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PIEZO1, a mechanosensitive ion channel protein, has been identified in the correlation between several cancers. However, the
systematic pancancer study of PIEZO1 still lacks. We examined PIEZO1 across thirty-three types of cancers to explore its role in
prognosis and immunological function for the first time. Based on the open databases TCGA, GTEx and CPTAC, PIEZO1 has been
demonstrated to be differentially expressed in most cancers compared to adjacent normal tissues. The distinct correlation between
PIEZOL1 and prognosis of tumor patients was explored by GEPIA2. Genetic alteration of PIEZO1 in the TCGA tumors showed that
mutation is the alteration which is linked to OS, DSS, DES and PFS in some tumors. Alterations of protein phosphorylation levels
were detected in some cancers based on the CPTAC dataset. PIEZO1 expression was linked with immune cell infiltration, such as
endothelial cell and cancer-associated fibroblast. Finally, KEGG and GO enrichment analyses were applied to investigate the

molecular mechanism of PIEZO1. Our first pancancer analysis illustrated the roles of PIEZO1 in different types of tumors.

1. Introduction

Cancer has the highest worldwide mortality rate of any
disease [1]. Malignant tumors pose a severe threat to human
health. Despite advances in diagnosis and treatment, cancers
still cause the extremely high morbidity and mortality.
Conducting a pancancer study of some certain genes and
exploring its role in some malignant tumors and their
corresponding cancers are highly warranted.

Piezo-type mechanosensitive ion channel component 1
(PIEZO1) characterized as the ion-conduction subunit of
mechanically activated ion channel can initiate the in-
tracellular Ca®" response [2]. PIEZOL1 is widely distributed
and expressed in various human organs and tissues, such as
the cardiovascular system [3], brains [4], lungs [5], gas-
trointestinal tract [6] and bladder [7]. Moreover, recent
relevant literature suggest that such expression of PIEZO1
could be different in various tumors, for example, the

gastrointestinal system [8], urinary system [9], respiratory
system [10] and reproductive system tumors [11].

The increasing evidences indicate that tumor immune
microenvironment (TME) is strongly related to carcino-
genesis and cancer progression [12]. The biomarkers asso-
ciated with TEM indicating prognosis and survival may be
crucial to immunotherapy.

It is commonly known that calcium signaling associated
with immune cells plays a significant role in the expression
of transcription factors and enzymes that regulate cancer
development [13-15]. Numerous literature report that
PIEZOI, recognized as a mechanical stress sensor in some
immune cells, crucially relates to immune regulation
[16-18]. The importance of PIEZO1 activity in immune cells
has been confirmed which implies the potential contribution
of PIEZO1 to cancer immunotherapies.

Despite above, there is no pancancer study exploring the
correlation between PIEZO1 and different tumors, since
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most research studies involving PIEZO1 in tumors focus on
one certain cancer. In this work, we adopt a diversity of
databases such as The Cancer Genome Atlas (TCGA),
Genotype Tissue-Expression (GTEx), cBioPortal, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) to assess the expression levels of PIEZO1
and the link with survival in various tumors. We further
assessed the potential correlations between PIEZO1 ex-
pression levels and genetic alteration, protein phosphory-
lation, immune infiltration and pathway enrichment in 33
types of cancers. Our results showed that PIEZO1 can be
used to predict prognosis of different cancers, and it affected
tumor infiltrating immune cells, which rises a pivotal role in
tumor immunity.

2. Materials and Methods

2.1. Gene Expression Level Analysis. The mRNA levels of
PIEZOL1 in a variety of cancers were analyzed by Tumor
Immune Estimation Resource, version 2 (TIMER2). The
differential expression levels of PIEZO1 were observed be-
tween the cancerous region and normal tissue for various
types of tumors. The range was set as follows: log2 fold
change (log2 FC) > 1 or< -1 and p value < 0.05. The Gene
Expression Profiling Interactive Analysis, version 2
(GEPIA2) was employed to analyze the PIEZO1 mRNA
levels in some certain tumors with no corresponding normal
tissues. Additionally, violin plots were applied to reveal the
relationship between PIEZO1 and pathological stages of
cancers by using the “Stage Plot” of GEPIA2.

UALCAN, an interactive, user-friendly, and synthetic
online platform to analyze open-source TCGA data, was
taken to analyze expression levels of protein with the
Confirmatory/Discovery tool of the Clinical Proteomic
Tumor Analysis Consortium (CPTAC). For its part, phos-
phoprotein levels of PIEZO1 were evaluated between tumor
and normal tissues by CPTAC analysis.

