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Riemannian geometry‑based 
transfer learning for reducing 
training time in c‑VEP BCIs
Jiahui Ying, Qingguo Wei* & Xichen Zhou

One of the main problems that a brain-computer interface (BCI) face is that a training stage is required 
for acquiring training data to calibrate its classification model just before every use. Transfer learning 
is a promising method for addressing the problem. In this paper, we propose a Riemannian geometry-
based transfer learning algorithm for code modulated visual evoked potential (c-VEP)-based BCIs, 
which can effectively reduce the calibration time without sacrificing the classification accuracy. 
The algorithm includes the main procedures of log-Euclidean data alignment (LEDA), super-trial 
construction, covariance matrix estimation, training accuracy-based subject selection (TSS) and 
minimum distance to mean classification. Among them, the LEDA reduces the difference in data 
distribution between subjects, whereas the TSS promotes the similarity between a target subject and 
the source subjects. The resulting performance of transfer learning is improved significantly. Sixteen 
subjects participated in a c-VEP BCI experiment and the recorded data were used in offline analysis. 
Leave-one subject-out (LOSO) cross-validation was used to evaluate the proposed algorithm on the 
data set. The results showed that the algorithm achieved much higher classification accuracy than 
the subject-specific (baseline) algorithm with the same number of training trials. Equivalently, the 
algorithm reduces the training time of the BCI at the same performance level and thus facilitates its 
application in real world.

A brain-computer interface (BCI) is a new communication system that does not rely on the participation of 
peripheral nerves and muscle tissues. A BCI establishes a direct connection between the brain and a computer or 
other electronic devices1,2. In diverse paradigms of BCIs, visual evoked potential (VEP)-based BCI has recently 
received increasing attention3–11 because it is the BCI most likely to first gain widespread applications in real-
world6,8,10. Electroencephalogram (EEG) recorded on the scalp is widely used in human BCIs due to its non-
invasiveness, easiness to acquire and high time resolution.

VEP signals are responses of the brain to visual stimuli and are mainly generated over the occipital lobes. 
According to the difference in modulation methods of stimulus signals, VEPs can be divided into time modulated 
VEP (t-VEP), frequency modulated VEP (f-VEP) and pseudorandom code modulated VEP (c-VEP)12. Among 
them, the BCIs based on the latter two are the most potential BCIs that can achieve very high information transfer 
rate (ITR), the most significant performance metric for a BCI system1.

The first c-VEP BCI was proposed in 1984 and tested 8 years later on an amyotrophic lateral sclerosis (ALS) 
patient by Sutter13,14. The result showed that the subject could write 10–12 words/min. In 2001, Bin et al. devel-
oped a 32-target c-VEP BCI with the highest ITR (108 bits/min) among all kinds of BCIs at that time15. Subse-
quently, some research groups reported important progresses in c-VEP BCI studies. Thielen et al.16 developed 
an approach to fully eliminate the tedious training stage, which is able to systematically reduce the training data 
in a step fashion and ultimately arrive at a calibration-free method for a c-VEP based BCIs. The results showed 
that the training-less BCI yielded high communication rates in an online spelling task, proving its feasibility for 
practical use. Wei et al.17 proposed a grouping modulation-based c-VEP paradigm that divides all stimulus targets 
into several groups and targets per group are modulated with a distinct modulation code and its circularly shifting 
codes. The results indicated that the number of targets and ITR can be increased significantly with the number of 
groups at the cost of slight sacrifice of classification accuracy. Wittevrongel et al.18 introduced a novel decoding 
algorithm based on spatiotemporal beamforming. They showed that this algorithm significantly outperformed 
an optimized support vector machine (SVM) classifier for a small number of repetitions of the coding sequence. 
Riechmann et al.19 developed a c-VEP BCI for fulfilling everyday tasks such as navigation or action selection. The 
study showed that this work supports the notion of c-VEP BCIs as a particularly fast and robust approach suitable 
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for real-world use. Waytowich et al.20 presented a novel c-VEP BCI paradigm that realizes spatial decoupling of 
the targets and flashing stimuli via spatial separation and boundary positioning. Results showed classification 
accuracies for the non-foveal condition comparable with those for direct-foveal condition for longer observation 
lengths. Spuler et al.21 made use of one-class support vector machines for creating templates and error-related 
potentials for target recognition and thus the reliability and accuracy of c-VEP BCIs were improved significantly.

