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Abstract

Genetic variation for resistance to heat stress has been found for a number of life-history

components in Drosophila species. For male and female fertility (or sterility), stress resis-

tance of the parents is confounded with stress resistance of the haploid gametes. Many

genes are known to influence male fertility in Drosophila melanogaster. Some may carry

temperature sensitive alleles that reduce fertility through effects on mature sperm when

exposed to heat stress. In this study, sperm from each of 320 males were either not heat

shocked (control) or exposed to a heat shock (36.9˚C for 2 hours) either in the male testes

or in the female reproductive tract. We did not detect any temperature sensitive sterility

alleles. These results are relevant in relation to haploid gene expression and the findings of

considerable amounts of mRNA in mature sperm, potentially important for sperm function

and fertilization.

Introduction

There is ample evidence that genetic variation for resistance to heat stress can be a significant

factor in determining species distributions, and global warming is likely to move species bor-

ders towards higher latitudes and altitudes, unless the species is able to adapt to the warmer

climate [1,2,3]. In species of Drosophila, genetic variation for heat resistance has been demon-

strated for a number of life-cycle components such as egg hatchability [4], egg-to-adult sur-

vival [5], pupal survival [4,6], female fecundity [7], male fertility and male sterility [8,9,10,11],

sperm motility [12] and male mating ability [10,13].

All of the above life-cycle components deal with the diploid stages, except for male and

female sterility and sperm motility, where stress resistance of the parents is confounded with

resistance of the haploid gametes. There is good evidence that many genes can influence male

fertility in Drosophila. An extensive screen [14] of 2131 independent lines carrying male sterile

mutations on the 2nd and 3rd chromosomes of Drosophila melanogaster, which constitute 80%

of the genome, found that more than 400 genes could mutate to male sterile mutations. The

lines were classified cytologically, and 19% (or 404) of the mutations affected mature sperm,
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including the fertilization process. How many of these genes could be expected to carry tem-

perature sensitive alleles with lethal, sublethal or smaller fitness effects is not known. It has

been shown [5,15] that approximately 10% of all lethals seem to be temperature sensitive (con-

ditional) lethals at 29–30˚C in D. melanogaster. The frequency of conditional sterility alleles is

not known. However, it has been calculated [16] that at least 250 genes could mutate to male

sterile alleles, but the number of genes required for fertility in either sex was likely to be much

greater. Further, many mutations affecting a wide variety of genes have pleiotropic effects on

the male germ line leading to male sterility [17]. It is possible then that the 2nd and 3rd chromo-

somes from the G83 population used in this study harbor a number of genes that could carry

temperature sensitive alleles influencing survival and function of mature sperm after heat

stress.

The objective of this study was to investigate the frequencies and effects of these conditional

sterile alleles in a large random mating population of Drosophila melanogaster. To our knowl-

edge it is the first study of this kind in any organism.

Materials and methods

Population and stocks

The Drosophila melanogaster population G83 was chosen as the base population for these

experiments. This population was founded in 1983 from 403 females captured at the local

fruit market in Groningen, The Netherlands, and since maintained as a large population at

ca. 25˚C [18]. Hence, the population could be expected to have maintained a high degree of

genetic variability and due to the constant temperature at 25˚C, possible heat sensitive alleles

could be expected to occur at least at mutation-selection equilibrium. That this large popula-

tion is still genetically variable for fitness genes has been shown by a number of recent studies

[5,11,19].

The translocated balancer stock T(2;3)CyO-TM6, CyO:TM6/ry506Sb1P{Δ2–3}99B (named

Cy in the following after the dominant wing character Curly) was used to extract 2nd and 3rd

chromosomes simultaneously from the G83 population. This stock (no.106065) and the Ore-

gon-R wild type stock used in the experiments were both procured from the Bloomington

Stock Center at Indiana University, USA.