2.2. Prognosis and Survival Analysis. The “Survival Map” was
employed to detect the overall survival (OS) and the disease-
free survival (DFS) of PIEZOI in all the tumors in TCGA.
The values for dividing groups with high and low expres-
sions were defined as cutoft-high (50%) and cutoft-low
(50%) values, respectively. Survival plots were obtained from
the “survival analysis” module of GEPIA2. Among these,
two curves were compared by the log-rank test. Meanwhile,
univariate Cox regression analysis of PIEZO1 was per-
formed in tumors where PIEZO1 was an independent
prognostic indicator.

2.3. Genetic Alterations Analysis. Data about PIEZO1 ge-
netic mutation type, alteration frequency, mutated sites, and
copy number were retrieved through cBioPortal [19]. The
information of OS, DFS, and progression-free survival (PFS)
differences between with and without PIEZO1 alteration in
different tumors was obtained from the “Comparison”
module. Kaplan-Meier plots with the log-rank p value were
generated.
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2.4. Gene Set Enrichment Analysis. To study the potential
function of PIEZOL1 in pancancer, we divided the samples
into high and low-expressed groups based on the PIEZO1
expression in each cancer type, consisting of the top 30% and
bottom 30%. Then, the gene set enrichment analysis (GSEA)
(http://www.gsea-msigdb.org/gsea/index.jsp) was  per-
formed using the “clusterProfiler” R package. GSEA gene
sets (H, C2, and C5 collections) were downloaded from the
Molecular Signatures Database (v7.5.1). The FDR-adjusted
P <0.05 was considered statistically significant.

2.5. Immune Cell Infiltration Analysis. We utilized the
“Immune-Gene” unit of TIMER2 to discover the link be-
tween the levels of PIEZO1 expression and the infiltration of
immune cells, such as endothelial cells, and cancer-associ-
ated fibroblasts. For this purpose, we evaluated different
cancers. The algorithms QUANTISEQ, XCELL, MCP-
COUNTER, EPIC, TIMER, CIBERSORT, and CIBERSORT-
ABS were applied to make immune infiltration estimations.
P values and partial correlation (cor) values were obtained
by using Spearman’s rank correlation test, purity-adjusted.
The heatmap and scatter plot were displayed as the outcome.

2.6. PIEZOI-Related Partners Enrichment Analysis.
PIEZO1-binding proteins were searched by the STRING
website, using the query of “PIEZO1.” Then, we used
Pearson correlation to analyze the first 100 PIEZO1-tar-
geting genes which were based on the differential expression
records of TCGA tumors and normal tissues in GEPIA2. The
heatmap consisted of top 5 genes, which contains the partial
correlation index, and p value was obtained using the
“Gene_Corr” component of TIMER2 by the method of the
purity-adjusted Spearman’s rank correlation test. A Venn
diagram viewer allowed the observation of the PIEZO1-
binding and interacting genes. Two sets of data were
combined to perform KEGG pathway analysis.

2.7. Human Samples. Human samples were obtained from
subjects undergoing tumorectomy in the First Affiliated
Hospital of Nanjing Medical University. Ethics approval was
gained through the First Affiliated Hospital of Nanjing
Medical University. The cancer tissues were harvested from
the region of tumor. The adjacent normal tissues were
collected more than 5cm from cancerous tissues. Eight
paired lung tumor tissues, stomach tumor tissues, and colon
tumor tissues, as well as corresponding adjacent normal
tissues were collected.

2.8. Immunohistochemical Staining. All human sample
slides were baked at 65°C for 2 hours and then were dewaxed
and rehydrated. Slides were placed in a repair box filled with
EDTA antigen repair buffer (pH 9.0, Servicebio, China,
G1203), and antigen repair was conducted for 20 min at
100°C. After cooking, the slides were naturally cooled to
room temperature. Then, hydrogen peroxide was used for
blocking endogenous peroxidase activity. Then, blocking
was performed with 10% goat serum for 1 hour at room
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temperature and incubated with primary antibodies PIEZO1
(Abcam, UK, ab128245, 1:200) diluted in blocking solution
overnight at 4°C. The slides were incubated with HRP
secondary antibody for 2 hours at room temperature. Fi-
nally, sections were detected by DAB staining. After stained
with DAB, images of samples in the slides can be taken
viewing using the microscope. Slides were washed three
times with PBS between each step.

2.9. Cell Culture. The human pancreatic tumor cell line
CFPAC was cultured in the formulation of DMEM (Gibco,
American, C11995500BT) with 10% FBS (BI, Israel, 04-001-
1A) and 1% penicillin/streptomycin double-resistant fluid
(Gibco, American, 15140122).