Recently, a new family of approaches based on Riemannian geometry has been presented for EEG sig-
nal processing22–24 Unlike classical methods based on feature vector classification in Euclidean space, these 
approaches enable classification of EEG signals by direct manipulation of covariance matrices in Riemannian 
space. They have been successfully applied to BCIs based on motor imagery (MI)24–26, f-VEP27,28 and P30029 and 
achieved promising results. To the best of our knowledge, they have not been employed in c-VEP BCIs so far. 
Motivated by the above studies, we developed a Riemannian geometry-based classification frame for classifying 
c-VEP signals.

Due to the non-stationarity of EEG signals and great variability between subjects, it is necessary to acquire a 
large amount of training data to calibrate the classification model of a BCI system just before every use of it. This 
time-consuming training process makes users easy to fatigue and thus severely limits the applications of a BCI 
in real life. Accordingly, it is desired to develop a reliable method to reduce or even suppress the BCI calibration 
time while keeping the accuracy within an acceptable range. Transfer learning (TL) is a potential solution for 
achieving the goal. TL is defined as the ability to apply knowledge learnt in previous tasks or fields to new tasks or 
fields30,31. TL has received widespread attention in the field of BCI for improving the generalization performance 
of classifiers, such as the BCIs based on MI32–35, f-VEP28,36 and c-VEP37.

In TL, how to effectively transfer knowledge embedded in EEG data from previous subjects (named source 
subjects hereinafter) to a new subject (named target subject hereinafter) is a crucial problem that needs to be 
solved. In terms of BCI systems, there are huge differences in data distribution between subjects due to the inter-
subject variability. As a result, not EEG data from all source subjects can be transferred as training data to a target 
subject to construct a good classifier for classifying his/her testing data. To avoid negative transfer, two methods 
are usually used for increasing the similarity in data distributions between subjects. One is data alignment and 
the other is source subject selection. The former aims at reducing the difference in data distributions between 
subjects by aligning data to a common reference point, whereas the latter aims to select those source subjects 
whose data distributions are more similar to that of the target subject.

It is assumed that a small amount of training data be available from a target subject and the EEG data from 
some source subjects be used as his/her auxiliary training data. By the aid of a suitable TL algorithm, a robust 
classification model can be built for the target subject. In this paper, we propose a Riemannian geometry-based 
TL algorithm for c-VEP BCIs, in which EEG data are aligned by a log-Euclidean mean-based data alignment 
(LEDA) approach, covariance matrices are estimated from super-trials (a particular type of EEG trials), a sub-
set of source subjects is selected by a training accuracy-based subject selection (TSS) algorithm, and finally a 
minimum distance to mean (MDM) classifier is constructed with the transferred data from source subjects 
and training data of the target subject. A c-VEP BCI dataset containing 16 subjects was used for evaluating 
the proposed algorithm. The results show that the algorithm is able to significantly reduce training time while 
maintaining high accuracy.

The major contributions of the paper are two-fold: (1) A Riemannian geometry-based classification frame 
is developed for c-VEP BCIs. The frame enables classification of EEG signals by direct manipulation of covari-
ance matrices and thereby avoids the processing procedures of spatial filtering and feature extraction in classical 
classification models based on Euclidean space; (2) A transfer learning algorithm is proposed for reducing the 
training time of c-VEP BCIs without the compromise of classification accuracy. By making use of an LEDA 
approach and a TSS algorithm, the performance of transfer learning is enhanced significantly compared to the 
baseline algorithm based on subject specific learning.

