously described [27], consisted of 1,839,043 Veterans with at least one Current 

Procedural Terminology (CPT) code for colonoscopy from 1999 to 2014, after excluding 

patients with no documentation of colonoscopy on the day of their CPT code up to 30 

days after that initial code and patients with history or a diagnosis of inflammatory bowel 

disease at the date of initial code. We identified the baseline procedure date and applied 

relevant exclusion criteria (see Fig. 1 for a full outline of the selection criteria; details 

for exclusion criteria are included in Appendix C). Normal colonoscopy was defined as 

no polyps removed or biopsies taken; abnormal colonoscopy was defined as any polyps 

removed or biopsies taken. The algorithm resulted in 825,413 putative cases and 1,013,630 

putative controls. Prevalence of normal colonoscopy as identified by the algorithm was 

0.449.

3.1.2. Determine sample size—During the phenotyping algorithm development phase, 

we used an initial rule-based approach and worked toward finding an appropriate definition 

to build up to a finalized version of the algorithm by randomly reviewing a small number 

of charts and modifying the approach. Based on this process, we anticipated that we could 

achieve a PPV and NPV of 0.950. Following the validation process proposed above, we set 

the initial critical lower bounds at 0.900 and randomly sampled 100 putative cases and 100 

putative controls.

3.1.3. Estimate phenotyping algorithm performance—Reviewers (RB and AE) 

manually reviewed 100 putative cases and 100 putative controls in random order, and a 

clinician with expertise in the entity of interest (SG) spot checked charts for accuracy. 

Performance measures were estimated after the review was completed (Table 4). Sample 

PPV and NPV were both 0.970 and the 95% confidence lower bounds of population 

PPV/NPV were 0.915. Sample PPV/NPV were then combined with the prevalence of 

normal colonoscopy cases as identified by the algorithm to calculate sensitivity and 

specificity using formulas (3) and (4), which were 0.963 and 0.975, respectively.

3.1.4. Stepwise validation process—According to the approach laid out above, we 

could claim that population PPV/NPV of the algorithm were both greater than 0.915 

(better than the critical lower bound of 0.900) with 95% confidence. Thus, we concluded 

that the algorithm performed well with both high PPV for identifying cases with normal 

colonoscopy and high NPV for identifying individuals with abnormal colonoscopy and 

stopped the validation process. A summary of how we applied the SDAVV to the first 

illustrative example was summarized in Fig. 2.
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3.2. Identifying aspirin exposure

In another illustrative example, we implemented the proposed method to validate an 

approach for ascertaining aspirin exposure using both structured medication data and 

unstructured free-text progress notes in a cohort of individuals exposed to colonoscopy [28]. 

The critical threshold for PPV and NPV was selected at 0.90 based on the estimates from 

the algorithm development phase. We developed a phenotyping strategy using unstructured 

free-text data only and found that the lower bound for PPV, which was 0.89, did not achieve 

the critical threshold 0.90 during the first round of chart review validation (Table 5). In the 

second iteration, we modified the algorithm by adding the structured data, and maintained 

the goal of achieving target performance for PPV at 0.90. We found that the estimated 

lower bounds of PPV and NPV were both above 0.90 at this round of chart review, so we 

concluded that the algorithm performed well and stopped the validation process. Combined 

with the estimated prevalence of aspirin exposure 0.36, the sensitivity and specificity were 

estimated to be 0.96 and 1.00, respectively. The details of aspirin exposure phenotyping 

algorithm were reported in Bustamante et al. (2019) [28].

4. Discussion

Validation of electronic phenotyping algorithms developed for large-scale EHR data is a 

challenge. In large-scale EHR studies where the true value of the phenotype variable is 

unknown, we propose a methodologically rigorous and efficient iterative approach, known 

as the SDAVV, for validating electronic phenotyping algorithms by sampling putative 

cases and putative controls for review. Implementing a pre-specified sample size selection 

approach, based on the performance measures for PPV/NPV estimated during phenotyping 

algorithm development, before initiating manual chart review, has the advantage of 

improving efficiency and reducing risk for potential bias by avoiding inefficient review of an 

unnecessarily large number of charts, and avoiding a smaller than needed sample that results 

in a wide confidence interval around performance estimates. Our approach addresses a gap 

in the literature, given that in other validation of electronic phenotyping algorithms, there 

was a lack of standardized methods in describing the number of cases and controls to review 