Preliminary experiments

The aim of the main experiments was to determine if heat stress of mature sperm exposed

genes carrying alleles with conditional effects on sperm survival, fertilization and offspring via-

bility. Thus, we needed to identify combinations of stress temperature and exposure time that

severely stressed the flies (and sperm) without killing most of the flies. Sperm from males that

were heterozygous for the balancer chromosomes carrying Cy, and the wild type 2nd and 3rd

chromosomes (see Experimental procedure below) were exposed in both males and mated

females in water baths to a number of temperatures between 36.0±0.1˚C and 38.0±0.1˚C for 30

min to 3 hrs. Heterozygous Cy/++ males and wild type Oregon-R females inseminated by

these heterozygous males were treated and both the segregation ratio between the balancer

chromosome and wild type and the number of surviving offspring were recorded (data not

shown). On the basis of these preliminary experiments we decided to expose the flies to 36.9

±0.1˚C for two hours in the experiments described below. This stress temperature reduced the

number of producing females (i.e. surviving and with live sperm) by some 50%, and the num-

ber of progeny was reduced as compared with a milder stress. Higher stress temperatures and

longer exposures gave too low survival.

Temperature stress of mature sperm
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Experimental procedure

A random sample of 320 males from the G83 population was crossed individually to females

from the Cy-labelled balancer stock and from each cross one Curly F1 male (i. e. Cy/IIi;IIIk)

was used for further experimentation (Fig 1).

Due to the reciprocal translocation, the expected result from meiosis in the male would be

sperm with the translocated chromosomes (II + III) together carrying the Cy allele on the sec-

ond chromosome, or the extracted chromosomes II and III together being wild type for the

Curly locus. No other viable chromosome combinations were expected in the progeny. The

segregation ratios in the progeny of these heterozygous males are studied in three situations: 1)

Control, 2) Female heat stress, and 3) Male heat stress. Each male was used in all three treat-

ments such that his mature sperm were studied in 1) an unstressed environment, 2) when heat

stressed inside the inseminated female, and 3) when heat stressed in the male himself. Ten

males, of the 320 tested, failed to produce progeny in any of the three treatments.

Control. In the Control treatment at 25˚C, two-day old virgin Cy/++ males were each

mated to one two-day old Oregon-R virgin female for 24 hours in numbered vials. The males

were then transferred to the Female heat stress treatment, while the mated females were

allowed to lay eggs in the vial for 3 days. When all the progeny emerged, thirty were randomly

chosen (or all progeny if less than 30), phenotypically scored as Curly or wild type, and the seg-

regation ratio Cy: wild type recorded for each vial.

Female heat stress. All heterozygous Cy/++ males from the Control treatment were

mated individually to a fresh two-day old virgin Oregon-R female for 24 hours (in numbered

vials, same numbers as in the Control). The male and female (in the same vial) were then

exposed to 36.9 ±0.1˚C for 2 hrs. in a water bath. After treatment, the females were placed

Fig 1. Diagrammatic representation of the experimental procedures.

https://doi.org/10.1371/journal.pone.0173990.g001
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individually in fresh, numbered vials where they laid eggs for a total of nine days (transfers to

fresh vials every three days). The males were transferred to fresh, numbered vials with virgin

Oregon-R females (Male heat stress treatment, see below).

Male heat stress. As mentioned above, the heterozygous males from the Female stress
treatment were, after exposure, mated individually to one two-day old virgin Oregon-R female

for 24 hrs. The male then was discarded and the female allowed to lay eggs for nine days (trans-

ferred to fresh vials every three days).

In both stress treatments, when all progeny emerged, thirty were randomly chosen from

each of the three vials (or all progeny if less than 30), phenotypically scored and the segregation

ratio Cy: wild type recorded.

If temperature sensitive alleles are present in the G83 population, and are expressed by the

experimental heat treatment, then the proportion of ++ progeny is expected to be lower in the

stress treatments than in the Control. In the three experiments, we identified and counted a

total of 27,174 flies.