2.10. Immunofluorescence. Cells were grown in 48-well
plates. When grown to 70% confluence, the cells were
transfected with PIEZO1 small interfering RNAs (siRNAs)
(Applied GenePharma, China) using Lipofectamine 2000
(Invitrogen Life Technologies, USA, 11668-019). After 24
hours, cells were fixed with 4% paraformaldehyde for 20 min
and the cell membrane was disrupted with 0.2% Triton X-
100 (PBS configuration) for 15min. Ki67 staining was
performed by adding the primary antibody anti-Ki67
(Abcam, UK ab16667, 1:300) and incubated overnight at
4°C. The next day, cells were incubated with fluorescent
secondary antibody for 2 hours at room temperature. After
stained with DAPI for 10 minutes, the cells can be viewed
using an inverted microscope. Between each step, cells were
washed three times with PBS.

2.11. Scratch Assay. Cells were grown in 6-well plates. When
grown to 100% confluence, a single scrape was made in the
confluent monolayer using a 200 ul pipette tip. Then, cells
were cultured in DMEM with 2% FBS for 24 h after washing
with PBS. The migration rate was determined by the scratch
area at different time points and analyzed by the Image |
software.

2.12. Statistical Analysis. Data are shown as the mean-
+standard error of mean (SEM). The GraphPad Prism
software v5.0 (GraphPad Software, USA) was performed for
statistical analyses. The unpaired Student’s t-test was used
for statistical analyses between two groups.

3. Results

3.1. PIEZO1 Expression Analysis. We first assessed the
PIEZOL1 expression levels in different cancers. The abber-
vation and full names of the 33 tumor types are given in
Table 1 in Supplemental Materials. PIEZO1 expression level
was higher in bladder urothelial carcinoma (BLCA)
(p<0.01), CHOL (p<0.001), colon adenocarcinoma
(COAD) (p<0.001), esophageal carcinoma (ESCA)
(p<0.001), glioblastoma multiforme (GBM) (p<0.05),
head and neck squamous cell carcinoma (HNSC)
(p<0.001), kidney renal clear cell carcinoma (KIRC)

(p<0.001), liver hepatocellular  carcinoma (LIHC)
(p<0.001), prostate adenocarcinoma (PRAD) (p<0.001),
rectum adenocarcinoma (READ) (p<0.001), stomach ad-
enocarcinoma (STAD) (p<0.001) and thyroid carcinoma
(THCA) (p <0.001) and was lower in kidney chromophobe
(KICH) (p<0.001), kidney renal papillary cell carcinoma
(KIRP) (p<0.001), Ilung adenocarcinoma (LUAD)
(p<0.001), Ilung squamous cell carcinoma (LUSC)
(p<0.05), pheochromocytoma and paraganglioma (PCPG)
(p<0.05) and uterine corpus endometrial carcinoma
(UCEC) (p<0.01) than that in tumor-adjacent tissues.
However, breast invasive carcinoma (BRCA), cervical
squamous cell carcinoma and endocervical adenocarcinoma
(CESC), and pancreatic adenocarcinoma (PAAD) showed no
differential  expression  from  tumor-adjacent  tissues
(Figure 1(a)). We further explored whether PIEZO1 was
differentially expressed between tumor and normal tissues in
the absence of data of normal tissue in TCGA. We found
that  cholangiocarcinoma (CHOL) (p<0.05), GBM
(p<0.05), and PAAD (p <0.05) showed higher expression in
tumor tissues. No significant differences were detected be-
tween CESC, PCPG, PRAD, and their corresponding normal
samples (Figure 1(b)).

In addition to the transcription level, we also obtained
the protein expression level of PIEZO1 from the CPTAC
dataset. PIEZO1 protein levels were significantly higher in
KIRC (p<0.001), GBM (p<0.0001), HNSC (p<0.0001)
and PAAD (p<0.0001) and significantly lower in COAD
(p<0.05), LIHC (p <0.0001), LUAD (p <0.0001), ovarian
serous cystadenocarcinoma (OV) (p<0.0001) and UCEC
(p <0.05) (Figure 1(c)).

We also analyzed the relationship between the PIEZO1
expression level and tumor pathological staging by GEPIA2.
We found that PIEZO1 expression was changed in different
pathological stages of a few tumor types, including KIRC
(p =0.0202), PAAD (p =0.0063) and STAD (p = 0.0469)
(Figure 1(d)).

3.2. PIEZO1 Expression in Tumor and Adjacent Nontumor
Tissues. Then, we detected the expression of PIEZO1 in
LUAD, STAD and COAD, as well as their corresponding
adjacent normal tissues by the method of IHC. Compared to
adjacent normal tissues, the expression level of PIEZO1 was
decreased in LUAD (p = 0.0389) (Figure 2(a)) and increased
in STAD (p = 0.0596) (Figure 2(b)). There was no significant
difference between COAD and its adjacent normal tissue
(Figure 2(c)).