[20,21,23]. Indeed, sample sizes utilized for chart review to validate electronic phenotyping 

algorithms reported in the literature range from 50 to 1,200 without an accompanying 

formal sample size projection. Our proposed sampling strategy ensures that a sufficient yet 

parsimonious sample of putative cases and putative controls are selected for review even if 

the prevalence of cases within the study population is extremely low or high (e.g. < 0.10 or 

greater than 0.90). Algorithm development and validation works best as an iterative process 

[23]. Within this process, these iterations might include modification of the phenotyping 

algorithm as well as lowering the target performance values. Our approach includes 

statistical rules for stopping the iterative process of algorithm development and validation. 

To our knowledge, this is the first structured approach to incorporate a stepwise validation 

process within phenotyping algorithm development. We postulate that implementation of 

our proposed approach has the potential to reduce bias and improve research efficiency, 

filling a gap in phenotyping algorithm validation methodology, and improving the quality of 

electronic phenotyping.
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An advantage of our proposed approach is that it is highly adaptable (Table 6). First, 

both PPV and NPV were selected as the primary performance measures to ensure that 

the phenotyping algorithm was validated among both putative cases and putative controls. 

Bonferroni correction was applied for multiple comparisons adjustment of two primary 

measures, which affects their confidence intervals (PPV and NPV). However, others may 

choose to modify the approach and only sample putative cases to estimate PPV if only 

identifying true cases is of interest as in Mamtani’s study [8], such that Bonferroni 

correction would not be needed.

Second, the initial PPV/NPV and lower bounds could also be adjusted, and the sample size 

could be still calculated using formulas (1) and (2), and sensitivity and specificity would 

be calculated using formulas (3) and (4). Third, based on the results from the algorithm 

development stage, others may choose to use different estimates and target different lower 

bounds for PPV and NPV, respectively, which would result in a different sample sizes for 

putative cases and putative controls. To simplify our approach, we chose to randomly sample 

an equal number of putative cases and putative controls. PPV and NPV are complementary, 

so refining the phenotyping algorithm would change both performance measures. To reduce 

bias, we recommend resampling both putative cases and putative controls if either PPV or 

NPV fail to hit their targets. Since the original sample is based on the previous algorithm 

and the total number of putative cases and putative controls is likely to change after 

the modification, it is inappropriate to assess new performance measurements using the 

original sample because this could cause overfitting and therefore bias toward favorable 

performance. Another reason to resample both putative cases and putative controls is to 

keep reviewers blinded to case/control status. If we reuse the sample putative cases and 

controls, reviewers may recall the true case/control status, and the resulting adjudication of 

case/control status would not be independent of the prior review, and potentially be subject 

to bias.

The approach is also adaptable for scenarios which require additional iterations in the 

validation process if the initial critical lower bounds were not met. However, this decision 

often depends on time and resources available. As we pointed out earlier, since validation 

is a stepwise process, the nominal confidence level for the 95% confidence intervals might 

not hold, without a pre-specified number of iterative steps, the correction for multiple testing 

becomes challenging. If the maximum number of iterative steps could be pre-specified, 

Bonferroni correction could be applied and the sample size in each step will be larger than 

what we have proposed in the paper. In practice, we suggest reviewing a new independent 

sample after the last round of the validation, and reporting the performance measures using 

this new sample such that the 95% confidence level can be maintained. Another iterative 

process which may be used as a way to adapt our validation process is sequential testing. 

Rather than using independent samples where we may modify our algorithm between 

samples, sequential testing would allow for collecting data sequentially until the goal is 

reached [29–32]. There is uncertainty in how to apply our modified algorithm during this 

process, and additional work needs to be completed to determine the feasibility and efficacy 

of this method.
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The proposed approach can be applied to a variety of different scenarios and is highly 

generalizable (Table 7). For example, the approach can be used to identify a study cohort, 

define a predictor, or validate an outcome of interest [3–10]. The approach is particularly 

useful for validating rare outcomes such as colorectal cancer [10]. When validating 

phenotypes with low prevalence, strategic sampling of cases and controls is often the only 

feasible design [14,33]. Our approach will ensure that enough cases/controls are reviewed. 