Results

In order to ensure that any treatment effects are correctly assessed, we have done one-way

ANOVA of Control vs. Female stress, Control vs. Male stress and Female stress vs Male stress

for: (a) All males in each treatment, (b) All males in each treatment, but first vial only progeny,

(c) Males that produced progeny on all three treatments, (d) Males that produced progeny in

both Control and Female stress, (e) Males that produced progeny in both Control and Female

stress, but first vial only progeny, (f) Males that produced progeny in both Control and Male

stress, (g) Males that produced progeny in both Control and Male stress, but first vial only

progeny, (h) Males that produced progeny in both Female and Male stress, (i) Males that pro-

duced progeny in both Female and Male stress, but first vial only progeny.

The numbers of males that produced progeny, the mean numbers of progeny scored per

male, the mean proportion of ++ flies in the progeny and the proportion of sterile matings are

given in Table 1, and the frequency distributions of the proportion of ++ progeny in Fig 2.

As each male was exposed to all three treatments, the smaller numbers of offspring in the

two stress treatments (clearly shown in the first vial only comparisons, (b), (e) and (g)), are

due to mortality and sterility induced by the heat stress [4,20]. Of all the ANOVAs that were

performed comparing the mean proportions of ++ progeny, only four were significant:

1. All males in each treatment, Control vs Male (a), F(1,471) = 4.79, P = 0.03,

2. All males in each treatment, Female vs Male (a), F(1,336) = 4.72, P = 0.03,

3. Males that produced progeny in both Control and Male stress (f), F(1,350) = 6.73, P = 0.01.

4. Males that produced progeny in both Control and Male stress, but first vial only (g),

F(1,342) = 5.53, P = 0.02.

Where variances were significantly different, tests of treatment effects assuming equal or

unequal variances gave similar results, and where appropriate, weighted ANOVA allowing for

variation in the number of progeny scored per male gave similar results.

Discussion

In the Male stress treatment, the sperm transferred to females had been subjected to the heat

stress 24–48 hours previously. Thus at least some of the sperm transferred would have been in

the later stages of sperm differentiation at the time of exposure to the heat stress. In contrast,

in the Female stress treatment, only mature sperm would have been transferred to the females.

Temperature stress of mature sperm
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In either case, effects of heat stress will be detected only if temperature sensitive sterile alleles

are present in the G83 population and are expressed during the heat shock treatment.

If temperature sensitive alleles in the G83 population are exposed by the heat stress, the

proportion of ++ progeny from sperm heat stressed in males or in females will be reduced as

compared with Control males. This would result both in a skew segregation ratio (Table 1)

and a left tail in Fig 2. Note that this assumes there are no, or at least a lower frequency of,

Table 1. Number of males that produced progeny, mean number (±SD) of progeny per male and mean

proportion (±SD) of ++ progeny in each treatment comparison.

(a) all males in each treatment

Treatment Control Female stress Male stress

Number of males that produced progeny 279 144 194

Mean number of progeny/male 29.53±2.78 44.83±19.00 64.29±20.73

Mean proportion ++ progeny 0.545±0.093 0.542±0.099 0.563±0.076

Proportion sterile 0.1 0.535 0.374

(b) all males in each treatment, but progeny in first transfer vial only

Number of males that produced progeny 279 140 190

Mean number of progeny/male 29.53±2.78 22.84±8.81 28.41±5.01

Mean proportion ++ progeny 0.545±0.093 0.551±0.152 0.559±0.103

Proportion sterile 0.1 0.548 0.387

(c) males that produced progeny in all three treatments

Number of males that produced progeny 89 89 89

Mean number of progeny/male 29.80±0.10 43.79±18.69 63.35±20.90

Mean proportion ++ progeny 0.548±0.101 0.538±0.094 0.561±0.081

(d) males that produced progeny in both the control and female stress treatments

Treatment Control Female stress Male stress

Number of males that produced progeny 125 125

Mean number of progeny/male 29.65±2.27 43.94±18.90

Mean proportion ++ progeny 0.550±0.092 0.540±0.101

(e) males that produced progeny in both the control and female stress treatments–first vial only