3.3. Survival Analysis. Next, we studied how PIEZO1 ex-
pression correlates with prognosis and used TCGA and GEO
datasets to assess OS and DFS values. Samples were divided
into high-expression and low-expression groups according
to the PIEZO1 expression level. The results demonstrated
that among cases with KIRC (p = 0.0006), brain lower grade
glioma (LGG) (p =0.0073), LIHC (p =0.012), LUAD
(p =0.025) and LUSC (p = 0.048), those with low level of
PIEZO1 had longer survival time (Figure 3(a)). The data DFS
analysis revealed that high expression of PIEZO1 is linked to



ok *k

Journal of Oncology

ok

ok

ok

Xk

ok

ok R I T A TR S ey

okt

Xk

*

F (08=u) Toum'WAN
LG=U) Jown['$ON
S€=U) [PWIONDION
SpS=U) Jown ' DIDN
0TT=U) Jowny ' WXHL
66=U) [BWION'VOHL
10§=U) Joumn ' VOHL
F (0sT=Uu) ToumyIDOL
F (S€=U) [PWION'AVLS T T T T T
F (STp=u) Joumy qQvrs .
L (89¢=U) sISeISLIDN TADIS (1 + Wd.1L) “Boj-uorssaxdxg
F (€0T=U) JoumL WONS
F (65T=U) TI0Umy DYV
F (01=U) [PULION'AVHY
F (991=U) Toumy qVay
F (¢S=u) [PwWION'AVid
b (L6b=u) Toum qvyd
F (€=W) PWION'DdOd
F (6£1=u) lown'Hddd
F (F=U) [PUION' AV Vd L e o = e &
F (8L1=u) Towny qQVVd
r (€0g=u) JoumyAQ
F (£8=u) zowmy QSN
F (15=u) [PWION'DSNT
F (T05=u) roumyDSNT
F (65=U) [PWION'AVNT
F (ST6=U) Joumy qvNT
F (0S=U) [PWION'DHIT
F (12g=u) s0unDHIT
F (915=u) roumy 55T
F (€£1=U) J0UM TN YT © © < ~ )
F (ce=u) [PWION QI (1 + L) “Soj—uorssardxg
F (06z=u) Towny; oY1
b (zL=u) [eWION DY
F (€€5=u) Toumy DY
F (Sz=U) [PWION"HOIM - ._.:vr-v :
F (99=u) zoumy HODY T * ) w
F (1zp=u) JounL '~ AdH-OSNH L a..a... L _ O
b (L6=Uu) T0um] +AJH-DSNH ’
F (Pp=U) [PWION'DSNH
F (0zs=u) 1owny DSNH T T T
F (5=u) [PWION'INED he - o <
L (¢s1=u) sowny gD (1 + Wd1) “Bof-uossaxdxg
F (I1T=U) [PWION'VOST
F (#81=u) Towny yOSq
F (8p=u) Jowny'Dg 1A
F (Ip=U) [PWION'AVOD
F (LSp=u) 10um] :qQV0OD
F (6=U) [PWIONTOHD
F (9¢=u) zowmny " TOHD
(€=U) [PWLION"DSHD
(Foe=u) Toumy DSHD
(£17=U0) Jowmy, quUnT-yOug
(P95=U) Joum, yumT-yOud
(z8=u) Town|, z1OH-YDI4
r (061=U) Joumy, esegd—-yOdd
(
(
(
(
(

=152)

—_
I
I
—_

PRAD
492; num(N),

(
(
(
F(
(
(
(

(num(T)
Protein expression of PIEZO1 in UCEC *

-

3
2
1
0
1
2
3

(n=108)

I
I
—_
Promary tumor

3)

anpea-z

carcinoma ***
CPTAC samples

182; num(N)

—_
Normal
(n=71)

PCPG
T

1

1

|

Protein expression of PIEZO1 Head and neck squamous

(num(T)

adenocarcinoma ***

HH

anpea-z

-}

171)

Protein expression of PIEZO1 Pancreatic

—_
I
I
—_
Promary tumor
(n=99)

multiforme ***
CPTAC samples

PAAD
179; num(N)

Normal
(n=10)

Protein expression of PIEZO1 in Glioblastoma

(a)
‘cancer ***

207)  (num(T)
(®)

3
2
1
0
1
2
3
97)
Protein expression of PIEZO1 in Ovarian

n

] —

3
2
1
0
1
2
3

I
I
Promary tumor

163;num(N)

anpea-z

CPTAC samples

(num(T)

