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Abstract
A fully synthetic electrospun matrix was compared to a bi-layered xenograft in the healing of
full thickness cutaneous wounds in Yucatan miniature swine. Full thickness wounds were
created along the dorsum, to which these matrices were applied. The wound area was measured
over the course of healing and wound tissue was scored for evidence of inflammation and
healing. Animals were sacrificed at Day 15 and Day 30 and tissue samples from the wound site
were harvested for histopathological analysis to evaluate inflammation and tissue healing as
evidenced by granulation tissue, collagen maturation, vascularization, and
epithelialization. Average wound area was significantly smaller for treatment group wounds

compared to control group wounds at 15 and 30 days ([7.7 cm2 ± 0.9]/[3.8 cm2 ± 0.8]) and ([2.9

cm2 ± 1.1]/[0.2 cm2 ± 0.0]) (control/treatment) (p = 0.002/p = 0.01). Histopathological analysis of
wound sections revealed superior quality of healing with treatment group wounds, as measured
by inflammatory response, granulation tissue, and re-epithelialization. A fully synthetic
electrospun matrix was associated with faster rates of wound closure characterized by
granulation tissue, deposition of mature collagen and vascularization at earlier time points
than in wounds treated with a bi-layered xenograft. Treatment with this fully synthetic
material may represent a new standard of care by facilitating full-thickness wound closure
while eliminating the risks of inflammatory response and disease transmission associated with
biologic modalities.
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Introduction
The process of wound healing requires a coordinated effort of cellular recruitment and tissue
growth. Regenerative matrix materials have been used to promote this coordination and
provide immediate wound coverage to minimize the risks associated with infection and fluid
loss. An ideal material for these purposes would serve as a healing scaffold, limit infection risk,
minimize inflammation, be readily available for use, and be conformable to diverse wound
surfaces [1-2].

Human autografts and allografts, animal-based xenografts, and fully synthetic materials have
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been used clinically with varying degrees of success. Autograft availability is limited by
definition, and creates iatrogenic morbidity at donor sites. Allografts and xenografts eliminate
the morbidity associated with autografts, but introduce additional risks of inflammatory
response and disease transmission. Furthermore, host rejection of allografts and xenografts
remains a concern in wound populations where the rate of immune disease has been reported
as high as 23% [3].

To support the infiltration of fibroblasts, the deposition of new collagen, and re-
epithelialization of the wound surface, the wound matrix material should persist in the wound
for at least three weeks [4]. The timing of wound matrix degradation is therefore critical, as the
wound matrix should resist degradation until sufficient new tissue growth has occurred. The
susceptibility of biologic wound matrix materials to enzymatic degradation leads to a
resorption rate that is poorly controlled, risking the premature degradation of the wound
matrix prior to sufficient wound healing [5].

There remains a need for materials that minimize inflammation and promote complete wound
healing [6-8]. Electrospun fibrous scaffolds may meet this need by mimicking the structure of
native extracellular environment while enabling resident cells to perform their roles in the
healing cascade [9-10]. The purpose of the following study was to compare a novel fully
synthetic material to a commercially available bi-layered xenograft material using a porcine
full-thickness wound model.

Materials And Methods
This study was approved by the Institutional Animal Care and Use Committee (Sinclair
Research Center, Animal Care and Use Committee; Protocol #: D14119) and closely monitored
by veterinarians to ensure that proper care and handling of the animals were provided.

Surgical procedure
A swine model was selected due to its applicability in translating results for potential clinical
uses. Two Yucatan miniature swine were fasted overnight then clipped to remove hair from the
dorsal-lateral area, which were then prepared for surgery with disinfectant and isopropyl
alcohol. These preparations were performed by a single investigator. Anesthesia was
administered with intramuscular injections of Telazol (~2.2 mg/kg) and Xylazine (~0.44 mg/kg)
followed by Isoflurane for the duration of the surgical procedure (0.5-5.0% in 100% oxygen).
Buprenorphine SR (delayed release; 0.20 mg/kg) was administered subcutaneously prior to
surgery for prophylactic pain management.