Number of males that produced progeny 123 123

Mean number of progeny/male 29.64±2.29 22.36±9.08

Mean proportion ++ progeny 0.551±0.093 0.542±0.101

(f) males that produced progeny in both the control and male stress treatments

Number of males that produced progeny 176 176

Mean number of progeny/male 29.61±2.66 64.03±20.78

Mean proportion ++ progeny 0.541±0.097 0.565±0.077

(g) males that produced progeny in both the control and male stress treatments—first vial only

Treatment Control Female stress Male stress

Number of males that produced progeny 172 172

Mean number of progeny/male 29.70±2.33 28.40±4.86

Mean proportion ++ progeny 0.543±0.096 0.565±0.077

(h) males that produced progeny in both the female stress and male stress treatments

Number of males that produced progeny 100 100

Mean number of progeny/male 43.65±18.20 63.70±20.05

Mean proportion ++ progeny 0.539±0.094 0.560±0.079

(i) males that produced progeny in both the female stress and male stress treatments- first vial

only

Number of males that produced progeny 94 94

Mean number of progeny/male 23.49±8.52 28.56±4.67

Mean proportion ++ progeny 0.540±0.094 0.562±0.079

https://doi.org/10.1371/journal.pone.0173990.t001
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Fig 2. Frequency distribution of the proportion of ++ progeny for each treatment.

https://doi.org/10.1371/journal.pone.0173990.g002
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temperature sensitive sterile alleles on the balancer chromosomes. If there are temperature

sensitive alleles on the balancer chromosomes, and none on the tested wild chromosomes,

then the proportion of ++ progeny should be greater than 0.5 in both treatments, and signifi-

cantly greater than in the Control treatment.

The percentage of genes expressed in male gametes is known to be high in plants while it is

considered to be low in animals. In plants, some 12%-65% of the genes are expressed in pollen,

while in mice and rats only 1.3%-3.8% are expressed in sperm. The latter estimates still amount

to hundreds to thousands of genes in these animals [21].

de novo RNA transcription at post-meiotic phases of spermatogenesis has been observed

[22], and these authors suggested that “a subset of these RNAs is packaged into mature sperm

and delivered to the egg at fertilization”. This was confirmed [23], by showing that mature

sperm in D. melanogaster deliver mRNA transcripts to the egg during fertilization, and that

these were unlikely to be derived from contaminating somatic cells or immature sperm. Such

mRNA transcripts have also been demonstrated in man, mouse and horse sperm [24,25]. In

human males, a subset of sperm RNAs is present in altered amount in infertile patients [26].

For three of these transcripts, this differential expression has been confirmed, and a positive

correlation between expression and sperm motility shown [27]. Subsequently, a set of sperm

RNAs whose absence correlates with infertility has been identified [28]. Further, protein transla-

tion has been shown to occur in mammalian sperm during their residence in the female repro-

ductive tract until fertilization [29]. If these findings are true also for D. melanogaster, and if

conditional sterile alleles are present in the G83 population, and among those that are expressed,

then such temperature sensitive sterility alleles could be detected in both treatments.

Comparison of the distributions for the Control and Female stress and for the Control and

Male stress (Fig 2) shows no sign of conditional sterile alleles, which would have resulted in a

left tail in the Female and Male stress plots. In fact, for those comparisons that were significant,

the results are opposite to that predicted, viz. the proportion of ++ progeny in the Male stress

treatment being greater than in the Control. This could be due to a generally lower survival of

the Cy/++ flies whose Cy-labelled chromosomes carry a number of mutant alleles. In contrast,

sperm stressed in the female reproductive tract do not show this effect. As none of the Control

vs Female stress comparisons were significant, we have not detected temperature sensitive

alleles in either the G83 population or in the balancer chromosomes.

Our results indicate:

1. that temperature sensitive sterility alleles are not present in either the G83 population or

balancer chromosomes, or

2. that if they are present, they are not expressed in spermatids or in mature sperm, or

3. that the treatments were not sufficiently intense.

Clearly our negative result is not definitive, and other populations and stress levels need to be

investigated, particularly given the current intense study of fertility/sterility in all its many aspects.

Supporting information
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