Methods
In this section, we introduce the method for classifying c-VEP signals in Riemannian space and the algorithm 
for transfer learning in c-VEP BCIs. The former includes the concepts such as sample covariance matrix (SCM), 
super-trial, covariance matrix estimation and Riemannian geometry, whereas the latter contains the concepts 
such as instance-based transfer learning, data alignment, source subject selection, and transfer learning-based 
classification. It is noted that in this paper, (stimulus) target and class are two replaceable words because each 
stimulus target corresponds uniquely to one category. All the methods were performed in accordance with 
relevant guidelines and regulations.

Classifying c‑VEP signals in Riemannian space. 

(1)	 SCM: In BCI experiments, a single trial consists of a task period and a resting period, and is denoted by a 
segment of time-windowed EEG data in the task period. Let Xz ∈ RNc×Nt be a single-trial bandpass filtered 
EEG signal with a zero mean, where z ∈ {1, 2, . . . ,Z} , Nc and Nt denote the indices of Z classes/targets, the 
number of electrode channels and the number of sampling points respectively. SCM is commonly used for 
optimizing spatial filters and classifiers in conventional machine learning in Euclidean space. The SCM of 
an EEG signal Xz is usually estimated as follows

(1)Pz =
1

Nt − 1
XzX

T
z ∈ RNc×Nc
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	   Each diagonal element of Pz holds the variance of the signal at one electrode and each of its off-diagonal 
elements holds the covariance between one pair of electrodes. Thereby, the SCM contains all spatial infor-
mation of the EEG signal, particularly its second-order statistics.

(2)	 Creating super-trials for c-VEP signals: For the BCI paradigm based on MI, the SCM suffices for discrimi-
nating EEG trials of different classes, since MI-based trials for different classes do induce different spatial 
patterns. For a typical BCI paradigm based on c-VEP, however, all stimulus targets are encoded by the same 
modulation sequence with different time lags, and thus c-VEP trials can only be differentiated by time lags 
or phase differences. The SCM of an EEG trial is not useful for classifying c-VEP signals because it does 
not possess any temporal information at all.

In order to classify the c-VEP signals in Riemannian space, it is necessary to embed the temporal information 
into a covariance matrix23. To this end, we need to first create a super-trial for a training trial

where X1, X2, . . . ,XZ are the template signals of Z targets yielded by averaging the EEG trials of the same target, 
and Xz is an EEG trial from the target z . The SCM of the super-trial can be calculated as

where the dimension of P′

z is Nc(Z + 1)× Nc(Z + 1) , increasing significantly compared to that of Pz in Eq. (1). 
The class information is embedded into covariance matrix P′

z , which can be applied for classifying c-VEP signals 
accordingly. Given an unlabelled testing trial X , its super-trial and corresponding SCM can be computed using 
Eq. (2) by replacing Xz with X and using Eq. (3) respectively.

(3)	 Covariance matrix estimation: Since covariance matrices must be accurate, symmetric positive definite 
(SPD), and well-conditioned (this property requires that the ratio of the largest singular value to the smallest 
singular value cannot be too large), the choice of a covariance matrix estimator is very important. Although 
the SCM estimator formulated in Eq. (1) is computationally efficient, the covariance matrix estimated by 
it often fails to meet the above requirements, especially when the size of a covariance matrix is large such 
as P′

z in Eq. (3). To address the problem, shrinkage estimators27 were developed as a weighted sum of the 
SCM P′

z and a target covariance matrix Ŵ , which is chosen to close to the identity matrix. The shrinkage 
estimators are defined as

where 0 ≤ � < 1 is a weighting coefficient. The shrinkage estimators differ in their definition of target covar-
iance matrix Ŵ . Ledoit and Wolf38 proposed Ŵ = vINc with v = tr(P

′

z) ; Blankertz39 also defined Ŵ = vINc 
but with v = tr(P

′

z)/Nc ; Schafer and Strimmer40 presented several methods for defining Ŵ relying on the 
SCM P′

z . The last shrinkage estimator mentioned above was used in this study because it provides a good 
tradeoff between performance and operational speed.