Although our illustrative examples focused on binary variables, our approach could be easily 

modified to validate continuous and categorical phenotypes as well. In order to validate 

continuous phenotypes (e.g. weight) using the proposed process, an acceptable range for 

error could be set beforehand (e. g. within 10 lb of the true value). In order to validate 

categorical phenotypes (e.g. smoking), we recommend validating each category individually 

and comparing one category (e.g. current smoker) vs. all others. Finally, our approach could 

be used to validate phenotyping algorithms using structured, unstructured free-text data, or 

a combination of both data types [34] as shown in the illustrative examples. The algorithm 

could be rule-based, machine learning-based [24], model-based [35] as well as natural 

language processing (NLP) algorithms derived from free-text data at the mention-level, 

document-level, or event-level [36]. In NLP specifically, we are oftentimes only interested in 

positive outcomes, and these are cases in which negative/missing are considered negative. In 

this scenario, we would validate positive outcomes against negative and missing combined.

Often, the outcomes of sensitivity and specificity are of interest for a novel electronic 

phenotyping algorithm developed for a specific variable, such as presence/absence of a 

specified disease or characteristic. Sensitivity and specificity can be easily derived and 

calculated from the sample PPV/NPV and the prevalence of cases identified by the 

algorithm. There are situations where phenotyping algorithm development must be driven by 

sensitivity and/or specificity, although it is noted as a significant challenge in validating the 

phenotype algorithm without knowing the true status in the large scale EHR setting. In these 

scenarios, we recommend using sensitivity and specificity as a reference to select the target 

PPV and NPV and applying the proposed methodology. However, since sample PPV/NPV 

will be combined with estimated prevalence of cases identified by the algorithm to calculate 

sensitivity and specificity, these estimates will vary widely based on the estimated PPV/NPV 

and the prevalence of the algorithm. As seen in Table 3, for events with an extremely low 

prevalence within the study population, a high target PPV and NPV should be considered 

in order to reach adequate estimated sensitivity and specificity. For example, if study 

population prevalence is 0.20 with a goal of achieving 90% sensitivity, a higher target for 

PPV, such as 0.97 instead of 0.95, should be selected.

Our proposed method may have some limitations to consider. First, selecting an initial target 

is a subjective assessment in many cases and there is no formal approach to determine a 

threshold as a good and acceptable PPV/NPV. We have recommended selecting the initial 

PPV and NPV either based on previous research or the potential estimates during the 

algorithm development stage of the phenotype. Additionally, with some specific phenotypes, 

there are repositories of electronic phenotypes that report performance such as Phenotype 

KnowledgeBase (PheKB) [37]. PheKB publishes performance data, such as PPV, that can 

be used during our algorithm development step for establishing an achievable lower bound 

performance statistic. For example, the validated PPVs for PheKB’s algorithm to define the 
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colorectal cancer (CRC) cases were 0.86, 0.92, and 1.00 from three implementation sites 

[38]. If a new phenotyping algorithm is desired for defining CRC cases, one can consider 

setting the lower bound of PPV in the range of 0.86–1.00. Second, a common challenge 

in the development of electronic phenotyping algorithms is how to handle unclassified 

outcomes that are not clearly positive or negative cases. In this scenario, the validation 

approach is not the same as the validation of a simple diagnostic test result that always 

yields a definite positive or negative result [23], where sensitivity, specificity, PPV and NPV 

can all be easily generated. Having a test or electronic phenotyping algorithm that results 

in a third category of unclassified subjects, in addition to positive and negative results, 

changes the way we interpret and calculate the performance statistics. Our current approach 

can provide all these estimates if we restrict the validation to subjects classified either as 

definite (positive) cases or definite (negative) controls. To validate the overall performance 

on classifying patients as one of three categories (cases, controls, or unclassified), the 

validation could be conducted for three categories separately as previously discussed, with 

PPV being estimated for each category.

5. Conclusion

In conclusion, we developed a methodologically sound process to guide the rigorous 

validation of electronic phenotyping algorithms. We laid out a sampling strategy, sample 

size determination, estimation of algorithm performance, and a stepwise validation process. 