Six full thickness wounds were created along the dorsum of each animal, between the shoulder
and ilium, with penetration through the subcutaneous layer to fascia across the entire wound

bed. Each wound was approximately 3 cm in diameter (7.1 cm2), with the wounds spaced 3 cm
apart. Each wound on the left of the dorsum (control) was dressed with a bilayer matrix
consisting of cross-linked bovine collagen and a semi-permeable silicone (Integra® Bilayer
Matrix Wound Dressing, Integra, Plainsboro, NJ). Each wound on the right side (treatment) was
dressed with a fully synthetic matrix consisting of electrospun, nonwoven nanofibers

(RestrataTM, Acera Surgical, St. Louis, MO). The Restrata matrix is comprised of polygalactin
910 and polydioxanone, both of which are biocompatible with known resorption profiles.

Prior to application, all dressings were soaked in saline, then trimmed to 3.75 cm x 3.75 cm
(treatment) and 5.1 cm x 4.2 cm (controls). The trimmed matrices were applied directly to the
wounds, ensuring complete contact along the bottom and sides of each wound site (Figure 1A,
1D). The wounds were covered with barrier dressings including sterile gauze, Tegaderm™ (3M,

2017 MacEwan et al. Cureus 9(8): e1614. DOI 10.7759/cureus.1614 2 of 10



St. Paul, MN) and GranuFoam™ (KCI, San Antonio, TX), which were secured by a tear-resistant
mesh stockinet. Barrier wound dressings were changed 2-3 times per week.

Wound observation and measurement
Wounds were photographed 1-2 times per week to grossly monitor the progression of wound
healing. Planimetric analysis of wound photographs was performed to assess wound area
(Adobe Photoshop CS6). A modified Bates-Jensen scoring system was used to evaluate the
inflammation and healing at the wound site by considering five categories: wound edges,
exudate quality, exudate quantity, granulation tissue, and epithelialization. Each category was
scored on a scale of one to five, with scores of one indicating full wound healing and minimal
inflammation and scores of five indicating minimal wound healing and enhanced
inflammation. Scores in each category were summed to obtain a total score for each wound and
time point, where healing was associated with lower total scores.

Tissue harvesting and histopathological analysis
One animal was euthanized at Day 15 and one at Day 30. The Day 15 time point was chosen as a
halfway marker for characterizing healing progression. Wound tissue was harvested
immediately after euthanasia for histopathological analysis by excision of the entire wound
area, along with an additional 1 cm of surrounding skin. The excised tissue was preserved in
10% formalin, and embedded in paraffin. The wound tissue was sectioned and stained with
hematoxylin and eosin (H&E) and analyzed by light microscopy by Alizée Pathology
(Thurmont, MD) for evidence of inflammation and wound healing by considering five
categories: inflammation, granulation tissue, collagen maturation, vascularization, and
epithelialization. Grades were then assigned on an ordinal scale for each of these five
categories for each wound section.

Statistical analysis
Student’s t-tests were used for between-groups comparison of wound area over time. Statistical
significance was defined as p < 0.05. Averages were calculated for the Bates-Jensen and
histopathological analyses then graphically plotted.

Results
Wound observation and planimetric analysis
Neither material caused adverse reactions at the wound site. However, the animal euthanized
on Day 15 exhibited bleeding from its left-side wounds on Day 15. This bleeding was
determined to be caused by the animal rubbing against its enclosure and was not an adverse
reaction of the wound matrix material. Histopathological analysis (described below) of the
wound areas on the left side of this animal demonstrated characteristics indicative of the
wound matrices remaining in contact with the wound beds. Therefore, it was determined that
any between-group differences in per-protocol outcome measurements were not confounded by
the animal's contact with its enclosure.

Representative photographs of healing progression for all wounds are shown in Figure 1B, 1C

and Figure 1E, 1F. Average wound area was 7.1 cm2 for both the control and treatment groups at

the day of surgery. Days 15 and 30 average wound area was [7.7 cm2 ± 0.9]/[3.8 cm2 ± 0.8] (p =

0.002) and [2.9 cm2 ± 1.1]/[0.2 cm2 ± 0.0] (p = 0.01) for controls/treatment. Between-group
comparisons of average decrease in wound area over 15 and 30 days were statistically
significant (p < 0.05) (Figure 2A). For all time points after Day 5, the average area of wounds
with the treatment dressing was smaller than those treated with the control dressing. Two of
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the three wounds receiving the treatment dressing were fully healed at Day 30 (wound area = 0

cm2) (Figure 2A).