(4)	 Riemannian geometry: In conventional BCI systems, many methods for feature extraction and classification 
developed in Euclidean space such as common spatial pattern (CSP), canonical correlation analysis (CCA) 
and linear discriminant analysis (LDA), are based on the SCMs of EEG signals. The SCM of an EEG trial, 
however, is actually an SPD matrix and thus lies in a Riemannian manifold, a subset of Euclidean space. 
Because the space of SPD matrices endowed with Riemannian distance is a differentiable Riemannian 
manifold41,42, the notions from Riemannian geometry such as Riemannian distance and Riemannian mean, 
can be used to analyze and classify SCMs.

Denote by S(n) = {S ∈ M(n), ST = S} the space of all n× n symmetric matrices in the space of square real 
matrices M(n) and P(n) = {P ∈ S(n), uTPu > 0,∀u ∈ Rn} the set of all n× n SPD matrices. As for the Riemann-
ian distance of two SPD matrices, there are several different definitions in literature43, the most commonly used 
two of which are affine-invariant distance and log-Euclidean distance. The expression of the former is as follows

where �e , e = 1, 2, . . . ,Ne is the eth eigenvalue of matrix P−1
1 P2 ; whereas that of the latter is as follows

Since P1 and P2 are SPD matrices, the two types of Riemannian distances have an important property termed 
as congruence invariance

where U denotes an invertible and orthogonal matrix. Because of the excellent property, the linear transformation 
of two SPD matrices will not change their relative distance in the Riemannian space.

(2)X
′

z = [X1; X2; · · · ; XZ; Xz] ∈ RNc(Z+1)×Nt

(3)P
′

z =
1

Nt − 1
X

′

z(X
′

z )
T ∈ RNc(Z+1)×Nc(Z+1)

(4)Psh = �Ŵ + (1− �)P
′

z

(5)dAI (P1, P2) = || log(P−1
1 P2)||F =

√

∑Ne

e=1
log2 �e

(6)dLE(P1, P2) = || log(P1)− log(P2)||F

(7)dB(P1, P2) = dB

(

UP1U
T ,UP2U

T
)

, B = AI or LE
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The Riemannian mean of multiple SPD matrices is defined by their Riemannian distance with a variational 
approach44. Since Pn, n = 1, 2, . . . ,N lies in a Riemannian manifold of non-positive curvature, the Riemannian 
mean is defined as the matrix that minimizes the sum of the squared Riemannian distances

The existence and unicity of the Riemannian mean were proved in Ref.45. When the affine-invariant distance 
metric is used as Riemannian distance, an explicit solution exists only for N = 2 , where it coincides with the 
middle point of the geodesic connecting the two SPD matrices. For N > 2 , a solution can be found iteratively, 
and several different algorithms have been developed in Ref.46; When the log-Euclidean distance is used as Rie-
mannian distance, an explicit solution exists and can be formulated as

In Riemannian space, SPD matrices function as feature signals and the decoding of EEG signals is able to 
directly operate on them. There are two methods for achieving the task: One is the minimum distance to mean 
(MDM) classifier proposed by Congedo et al.23 and the other is tangent space LDA (TSLDA). The former classi-
fies an EEG trial by comparing the Riemannian distances of its covariance matrix to the Riemannian means of 
all classes, whereas the latter first maps covariance matrices onto tangent space, then the matrices are vectorized, 
and finally the feature vectors are classified with conventional algorithms from the Euclidean space. This study 
adopted the first method due to the simplicity of its concept.

With the concepts of distance and mean in Riemannian space, an MDM classifier can be used to classify EEG 
trials by directly manipulating their covariance matrices. Thereby, the classification frame avoids spatial filtering 
and feature extraction in conventional classification algorithm based on Euclidean geometry. In a c-VEP BCI, 
the training data from the reference target can be shifted to obtain the training data of other targets according to 
their time lags in modulation codes. Using labelled training trials, we can calculate the mean covariance matrix 
of each class z , denoted as Mz , z = 1, 2, . . . ,Z . Then an unlabelled testing trial is assigned to the class with the 
closest mean, which means that the distance between the covariance matrix of the testing trial and the Mz of the 
assigned class z is the smallest. The detail of this classification algorithm can be referred to Ref.23.