Protein expression of PIEZO1 in Colon cancer *
[l
1
1
Normal
(n=100)

9)

4
3
2
1
0
1

anpea-z

36; num(N)
adenocarcinoma ***
_
4 *
-

Protein expression of PIEZO1 in Lung
Normal

CHOL

—_
-

Promary tumor
(n=110)

anjea-z

(num(T)

CPTAC samples

13)

T
Normal
(n=284)

—_
I
I
—

Promary tumor

TII=U) [PWION'VOId
€601=U) Jown]'yOYd
61=1) [PWION'VOTd
80y=U) Jown|,'vO1d
6L=10) I0Wn] DOV

———————t-
AR IR I

anjea-z

Protein expression of PIEZO1 in Clear cell RCC ***

carcinoma ***

CESC
306; num(N)

Normal

Protein expression of PIEZO1 in Hepatocellular

(num(T)

e —r—t
LRI S A

(d.L Z80r) 19497 uotssa1dxg V8EINVA (1 + A1) “Bo[-uorssardxg anfea-z

(n=100)

Promary tumor
CPTAC samples

31)

Normal

(n

(n=137)

Promary tumor
CPTAC samples

(n=74)

Normal

(n="100)

Promary tumor
CPTAC samples

(c)

25)
Ficure 1: Continued.

Normal

Promary tumor
(n=111) (n

CPTAC samples

(n=111)

(n=165)

CPTAC samples

(n=165)



Journal of Oncology

KIRC PAAD STAD
Fvalue = 3.3 F value = 4.25 F value = 2.68
s Pr(>F) =0.0202 | 97 Pr(>F) = 0.0063 3 Pr(>F) = 0.0469
s -
7 4
] 7
6 6
6
5
4 5
4
4
2 - 3
3]
T T T T T T T T T T T T
Stage I StageIT ~ StageIIl  Stage IV Stage I StageIT  StageIIl  Stage IV Stage I Stage Il Stage Il Stage IV

(d)

FIGURE 1: PIEZO1 expression levels in diverse human cancers and pathological stages. (a) PIEZO1 expression level in TCGA tumors
analyzed by the TIMER2 database. (b) Box plot data of CESE, CHOL, GBM, PAAD, PCPG, and PRAD in TCGA cohorts compared to
healthy tissues in GTEx records. (c) Protein level of PIEZO1 in normal tissue and BRCA, KIRC, COAD, GBM, HNSC, LIHC, LUAD, OV,
PAAD, and UCEC. The data of protein expression were obtained and analyzed by CPTAC. (d) The expression level of PIEZO1 analyzed and
compared depending on different pathological stages (stages I-IV) of KIRC, PAAD, and STAD, based on the TCGA database. *P <0.05,

*# p <0.0001.

poor prognosis for adrenocortical carcinoma (ACC)
(p =0.0016), CHOL (p =0.05), GBM (p = 0.047), LGG
(p<0.0001), LIHC (p=0.049) and LUSC (p =0.014)
(Figure 3(b)).

3.4. Genetic Alteration of PIEZO1 across Different Tumors.
The oncogenesis and progression of cancers are closely
associated with genomic mutations [20]. We analyzed types
and sites of genetic mutation of PIEZO1 in different cancers
within the TCGA database. The frequency of PIEZO1
mutation (>10%) is the highest in patients with UCEC
(Figure 4(a)). In addition, the type, sites and number of the
PIEZO1 genetic alteration were also discovered. The number
of PIEZO1 genetic alteration is 185, which consists of 155
missense, 13 truncating, 2 inframe, 10 splice and 5 SV/fu-
sion. R1943Q/W alteration was found in 2 cases of UCEC
and 1 case of COAD (Figure 4(b)). In addition, we found the
relationship between genetic mutation of PIEZO1 and
survival prognosis in different types of tumors. Cases of
LIHC, with PIEZO1 alteration, showed good prognosis in
OS (p=0.009) and disease-specific survival (DSS)
(p =0.006). Also, cases of THCA, with PIEZO1 alteration,
had good prognosis in OS (p = 0.031), DSS (p = 0.0001) and
progression-free survival (PES) (p = 0.001), while alteration
of PIEZO1 in UCEC was associated with worse DSS
(p =0.032) and PFS (p = 0.028) compared with no alter-
ation (Figure 4(c)).