FIGURE 1: Full thickness cutaneous wounds immediately after
application, at Day 15 and Day 30 for Integra Bilayer Wound
Matrix (control) (A-C) or Restrata Wound Matrix (treatment) (D-
F).

At Day 15, wounds treated with the treatment dressing had a Bates-Jensen score that was 46%
lower on average than for wounds treated with control dressings (Figure 2B). At Day 30, a 19%
difference was found in favor of the treatment dressing (Figure 2B).

FIGURE 2: Gross evaluation of inflammation and wound
healing. (A) Wound area (average ± SD) as determined by
planimetric analysis of wound photographs. *p < 0.05,
Student’s t-test, n = 6 (Day 1-15) or n = 3 (Day 19-30). (B)
Average wound scores from gross wound observation. (a)
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Scored from 1 (not visible) to 5 (well defined). (b) Scored from
1 (none) to 5 (purulent). (c) Scored from 1 (none) to 5 (large).
(d) Scored from 1 (intact skin) to 5 (none). (e) Scored from 1
(intact surface) to 5 (less than 25% wound covered).

Histopathological analysis
Inflammation of the wound site was assessed by the presence of infiltrating neutrophils,
eosinophils, macrophages, and multinucleated giant cells (Figure 3A-3D). Table 1 and
Figure 4A-4E display the average scores for each of the five categories used to assess
inflammation and wound healing.

FIGURE 3: Hematoxylin and eosin (H&E) stained sections from
wounds treated with (A) Integra Bilayer Wound Matrix or (B)
Restrata Wound Matrix at Day 15. G – granulation tissue, N –
neutrophils, S – seroma, Arrowheads – wound matrix material,
Arrows – multinucleated giant cells surrounding wound matrix
material. H&E stained sections from wounds treated with (C)
Integra Bilayer Wound Matrix or (D) Restrata Wound Matrix at
Day 30. G – granulation tissue, I – inflammation (infiltrating
neutrophils and macrophages), S – serocellular debris. Arrows
– blood vessels.
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 Control Treatment

 Day 15 Day 30 Day 15 Day 30

Infiltrating cellsa     

Neutrophils 4.0 2.0 2.3 0.0

Eosinophils 2.3 0.0 0.0 0.7

Macrophages 4.0 3.0 2.7 1.3

Multinucleated giant cells 3.0 0.7 2.7 1.0

Inflammationb     

Superficial wound bed 4.0 3.0 2.7 1.3

Middle/deep wound bed 4.0 1.3 1.3 1.0

Collagen maturationc     

Superficial wound bed 1.0 1.0 2.0 1.7

Deep wound bed 2.3 4.0 4.0 4.0

Granulation tissued 2.0 4.0 4.7 4.0

Vascularizatione 1.7 3.0 3.0 3.0

Epithelializationf 1.0 2.0 2.0 3.0

TABLE 1: Average histopathological scoring of wounds treated with Integra Bilayer
Wound Matrix or Restrata Wound Matrix.
(a) Scored from 0 (absent) to 4 (packed). (b) Scored from 0 (absent) to 4 (marked). (c) Scored from 0 (no deposition) to 4 (notable
deposition with appearance of native dermal collagen). (d) Scored from 0 (none) to 5 (greater than 100% of wound bed filled with
excessive granulation tissue). (e) Scored from 0 (none) to 4 (numerous blood vessels throughout the entire wound bed). (f) Scored
from 0 (none) to 3 (complete coverage by epithelium).

2017 MacEwan et al. Cureus 9(8): e1614. DOI 10.7759/cureus.1614 6 of 10



FIGURE 4: Histopathological scoring (average ± SD) of wounds
treated with Integra Bilayer Wound Matrix or Restrata Wound
Matrix. Scored for (A) overall inflammation – 0 (absent) to 4
(marked), (B) collagen maturation – 0 (no deposition) to 4
(notable deposition with appearance of native dermal
collagen), (C) granulation tissue – 0 (none) to 5 (greater than
100% of wound bed filled with excessive granulation tissue),
(D) vascularization – 0 (none) to 4 (numerous blood vessels
throughout the entire wound bed), and (E) epithelialization – 0
(none) to 3 (complete coverage by epithelium).