Transfer learning for c‑VEP BCIs. 

(1)	 Instance-based transfer learning: Transfer learning (TL) is an important branch of machine learning30,31. 
In TL, a domain D consists of a feature space X  and its marginal probability distribution P(X) , i.e., 
D = {X , P(X)} , where X ∈ X  . Two domains DS and DT are different if XS  = XT and/or PS(X)  = PT (X) . 
A task T  consists of a label space Y and a conditional probability distribution Q(Y|X) . Two tasks TS and TT 
are different if YS  = YT and/or QS(Y|X) �= QT (Y|X) . TL uses the similarity among data, tasks, or models to 
transfer the data or knowledge from one domain (termed source domain) to help solve the task in another 
domain (termed target domain).

	   In most BCI applications, the feature space and label space are usually assumed the same for source 
and target domains because the electrode channels used for recording EEG data and the mental tasks the 
subjects fulfilled are the same, but their marginal and conditional probability distributions are different 
due to the non-stationarity of EEG signals. There are three approaches for transfer learning in the BCI 
field31, named feature representation transfer, instance transfer and classifier transfer. Based on the second 
approach, this study made use of the labelled EEG trials of source subjects to help the target subject with 
a small number of labelled training data calibrate his/her classification model.

(2)	 Data alignment: Due to the randomness and non-stationarity of EEG signals, there are big differences in 
data distribution between subjects. Thereby, to transfer data from a subject to another, it is necessary to 
reduce the difference in data distribution between them prior to transferring data. Data alignment (DA) is 
an efficient method for achieving the goal47–49. DA aligns either the EEG trials or their covariance matrices 
from different domains (i.e., subjects or sessions) to a common reference and thus reduces the marginal 
probability distribution shift of different domains. DA can be used as a preprocessing step to enhance simi-
larity between EEG trials of different subjects. Several DA approaches exist in literature such as Riemannian 
alignment (RA)47, Euclidean alignment (EA)48 and online pre-alignment (OPS)49, depending upon how the 
reference matrix is defined. LEDA, whose reference matrix is derived from log-Euclidean mean, is applied 
in the TL framework because it outperforms other approaches for c-VEP data.

LEDA can be used in either supervised or unsupervised manner. For testing data from the target subject, 
LEDA is unsupervised since they do not have any labelled information. LEDA calculates the log-Euclidean 
mean MLE of the covariance matrices from all classes using Eq. (9), and the reference matrix is calculated as 
Mref = P

−1/2
LE  . A single-trial EEG signal (or rather a super-trial) Xi is aligned as

For the EEG data from source subjects and a few labelled training data from the target subject, LEDA can be 
used in a supervised manner. The log-Euclidean mean MLE,z of covariance matrices can be calculated using all 

(8)PR(P1, . . . , PN ) = argmin
P∈P(n)

N
∑

i=1

d2R(Pi , P)

(9)PLE(P1, . . . ,PN ) = argmin
P∈P(n)

N
∑

i=1

d2LE(Pi , P) = exp

(

N
∑

i=1

log(Pi)

)

(10)X
′

i = Mref Xi
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EEG trials belonging to the same class z ∈ {1, 2, . . . ,Z} , and the reference matrix is Mref , z = M
−1/2
LE,z  . A single-

trial EEG signal Xi,z is aligned as follows

DA does not change the relative distance between any two covariance matrices in a data set to be aligned 
because of the property of congruence invariance in Eq. (7). After LEDA, marginal probability distribution shift 
of EEG data between subjects is reduced, and resulting EEG trials are whitened accordingly. The distribution 
of EEG trials from different subjects tends to be consistent, which is conducive to construction of the classifier 
of a target subject.