3.5. PIEZO1 Protein Phosphorylation Analysis. The PIEZO1
protein phosphorylation differential levels between nor-
mal tissues and tumors were also analyzed by using
CPTAC dataset. Our data presented the PIEZO1 protein
phosphorylation sites and revealed the significant dif-
ferences in six types of tumors (KIRC, GBM, HNSC,
LIHC, LUAD, and PAAD). The S1391 site of PIEZO1
exhibits a higher level of phosphorylation in KIRC
(p =0.012), HNSC (p<0.0001) and PAAD (p<0.0001),

and a lower protein phosphorylation level in GBM
(p=0.011), LIHC (p<0.0001) and LUAD (p<0.0001)
compared with normal tissues, followed by a higher
protein phosphorylation level of the S1646 site for KIRC
(p = 0.0002), GBM (p = 0.016), HNSC (p<0.0001), and
PAAD (p<0.0001). Our data also revealed that HNSC had
the highest number of differentially phosphorylation sites,
including S1391 (p<0.0001), S1646 (p<0.0001), S1621
(p<0.0001), T1644 (p = 0.002), S1820 (p = 0.037), S1619
(p<0.0001) and S732 (p = 0.043) (Figure 5(a)).

3.6. GSEA of PIEZOI in Pancancer. GESA analysis was
performed based on GO, KEGG, REACTOME, and
HALLMARK (Figure 6). In almost all cancers, we found
that PIEZO1 expression was remarkably related to im-
mune-related pathways, such as innate immune response,
adaptive immune response, inflammatory response and
some inflammatory cells, such as neutrophils, lympho-
cyte and leukocyte. In addition, ion transport and cation
homeostasis were also related to PIEZO1 in pancancers.
Activation of PIEZO1 can result in calcium influx,
transducing mechanical forces into biochemical re-
sponses [21]. Calcium is a ubiquitous second messenger
that is responsible for a diverse host of cellular functions
that are necessary for successful cancer metastasis [22].
We also found that epithelial-mesenchymal transition
(EMT) hallmark was significantly enriched in high-
PIEZO1 subgroups in most cancers. EMT enhances mi-
gration and invasive potential which lead to increased
cancer metastasis [23]. These data revealed a potential
association between PIEZO1 expression and immune
activation in the tumor microenvironment (TME). In
addition, the top 20 related pathways of GSEA were
presented in the form of a mountain map (Supplementary
Figure S1) for each type of cancer. The results showed that in
most tumors, PIEZO1 was associated with the immune
responses. These results further illustrated the important role
of PIEZOI in immune regulation.
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FIGURE 2: PIEZO1 expression levels in LUAD, STAD, and COAD. (a) Immunohistochemistry (IHC) staining of PIEZO1 in LUAD (n = 8)
and adjacent normal tissue (1 =8) (left panel). Semiquantification of PIEZO1 positive staining (right panel). Original magnification x200.
Bar =100 ym. (b) IHC staining of PIEZO1 in STAD (n =8) and adjacent normal tissue (1 =8) (left panel). Semiquantification of PIEZO1
positive staining (right panel). Original magnification x200. (c) IHC staining of PIEZO1 in COAD (n = 8) and adjacent normal tissue (n = 8)
(left panel). Semiquantification of PIEZO1 positive staining (right panel) Original magnification x200. The bar chart shown represents the
mean + SEM. *P <0.05 versus the control group by Student’s t-test.

3.7. Immune Infiltration. Immune infiltration, a major
component in the tumor microenvironment, has a crucial
effect on the development and prognosis of tumor [24]. The
correlation between PIEZO1 expression level and in-
filtration of immune cells in various tumors was in-
vestigated. The data were analyzed through the TCGA
database with the XCELL, MCP-COUNTER, EPIC and
TIDE algorithms. The results revealed that the expression of
PIEZO1 is positively correlated with endothelial cells in
COAD (r=0.219, p = 0.0003), GBM (r=0.338, p <0.0001),
KIRC (r=0.26, p<0.0001), KIRP (r=0.329, p<0.0001),
LUAD (r=0.258, p<0.0001), LUSC (r=0.252, p <0.0001),
PCPG (r=0.656, p<0.0001), THCA (r=0.217, p <0.0001)
and THYM (r=0.47, p<0.0001) (Figures 7(a)) and 7(b)).
Meanwhile, the level of PIEZO1 significantly positively
associated with cancer-associated fibroblasts in TCGA

tumors, including testicular germ cell tumors (TGCT)
(r=0.342, p<0.0001), LGG (r=0.359, p<0.0001), thy-
moma (THYM) (r=0.424, p<0.0001), BLCA (r=0.222,
p<0.0001), STAD (r=0.31, p<0.0001) and PCPG
(r=0.647, p<0.0001) (Figures 7(c) and 7(d)).