Then we applied the SDAVV to two phenotyping algorithms – one for identifying normal 

colonoscopy cases and abnormal colonoscopy controls, and one for identifying aspirin 

exposure using both structured medication data and unstructured free-text progress notes 

– within the VA healthcare system. The phenotyping algorithm for normal colonoscopy 

cases and abnormal colonoscopy controls resulted in 825,413 putative cases and 1,013,630 

putative controls. PPV and NPV were both 0.970 and sensitivity and specificity were 

0.963 and 0.975, respectively. The phenotyping algorithm for identifying aspirin exposure 

reached a PPV of 0.950, an NPV of 0.980, and sensitivity and specificity were 0.960 and 

1.000. Based on these results, we postulate that implementing our proposed strategies for 

validating electronic phenotyping algorithms may reduce bias within and improve efficiency 

of research using large scale EHR data.
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VA Department of Veterans Affairs

SDAVV San Diego Approach to Variable Validation

References

[1]. Schneeweiss S, Avorn J, A review of uses of health care utilization databases for epidemiologic 
research on therapeutics, J. Clin. Epidemiol 58 (4) (2005) 323–337. [PubMed: 15862718] 

[2]. Schwartz RM, Gagnon DE, Muri JH, et al. , Administrative data for quality improvement, 
Pediatrics 103 (1999) 291–301. [PubMed: 9917472] 

[3]. Goldberg DS, Lewis JD, Halpern SD, Weiner MG, Re VL, Validation of a coding 
algorithm to identify patients with hepatocellular carcinoma in an administrative database, 
Pharmacoepidemiol. Drug Saf 22 (1) (2013) 103–107. [PubMed: 23124932] 

[4]. Tian TY, Zlateva I, Anderson DR, Using electronic health records data to identify patients with 
chronic pain in a primary care setting, J. Am. Med. Inform. Assoc 20 (e2) (2013) e275–e280. 
[PubMed: 23904323] 

[5]. Goetz MB, Hoang T, Kan VL, Rimland D, Rodriguez-Barradas M, Development and validation 
of an algorithm to identify patients newly diagnosed with HIV infection from electronic health 
records, AIDS Res. Hum. Retroviruses 30 (7) (2014) 626–633. [PubMed: 24564256] 

[6]. Castro VM, Minnier J, Murphy SN, Kohane I, Churchill SE, Gainer V, Cai T, Hoffnagle AG, Dai 
Y, Block S, Weill SR, Nadal-Vicens M, Pollastri AR, Rosenquist JN, Goryachev S, Ongur D, 
Sklar P, Perlis RH, Smoller JW, Smoller JW, Perlis RH, Lee PH, Castro VM, Hoffnagle AG, 
Sklar P, Stahl EA, Purcell SM, Ruderfer DM, Charney AW, Roussos P, Pato C, Pato M, Medeiros 
H, Sobel J, Craddock N, Jones I, Forty L, DiFlorio A, Green E, Jones L, Dunjewski K, Landén 
M, Hultman C, Juŕeus A, Bergen S, Svantesson O, McCarroll S, Moran J, Smoller JW, Chambert 
K, Belliveau RA, Validation of electronic health record phenotyping of bipolar disorder cases and 
controls, Am. J. Psychiatry 172 (4) (2015) 363–372. [PubMed: 25827034] 

[7]. Gruschow SM, Yerys BE, Power TJ, Durbin DR, Curry AE, Validation of the Use of Electronic 
Health Records for Classification of ADHD Status, J. Atten. Disord 23 (13) (2019) 1647–1655. 
[PubMed: 28112025] 

[8]. Mamtani R, Haynes K, Boursi B, Scott FI, Goldberg DS, Keefe SM, Vaughn DJ, Malkowicz SB, 
Lewis JD, Validation of a coding algorithm to identify bladder cancer and distinguish stage in an 
electronic medical records database, Cancer Epidemiol. Biomarkers Prev 24 (1) (2015) 303–307. 
[PubMed: 25389114] 