(3)	 Source subject selection: Subject selection (SS) aims to determine an optimal subset of source subjects for a 
target subject to ensure the highest classification accuracy of his/her testing data with the help of EEG data 
from the chosen source subjects. Lotte et al.50 used the sequential forward floating search algorithm to select 
the subjects to be added to or removed from the current subject subset in order to maximize the accuracy 
for the target subject. Qi et al.51 proposed to use Riemannian distance to select samples from the existing 
subject database to help construction of the classifier. Giles et al.52 proposed a new similarity measurement 
algorithm, called Jensen Shannon ratio (JSR), which is used to compare the data of the target subject with 
the existing subject database, and to select the previously calibrated BCI model with the highest similarity 
with the target subject as the target model of BCI. Azab et al.32 proposed a similarity measurement method 
based on Kullback–Leibler divergence (KL), which is used to measure the similarity between two feature 
spaces. Despite these methods, SS remains an open and tough problem.

We propose a training accuracy-based subject selection (TSS) algorithm shown in Algorithm 1, where the 
function acc = train Then Test(PNS , PT ) returns the accuracy obtained when the MDM is trained on the data 
set PNS  from N source subjects and then is used to classify training data set PT from the target subject. All source 
subjects are sorted by their classification accuracies. The first C source subjects are selected as transferred sub-
jects, if their EEG data are pooled together to re-train an MDM classifier and it achieves the highest accuracy 
on data set PT among all subsets of source subjects. The processing procedures of the algorithm are summarized 
as follows: All source subjects for a target subject are first sorted according to their classification accuracies by 
using the EEG data from a single source subject as training data and classifying the training data from the target 
subject. Then c (from 1 to 15) source subjects are sequentially extracted from sorting list and their EEG data 
are collectively used for creating a classification model, which is used to classify the training data of the target 
subject. Finally, the C is decided as the c value that yields the highest classification accuracy.

(4)	 Transfer learning-based classification: Given a c-VEP BCI data set, the EEG data from each subject are first 
preprocessed by bandpass filtering and data segmenting into single-trial signals. The bandpass filtering 
is done between 2 and 30 Hz via a Butterworth IIR filter of order 8. A leave-one subject-out (LOO) cross 
validation strategy is used to divide all subjects in the data set into the target subject and source subjects, 
i.e., each subject in the data set acts as the target subject once, and the remaining subjects act as the source 
subjects. Then the preprocessed EEG trials from a subject are aligned with LEDA in either supervised or 
unsupervised manner depending on the types of the trials. For each source subject, the EEG trials function 
as training data and are aligned by class; for the target subject, the training trials are also aligned by class, 
whereas the testing trials from all classes are aligned as a whole. Next, for an aligned trial, a super-trial is 
created with template signals of all targets and an SCM is estimated using the specified shrinkage estimator. 
Next, the transferred subjects are selected from source subjects according to the TSS algorithm. Finally, 
the EEG trials of the transferred subjects and the training trials of the target subject are pooled together 
as overall training data and are employed to computing the log-Euclidean means of all classes, which are 

(11)X
′

i,z = Mref ,zXi,z
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utilized to classify the SCMs of testing trials from the target subject with an MDM classifier. The algorithmic 
flowchart of the transfer learning-based c-VEP BCI classification in Riemannian space is shown in Fig. 1.

BCI experiment
Subjects.  An offline experiment was designed for the c-VEP BCI. Sixteen healthy subjects (7 females, aged 
21 ~ 26 years, mean age: 23 years) with normal or corrected to normal vision participated in the experiment. 
None of them had a previous history of epilepsy or seizures, which can be induced by flashing stimuli. Six 
subjects participated in a c-VEP BCI experiment before and were familiar with the experimental setting. Each 
subject was asked to read and sign an informed consent form before the experiment. The study was approved 
by the Human Research and Ethics Committee, Nanchang University. After the experiment, these subjects were 
paid for their contribution to the study.