3.8. PIEZO1-Related Partners Enrichment Analysis. To reveal
the mechanism of the PIEZO1 molecular that links to the
oncogenesis of tumors, PIEZO1-binding proteins and
pathway enrichment analysis of PIEZO1-correlated genes
were performed. 50 PIEZO1-binding proteins by utilizing
the STRING tool constructed protein-protein interaction
(PPI) networks (Figure 8(a)). Then, we used the GEPIA2 tool
to explore the top 100 PIEZOl-associating genes. As
assessed in our data, the expression level of PIEZO1 was
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F1GURE 3: The correlation between the expression level of PIEZO1 and prognostic survival in TCGA tumors. (a) GEPIA2 utilized to analyze
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positively correlated with that of APRT (r=0.45), MFSD10
(r=0.41), AGTRAP (r=0.41), MICALL2 (r=0.4) and
SYTL1 (r=0.39) (Figure 8(b)). The heatmap data revealed
that the expression level of PIEZO1 was positively correlated
with the above five genes in various cancers (Figure 8(c)).
Transient receptor potential melastatin 4 (TRPM4), the only
one common member in the intersection analysis of the
PIEZO1-binding and correlated genes, was showed by the
mean of Venn diagram (Figure 8(d)). Then, KEGG and GO
enrichment analyses were performed. The KEGG data
suggested that “Inflammatory mediator regulation of TRP
channels” seem to be associated with the role of PIEZO1 on
tumor oncogenesis (Figure 8(e)). The results further showed
that these genes are correlated with some activities, such as
calcium ion transmembrane transporter activity calcium
channel activity, divalent inorganic cation transmembrane
transporter activity, cation channel activity and ion channel
activity by analyzing GO enrichment data (Figure 8(f)).

3.9. PIEZO1 Deletion Reduced the Cell Proliferative
Capability. To further verify the function of PIEZO1, we
used PIEZO1 siRNA to knockdown the expression of
PIEZOL1 in CFPAF cell line. Immunofluorescence staining of
ki67 was performed for detecting cell proliferation. The data
showed that knockdown of PIEZO1 markedly reduced

pancreatic cancer cells proliferation ability (p = 0.0064)
(Figure 9(a)). The cell migration was assessed by scratch
assay. The results showed that reduction of PIEZO1 can
lower cell migration capacity than their control groups
(p = 0.0420) (Figure 9(b)). In addition, deletion of PIEZO1
can downregulate the expression of TRPM4 (p = 0.0018)
(Figure 9(c)).

4. Discussion

PIEZOL1 alteration is among the most common genetic al-
terations in human cancers. Its expression and functions
have been studied in different cancer types [25]. It has been
considered to have a critical effect on the proliferation,
migration and invasion of different tumors [26]. Multiple
studies have shown that PIEZO1 may become a reliable
diagnostic and prognostic marker in different human can-
cers. Until now, there are no pancancer studies from the
perspective of various cancers. Whether PIEZO1 can affect
the pathogenesis of variety types of cancer by some certain
molecular pathways remains to be explored. We summa-
rized the features of gene expression, genetic alteration, and
protein phosphorylation of PIEZO1 across thirty-three tu-
mors based on the multiple databases, including TCGA,
CPTAC, KEGG and GEO.
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Our data showed that the expression level of PIEZO1
was significantly increased in BLCA, CHOL, COAD,
ESCA, GBM, HNSC, KIRC, LIHC, PAAD, PRAD, READ,

STAD, and THCA, but decreased in KICH, KIRP, LUAD,
LUSC, PCPG and UCEC compared with adjacent normal
tissues. In recent years, studies have confirmed that the
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FIGURE 7: The correlation statistics between PIEZO1 expression and cancer-associated endothelial cells and fibroblasts infiltration. (a-b) The
potential associations of the PIEZO1 expression level and infiltration level of cancer association of endothelial cells in various TCGA cancer
types assessed by using XCELL, MCP-COUNTER, and EPIC algorithms. Red or blue indicates a positive or negative correlation. (c-d) The
potential associations of the PIEZO1 expression level and the level of cancer-association infiltration of fibroblasts in various TCGA cancer
types analyzed by using XCELL, MCP-COUNTER, and EPIC algorithms.

expression level of PIEZOL1 is significantly increased in
gastric cancer [27], esophageal squamous cell carcinoma
[28], glioblastoma multiforme [29], colon cancer [25],
prostate malignant tumor [9] and bladder carcinoma [30]
and decreased in lung cancer. Knockdown of PIEZO1 can
inhibit cell migration and tumor growth [10, 31]. This is
consistent with our current results. Our immunohisto-
chemistry results revealed that PIEZO1 was down-
regulated in lung cancer. The different tumors showing
different levels of PIEZO1 reflect distinct potential
functions and mechanisms.