[9]. Kim SC, Gillet VG, Feldman S, Lii H, Toh S, Brown JS, Katz JN, Solomon DH, Schneeweiss 
S, Validation of claims-based algorithms for identification of high-grade cervical dysplasia and 
cervical cancer, Pharmacoepidemiol. Drug Saf 22 (11) (2013) 1239–1244. [PubMed: 24027140] 

[10]. Earles A, Liu L, Bustamante R, Coke P, Lynch J, Messer K, Martínez ME, Murphy JD, 
Williams CD, Fisher DA, Provenzale DT, Gawron AJ, Kaltenbach T, Gupta S, Structured 
Approach for Evaluating Strategies for Cancer Ascertainment Using Large-Scale Electronic 
Health Record Data, JCO Clin. Cancer Inform (2) (2018) 1–12, 10.1200/CCI.17.00072. https://
pubmed.ncbi.nlm.nih.gov/30652546/.

[11]. Banda JM, Seneviratne M, Hernandez-Boussard T, Shah NH, Advances in Electronic 
Phenotyping: From Rule-Based Definitions to Machine Learning Models, Annu. Rev. Biomed. 
Data Sci 1 (1) (2018) 53–68. [PubMed: 31218278] 

[12]. Nissen F, Quint JK, Wilkinson S, et al. , Validation of asthma recording in electronic health 
records: a systematic review, Clin. Epidemiol 9 (2017) 643–656. [PubMed: 29238227] 

Liu et al. Page 13

J Biomed Inform. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubmed.ncbi.nlm.nih.gov/30652546/
https://pubmed.ncbi.nlm.nih.gov/30652546/


[13]. Rubbo B, Fitzpatrick NK, Denaxas S, Daskalopoulou M, Yu N, Patel RS, Hemingway H, Use 
of electronic health records to ascertain, validate and phenotype acute myocardial infarction: 
A systematic review and recommendations, Int. J. Cardiol 187 (2015) 705–711. [PubMed: 
25966015] 

[14]. Steinberg DM, Fine J, Chappell R, Sample size for positive and negative predictive value in 
diagnostic research using case-control designs, Biostatistics 10 (1) (2009) 94–105. [PubMed: 
18556677] 

[15]. Arkin CF, Wachtel MS, How many patients are necessary to assess test performance? JAMA 263 
(1990) 275–278. [PubMed: 2403604] 

[16]. Hajian-Tilaki K, Sample size estimation in diagnostic test studies of biomedical informatics, J. 
Biomed. Inform 48 (2014) 193–204. [PubMed: 24582925] 

[17]. Buderer NM, Statistical methodology: I. Incorporating the prevalence of disease into the sample 
size calculation for sensitivity and specificity, Acad. Emerg. Med 3 (1996) 895–900. [PubMed: 
8870764] 

[18]. Xi N, Wallace R, Agarwal G, et al. , Identifying patients with asthma in primary care electronic 
medical record systems Chart analysis-based electronic algorithm validation study, Can. Fam. 
Physician 61 (2015) e474–e483. [PubMed: 26759847] 

[19]. Coloma PM, Valkhoff VE, Mazzaglia G, Nielsson MS, Pedersen L, Molokhia M, Mosseveld 
M, Morabito P, Schuemie MJ, van der Lei J, Sturkenboom M, TrifirÓ G, Identification of 
acute myocardial infarction from electronic healthcare records using different disease coding 
systems: a validation study in three European countries, BMJ Open 3 (6) (2013) e002862, 
10.1136/bmjopen-2013-002862. https://pubmed.ncbi.nlm.nih.gov/23794587/.

[20]. Jackson KL, Mbagwu M, Pacheco JA, Baldridge AS, Viox DJ, Linneman JG, Shukla SK, 
Peissig PL, Borthwick KM, Carrell DA, Bielinski SJ, Kirby JC, Denny JC, Mentch FD, 
Vazquez LM, Rasmussen-Torvik LJ, Kho AN, Performance of an electronic health record-based 
phenotype algorithm to identify community associated methicillin-resistant Staphylococcus 
aureus cases and controls for genetic association studies, BMC Infect. Dis 16 (1) (2016), 
10.1186/s12879-016-2020-2. https://pubmed.ncbi.nlm.nih.gov/27855652/.