At Day 15, wounds receiving the treatment dressing exhibited moderate inflammation, with
neutrophils, lymphocytes, and macrophages infiltrating the wound, particularly in the
superficial wound bed. In control dressing wounds, more significant inflammation was present
as evident from the greater infiltration of macrophages, lymphocytes, eosinophils, and
multinucleated giant cells. Areas of hemorrhaging, necrosis, and seroma were also evident in
wounds treated with the control dressing at Day 15.

Inflammation decreased from Day 15 to Day 30 in wounds treated with either wound matrix
material. In treatment dressed wounds there was minimal inflammation remaining at Day 30,
where lymphocytes, macrophages, multinucleated giant cells, and eosinophils were found only
sparsely throughout the wound. At Day 30, wounds with the control dressing exhibited
moderate inflammation localized to the superficial wound bed with infiltrating macrophages,
lymphocytes, and neutrophils.

Similar amounts of residual matrix material were found at the wound sites treated with either
dressing at Day 15. Treatment dressings were present in the wound tissue as small particles
surrounded by multinucleated giant cells. Control dressings were present in the wound tissue as
clumps of collagen surrounded by numerous inflammatory cells including neutrophils,
macrophages, and multinucleated giant cells. By Day 30 no wound matrix material was evident
in the wound tissue for either dressing type, confirming the resorption of both matrix materials
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over the course of one month.

Granulation tissue was evaluated by the degree to which it filled the wound site. At Day 15,
wounds treated with the treatment dressing already exhibited granulation tissue covering the
entire wound area, with two wounds containing excess granulation tissue beyond the wound
bed. In contrast, the granulation tissue in wounds treated with control dressings only covered
20-50% of the wound area at Day 15. By Day 30, wounds with either dressing type exhibited
complete coverage with granulation tissue, without excessive granulation tissue beyond the
wound site.

The presence and quality of collagen was also evaluated at the wound site. Wounds with
treatment dressings exhibited more mature collagen in the superficial and deep wound beds at
Day 15 than in wounds with control dressings. By Day 30, wounds with treatment dressings had
a slightly greater amount of mature collagen in the superficial wound bed, but wounds treated
with either matrix material exhibited similar amounts of mature collagen in the deep wound
bed.

The presence and number of blood vessels in the wound sections were used to characterize
wound vascularization. Wounds with treatment dressings exhibited greater vascularization at
Day 15 compared to wounds treated with control dressings. At Day 30, wounds treated with
either wound matrix material exhibited equal degrees of vascularization, where numerous
blood vessels were present in the wound sections.

Epithelialization was evaluated as the amount of epithelium ingrowth from the wound edges.
Greater epithelialization of the wound was achieved with treatment dressings compared to
controls at both time points. At Day 15, all three wounds receiving treatment dressings had
greater than 1 mm ingrowth of epithelium beyond the wound edges, while wounds treated with
control dressings all had less than 1 mm ingrowth of epithelium. By Day 30, all three wounds
receiving treatment dressings were completely covered by epithelium, whereas all wounds with
control dressings had greater than 1 mm ingrowth of epithelium, but were not fully re-
epithelialized.

Discussion
The multifaceted etiology of wound healing has prompted the development and
characterization of a broad spectrum of wound matrix technologies. Full synthetics are of
particular interest given the need to identify an ideal material that minimizes risks of biologic
matrices while promoting complete healing [11]. This study assessed a fully synthetic nanofiber
matrix comparing it to a commercially available, ‘gold standard’ xenograft.

We recognize the potential confounding effect on Day 15 results based on the one animal's left
side contact with its enclosure. This concern was alleviated by histopathological findings that
were consistent with stable, complete contact between control matrices and the wound beds. In
addition, the wound area and histopathological findings in the undisturbed animal sacrificed at
Day 30 were indicative of the control group's wound healing trajectory identified in Day 15
analysis. Both animals were of the same strain with no variance in how they were treated and
maintained up until the time of sacrifice.