The data of Kaplan—Meier survival analysis revealed that
increasing PIEZO1 expression was correlated with poor OS
prognosis in KIRC, LGG, LIHC, LUAD, and LUSC, while in
patients with LUAD low PIEZO1 expression was linked with
poor OS at the later stage of this disease. However, the high
expression level of PIEZO1 correlated with good OS for
NSCLC patients, including for patients with LUAD [10].

This is not at par with our current findings. We further
discovered that overexpression of PIEZO1 was correlated
with worse DFS for patients with ACC, CHOL, GBM, LGG,
LIHC and LUSC. Increased expression of PIEZO1 generally
predicted poor OS and DFS, which indicated that PIEZO1 is
a useful molecular as a prognostic biomarker for patients
with tumors.

Cancer is the result of one or more genetic alterations.
The way the gene has been altered may determine the
prognosis of one cancer [32]. These genetic alterations
include gene mutation, structural variants, amplification,
deep deletion and multiple alterations. PIEZO1 mostly
underwent mutation alteration which is linked to OS, DSS,
DFS and PFS in some tumors, such as LIHC, THCA and
UCEC. Modification of the PIEZO1 gene could be
a promising method to cure cancers. In addition, the
PIEZO1 protein phosphorylation level was different be-
tween tumor and normal tissues, while different tumors
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shown as heatmap. (d) The intersection of PIEZO1-binding and interacting genes after selection by Venn diagram analysis. (e-f) KEGG and
GO enrichment analysis assessed based on PIEZO1-binding and interacted genes.

shared diverse phosphorylation sites. These results hint that
it is important to clarify the phosphorylation sites of
a certain cancer type.

The tumor immune microenvironment (TME) is an
integral component of tumor biology [33]. In addition to
cancer cells, tumors exhibit another dimension of com-
plexity. They contain a repertoire of recruited, ostensibly
normal cells, including smooth muscle cells, endothelial
cells, fibroblasts, lymphocytes, macrophages and adipo-
cytes, which significantly contributes to tumor progres-
sion [34]. Calcium signaling associated with immune cells
plays a key role in regulating cancer development [13-15].
PIEZO1, a mechanosensitive ion channel protein, has
identified its effect in the immune system by linking
mechanical forces with immune regulation [16-18]. This
study evidenced the relationship between the PIEZO1
expression level and the immune infiltration of endo-
thelial cells and cancer-associated fibroblasts in most
tumors. The confirmed role of PIEZO1 activity in immune
cells raises the possibilities of utilizing PIEZO1 for cancer
immunotherapies.

KEGG and GO analyses have revealed the molecular
mechanisms of PIEZO1. The results showed that PIEZO1-
related genes including APRT, MFSD10, AGTRAP,
MICALL2, and SYTL1 were mainly enriched in “In-
flammatory mediator regulation of TRP channels.” Our
enrichment analyses demonstrated that PIEZO1 may exert
its tumorigenic effects by calcium ion transmembrane
transporter activity, calcium channel activity, divalent in-
organic cation transmembrane transporter activity, cation
channel activity, and ion channel activity.

Transient receptor potential melastatin 4 (TRPM4), the
only one common member in the intersection analysis of the
PIEZO1-binding and correlated genes, was shown by the
mean of Venn diagram. TRPM4 is a nonselective cation
channel conducting monovalent ions [35]. Intracellular Ca**
directly activates TRPM4 [36]. The protein expression levels
of TRPM4 were reported to be increased in various tumors,
such as colorectal cancer [37], large B cell lymphoma [38],
prostate cancer [39], and so on. The TRPM4 channel also
involved in regulating cancer cells to mesenchymal transi-
tion, migration and invasion [40]. PIEZOI enables cells to
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sense various mechanical forces, which induce the PIEZO1
channel from a closed state turn to an open state. The
PIEZO1 channel can allow Ca*" to flow when it is open [41].
However, no study has yet tested the associations between
PIEZO1 and TRPM4. Whether the flow of Ca®* caused by
PIEZOL1 channel affects TRPM4 is unknown. So, we used
siRNA to knockdown PIEZO1 and detected the transcrip-
tional level of TRPM4. The result shown that TRPM4 can be
downregulated by the deletion of PIEZO1. Of cause, this is
only a preliminary exploration. The relationship between the
two needs further study.

In conclusion, the statistical correlations of PIEZO1 ex-
pression with clinical prognosis, protein phosphorylation and
immune cell infiltration across multiple tumors were revealed
in our first pancancer analysis in detail, which may promote

better understanding of the effect of PIEZO1 in cancerogenesis
and provide a novel perspective for cancer immunotherapy.
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