Target modulation.  A visual stimulator comprising 16 target stimuli is shown in Fig. 2a, the design prin-
ciple of which is similar to that of Bin et al.12. The stimulator was presented on an LCD monitor. Principle of 
equivalent neighbors was adopted for designing the stimulator. 16 target stimuli and 20 complementary non-
target stimuli are arranged in grey and white area respectively. All these stimuli are tightly placed without inter-
vals between them. The 16 target stimuli are modulated by a 63-bit pseudorandom M sequence and its circularly 
shifting sequences. The 63-bit M sequence corresponds to a stimulus period of P = 63/60 = 1.05 s for the screen 
refresh rate of 60 Hz, and is circularly shifted integral multiples of 4 bits to generate 16 sequences of differ-
ent phases used for modulating the 16 target stimuli. The target and non-target stimuli tagged with the same 
numbers are modulated by the same sequence. The purpose of these non-target stimuli is to ensure that the 
target stimuli have equivalent neighbors in the directions of left, right, up, down and diagonals, i.e. the time lags 

Figure 1.   Processing flowchart of the Riemannian geometry-based transfer learning in c-VEP BCIs. The 
meanings of the acronyms in the figure are as follows. LOO: leave-one subject-out; SSs: source subjects; TS: 
target subject; LE(DA): log-Euclidean (data alignment); SCMs: sample covariance matrices; TSS: training 
accuracy-based subject selection; MDM: minimum distance to mean.

Figure 2.   (a) The visual stimulator used in the study. It consists of 16 target stimuli in the gray area and 20 
complementary non-target stimuli in the white area. The 16 target stimuli are modulated by a 63-bit M sequence 
and its circularly shifting sequences. The target and non-target stimuli tagged with the same numbers are 
modulated by the same modulation code. (b) The principle of equivalent neighbors is used in design of the 
stimulator. Each target T and the eight adjacent targets around it maintain a fixed time delay relationship. τs (4 
bits in the study) is the time lag of modulation codes between two adjacent target stimuli.
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between modulation codes of target stimuli and their neighbors in same directions are the same, as shown in 
Fig. 2b.

Experimental setup.  The experimental system consists of a personal computer (Lenovo China) operated 
under a Windows 7 system and an EEG amplifier (a Synamps2 system, Neuroscan Inc.) with 64 EEG chan-
nels. The computer has a 24-in. liquid crystal display (LCD) monitor and a parallel port linked to the amplifier. 
The LCD monitor has a refresh rate of 60 Hz and a resolution of 1920 × 1080 pixels. Stimulus presentation was 
operated in the PC and controlled by the stimulus program developed under Visual C++ 9.0 platform. DirectX 
(Microsoft Inc.) was employed to ensure the stability of frame-based rendering of stimuli. Event trigger signals 
yielded by the stimulus program were sent from the parallel port of the computer to the EEG amplifier and 
recorded on an event channel for synchronizing stimulus presentation and EEG data recordings. Each target 
stimulus was rendered within a square of 140 × 140 pixels.

During the experiment, all stimuli were flashed simultaneously and periodically according to their modula-
tion codes. Each subject was seated in a comfortable chair in an unshielded, dimly lit room, approximately 60 cm 
away from the monitor. They were instructed to focus attention to an intended target, gaze at its center and not 
to blink as much as possible. Nine Ag/AgCl electrodes over the occipital lobes (P3, Pz, P4, PO7, POz, PO8, O1, 
Oz, O2) in line with international 10/20 system were used for recording EEG data. The reference electrode was 
positioned at the vertex. Electrode impedances were kept below 10 kΩ during the experiment. The EEG signals 
were digitized at a sampling rate of 1000 Hz.

Data acquisition.  This experiment was divided into two phases: training and testing. The purpose of the 
training stage was to acquire training data of a reference target. Any one of the 16 targets could be specified as 
the reference target, which was the 11th target in the study. The subject should fixate continuously at the refer-
ence target for 100 stimulus cycles (i.e. 100 trials of one stimulus cycle). In testing stage, the subject was asked to 
complete the testing task of all 16 targets, which appeared in a random order. The subject was required to fixate 
continuously on the current target for five stimulus cycles (i.e., five trials), and subsequently, the test of next tar-
get began immediately. Each test started with a prompting duration of 1 s, in which the target turned red and the 
subject should shift his/her gaze to the target as soon as possible. After the cue duration was over, the red target 
cue was switched to a small cycle at bottom right corner of the target so that the subject found it easily.