[21]. Nadkarni GN, Gottesman O, Linneman JG, et al. , Development and validation of an electronic 
phenotyping algorithm for chronic kidney disease, AMIA Annu. Symp. Proc 2014 (2014) 907–
916. [PubMed: 25954398] 

[22]. Imran TF, Posner D, Honerlaw J, et al. , A phenotyping algorithm to identify acute ischemic 
stroke accurately from a national biobank: the Million Veteran Program, Clin. Epidemiol 10 
(2018) 1509–1521. [PubMed: 30425582] 

[23]. Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, Basford M, Chute 
CG, Kullo IJ, Li R, Pacheco JA, Rasmussen LV, Spangler L, Denny JC, Validation of electronic 
medical record-based phenotyping algorithms: results and lessons learned from the eMERGE 
network, J. Am. Med. Inform. Assoc 20 (e1) (2013) e147–e154. [PubMed: 23531748] 

[24]. Lingren T, Thaker V, Brady C, Namjou B, Kennebeck S, Bickel J, Patibandla N, Ni Y, Van Driest 
S, Chen L, Roach A, Cobb B, Kirby J, Denny J, Bailey-Davis L, Williams M, Marsolo K, Solti 
I, Holm I, Harley J, Kohane I, Savova G, Crimmins N, Developing an Algorithm to Detect Early 
Childhood Obesity in Two Tertiary Pediatric Medical Centers, Appl. Clin. Inform 07 (03) (2016) 
693–706.

[25]. Benchimol EI, Manuel DG, To T, Griffiths AM, Rabeneck L, Guttmann A, Development and 
use of reporting guidelines for assessing the quality of validation studies of health administrative 
data, J. Clin. Epidemiol 64 (8) (2011) 821–829. [PubMed: 21194889] 

[26]. Gerstman BB, Basic Biostatistics: Statistics for Public Health Practice, second ed., Jones & 
Bartlett Learning, Burlington, Massachusetts, 2015.

[27]. Gupta S, Liu L, Patterson OV, Earles A, Bustamante R, Gawron AJ, Thompson WK, Scuba 
W, Denhalter D, Martinez ME, Messer K, Fisher DA, Saini SD, DuVall SL, Chapman WW, 
Whooley MA, Kaltenbach T, A Framework for Leveraging “Big Data” to Advance Epidemiology 
and Improve Quality: Design of the VA Colonoscopy Collaborative, EGEMs (Wash DC) 6 (1) 
(2018) 4, 10.5334/egems.19810.5334/egems.198.s1. https://pubmed.ncbi.nlm.nih.gov/29881762/. 
[PubMed: 29881762] 

Liu et al. Page 14

J Biomed Inform. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubmed.ncbi.nlm.nih.gov/23794587/
https://pubmed.ncbi.nlm.nih.gov/27855652/
https://pubmed.ncbi.nlm.nih.gov/29881762/


[28]. Bustamante R, Earles A, Murphy JD, et al. , Ascertainment of aspirin exposure using structured 
and unstructured large-scale electronic health record data, Med. Care 57 (2019) e60–e64. 
[PubMed: 30807451] 

[29]. Wald A, Sequential tests of statistical hypotheses, Ann. Math. Stat 16 (2) (1945) 117–186.

[30]. Good IJ, Studies in the history of probability and statistics. XXXVII A. M. Turing’s statistical 
work in World War II, Biometrika 66 (2) (1979) 393–396.

[31]. Albers CJ, The Statistician Alan Turing, Nieuw Arch. voor Wiskd 5 (18) (2018) 209–210.

[32]. Albers C, The problem with unadjusted multiple and sequential statistical testing, Nat. Commun 
10 (2019) 1921. [PubMed: 31015469] 

[33]. Widdifield J, Labrecque J, Lix L, Paterson JM, Bernatsky S, Tu K, Ivers N, Bombardier C, 
Systematic review and critical appraisal of validation studies to identify rheumatic diseases 
in health administrative databases, Arthritis Care Res. (Hoboken) 65 (9) (2013) 1490–1503. 
[PubMed: 23436765] 

[34]. Abhyankar S, Demner-Fushman D, Callaghan FM, McDonald CJ, Combining structured and 
unstructured data to identify a cohort of ICU patients who received dialysis, J. Am. Med. Inform. 
Assoc 21 (5) (2014) 801–807. [PubMed: 24384230] 