While both treatment and control matrices promoted wound healing in full thickness
cutaneous wounds, marked differences were seen between groups where wounds treated with
the treatment dressings exhibited less inflammation and more complete wound healing.
Furthermore, healing was accelerated in wounds with treatment matrices compared to those
treated with control matrices.
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Wound area decreased over time for wounds treated with either material, supporting the ability
of both to heal full thickness cutaneous wounds. However, the average wound area of wounds
with treatment matrices was statistically smaller than wounds treated with control matrices at
all time points following Day 5. Compared to Day 5 planimetric measurements, treatment group
wounds decreased by 98% in average wound area by Day 30, while control group wounds
decreased by 64%. By Day 30, two of the three treatment group wounds had a wound area of 0

cm2, indicating complete healing. Such extensive wound surface area reduction in the
treatment group compares well to trends observed by Wang, et al. when characterizing a novel
collagen-peptide bound synthetic scaffold in a full-thickness porcine model [12]. At 28 days,
Wang, et al. concluded that wounds treated with the novel bioactive scaffold exhibited a 96.9%
reduction in size. While similar outcomes were noted for the two synthetic matrices,
consideration must be given to both the bioactive design of the collagen-peptide scaffold and
the step-wise synthesis production process required. The fully-synthetic treatment matrix
assessed in this study is constructed via electrospinning to achieve a polymer scaffold
mimicking the structure of extracellular matrix without the introduction of a separately
sourced collagen component. Risks of bio-incompatibility and diminished
availability/scalability with the fully-synthetic treatment dressing are therefore mitigated.

Histopathological analysis of wound sections corroborated the evidence of faster and more
complete wound healing in the treatment group. Although inflammation decreased for both
dressings between Day 15 and Day 30, treatment group wounds exhibited the lowest
inflammation at Day 30. The nanoscale architecture and resorbable nature of the treatment
material may explain the reduced inflammatory reaction observed over the course of wound
healing, as compared to the bovine nature of the control dressing. By permitting rapid cellular
infiltration into the nanofiber matrix and presenting structural features on a size scale
comparable to native extracellular matrix components the treatment material induces a
blunted inflammatory response distinct from both that elicited by biologic xenogenic or human
allogenic materials and macro-scale non-resorbable synthetic matrices.

Treatment matrices induced more rapid wound healing as evidenced by the earlier appearance
of granulation tissue completely covering the wound area. Treatment wounds contained
granulation tissue covering the entire wound surface as early as Day 15, whereas control
wounds contained granulation tissue over only 20-50% of the wound area at this time point.
Wounds treated with either wound matrix material achieved complete coverage with
granulation tissue by Day 30. Furthermore, the pronounced granulation observed in the
treatment group coincides with early and pervasive vascularization in 15 days. Sufficient
granulation during the early healing period is critical in support of angiogenesis.

Finally, treatment wounds achieved superior healing response in terms of epithelialization,
inducing greater ingrowth of epithelium beyond the wound edges at both Day 15 and Day 30, as
compared to controls. Notably, by Day 30 all three wounds with the treatment dressing were
completely epithelialized, whereas none of the control wounds achieved full re-
epithelialization. Given that diminished re-epithelialization can be a concern with synthetic
dressings due to a lacking in basement membrane, these trends with the treatment dressing are
particularly encouraging.

Conclusions
Both Restrata Wound Matrix and Integra Bilayer Wound Matrix successfully supported wound
healing in full thickness cutaneous wounds. However, Restrata exhibited superior
biocompatibility and reduced inflammation, leading to improved wound healing compared to
Integra Bilayer Wound Matrix. Restrata accelerated wound healing, inducing faster rates of
wound closure with granulation tissue, as well as achieving deposition of mature collagen and
vascularization at earlier time points than in wounds treated with Bilayer Wound Matrix. The
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superior wound healing achieved with Restrata may represent the ideal wound healing material
and benefit diverse applications for partial and full thickness wounds, chronic wounds (e.g.,
ulcers), and severe wounds caused by trauma or surgery.
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