[35]. Fan J, Arruda-Olson AM, Leibson CL, Smith C, Liu G, Bailey KR, Kullo IJ, Billing code 
algorithms to identify cases of peripheral artery disease from administrative data, J. Am. Med. 
Inform. Assoc 20 (e2) (2013) e349–e354. [PubMed: 24166724] 

[36]. Velupillai S, Suominen H, Liakata M, Roberts A, Shah AD, Morley K, Osborn D, Hayes J, 
Stewart R, Downs J, Chapman W, Dutta R, Using clinical Natural Language Processing for 
health outcomes research: Overview and actionable suggestions for future advances, J. Biomed. 
Inform 88 (2018) 11–19. [PubMed: 30368002] 

[37]. Kirby JC, Speltz P, Rasmussen LV, et al. , PheKB: a catalog and workflow for creating electronic 
phenotype algorithms for transportability, J. Am. Med. Inform. Assoc 23 (2016) 1046–1052. 
[PubMed: 27026615] 

[38]. Carrell D, Grafton J, U.W.G. Health, Colorectal Cancer (CRC), PheKB (2016).

Liu et al. Page 15

J Biomed Inform. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Selection Criteria for Illustrative Example of Normal Colonoscopy Cases and Abnormal 

Colonoscopy Controls. Abbreviations: CPT, Current Procedural Terminology: IBD, 

Inflammatory Bowel Disease.
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Fig. 2. 
Illustrative Example of Normal Colonoscopy Cases and Abnormal Colonoscopy Controls. 

Abbreviations: NPV, negative predictive value; PPV, positive predictive value.
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Table 1

Performance Measures Used to Evaluate Accuracy of Data Abstraction Algorithms.

Chart Review
Performance Measures

True Cases True Controls

Putative Cases True Positives (TP) False Positives (FP) PPV = TP
TP+FP

Algorithm Putative Controls False Negatives (FN) True Negatives (TN)

NPV = TN
FN+TNPerformance Measures Sensitivity = TP

TP+FN Specificity = TN
FP+TN

Abbreviations: NPV, negative predictive value; PPV, positive predictive value.
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Table 4

Performance Measures for Illustrative Example of Normal Colonoscopy Cases and Abnormal Colonoscopy 

Controls.

Prevalence Chart Review Performance Measures

Algorithm n (%) Normal Abnormal Estimate (LB*)

Normal 825,413 (44.9) 97 3 PPV = 0.970 (0.915)

Abnormal 1,013,630 (55.1) 3 97 NPV = 0.970 (0.915)

Abbreviations: LB, lower bound; NPV, negative predictive value; PPV, positive predictive value.

*
The one-sided exact binomial confidence lower bound.
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Table 5

Performance Measures for Illustrative Example of Aspirin Exposure.

Iteration Step Strategy PPV (LB*) NPV (LB*)

1 Unstructured data 0.95 (0.89) 0.98 (0.93)

2 Unstructured and structured data 0.99 (0.95) 0.98 (0.93)

Abbreviations: NPV, negative predictive value; PPV, positive predictive value; LB, lower bound.

*
The one-sided exact binomial confidence lower bound.
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Table 6

Potential modifications to the SDAVV.

1 Select PPV as primary performance measure and randomly sample putative cases only

2 Adjust estimated performance measures, target lower bounds, and/or sample size required

3 Set different targets for PPV and NPV and select different sample sizes for cases and controls

4 Adjust the number of iterations

Abbreviations: NPV, negative predictive value; PPV, positive predictive value; SDAVV, San Diego Approach to Variable Validation.
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Table 7

Potential applications for the SDAVV.

Purpose Types of Variables Types of EHR Data

- Identify a study cohort (e.g. patients with colonoscopy) - Binary (e.g. aspirin exposure) - Structured (e.g. claims-based data)

- Define a predictor (e.g. aspirin exposure) - Continuous (e.g. weight) - Free-text (e.g. natural language processing)

- Define an outcome (e.g. colorectal cancer) - Categorical (e.g. smoking) - Combination (e.g. aspirin exposure)

Abbreviations: EHR, electronic health record; SDAVV, San Diego Approach to Variable Validation.
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