Results
The difference in data distribution between the raw data and the aligned data is visualized in 2-dimensional 
space to examine the effect of LEDA. The following four Riemannian geometry-based algorithms are compared 
using the first algorithm as baseline: (1) subject-specific learning (SSL); (2) transfer learning using EEG data of 
all source subjects without data alignment (TL-ASS); (3) transfer learning using EEG data of all source subjects 
with LEDA (TL-LEDA-ASS); and (4) transfer learning using EEG data of chosen source subjects by TSS with 
LEDA (TL-LEDA-TSS). It is noted that for each source subject, only testing data (5 trials per target) are used 
for transfer learning because each subject had only training data from one stimulus target. The proposed clas-
sification algorithm is evaluated by classification accuracy and ITR based on varying lengths of data, numbers of 
channels and numbers of training trials. The ITR in bits/minute defined by Wolpaw et al.1 is calculated as follows

where M is the number of targets, P is the detection accuracy of targets, and T in seconds/selection is the average 
time for a selection. For the estimation of ITRs, the time of 1 s for gaze-shifting was included in target selection.

This definition for ITR is a simplified computational model based on Shannon channel theory under several 
assumptions and the most widely used metric to assess the overall performance of a BCI system. Although several 
scholars, e.g., Yuan et al.53, pointed out its shortcomings and proposed some improvements, the vast majority of 
studies still use this definition to measure the performance of BCI systems so far.

Data visualization.  t-distributed stochastic neighbor embedding (t-SNE)54 is a commonly used method for 
data dimensionality reduction and visualization. High-dimensional data can be projected to a 2- or 3-dimen-
sional space by t-SNE and their characteristics in distribution are observed in the space. We visualize whether 
LEDA can decrease the difference in data distributions between the target subject and source subjects. Figure 3 
shows two examples of 2-dimensional distributions of the raw data and the aligned data by LEDA. In each sub-
plot, the red symbols " × " indicate the EEG trials of the target subject, whereas the blue symbols "o" denote the 
EEG trials of all source subjects. From the figure, it is clearly observed that for the raw data, the data distributions 
of the target subject and the source subjects are totally different, whereas for the aligned data, they tend to be 
consistent. Thereby, the data alignment by LEDA is very conducive to decreasing the difference in data distribu-
tion between subjects and subsequent transfer learning for c-VEP BCIs.

Transferring data from a single source subject.  Figure 4 depicts the classification accuracies of two 
target subjects (#5 and #7) yielded by the two transfer learning algorithms TL (the first row) and TL-LEDA (the 
second row) with the EEG trials (5 trials per class) of only one source subject transferred to the target subject. 
The accuracy achieved by SSL algorithm is also shown with a sold line as a baseline in each subplot. The same 5 
training trials per stimulus target (obtained by shifting the 5 trials of the reference target) from the target subject 
were used for building classification model in both transfer algorithms and SSL algorithm. From the figure, it is 

(12)ITR =

(

log2 M + P log2 P + (1− P) log2

[

1− P

M − 1

])

∗

(
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T
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easily observed that whether the EEG trials are aligned or not, transferring EEG data between different pairs of 
source-target subjects, classification accuracies differ substantially. In most cases, such a transfer was negative 
because it deteriorated the accuracy. However, data distributions of some sources are complementary and their 
overall distribution may be more similar to that of the target subject. To avoid negative transfers, it is necessary 
to select those relevant source subjects whose total data distribution is more similar to that of the target subject.

Transferring data from multiple source subjects. 

(1)	 Data length: Fig. 5 illustrates the relationship between the averaged accuracy and ITR of the four algo-
rithms (SSL, TL-ASS, TL-LEDA-ASS and TL-LEDA-TSS) across subjects and the data length used for 
target recognition. The data length is denoted as multiple of the stimulus cycle, and 9 different multiples 

Figure 3.   t-SNE visualization of the distribution of raw data (Xraw, the first column) and aligned data by LEDA 
(Xleda, the second column). The red symbols ‘ × ’ denote the EEG trials from the target subject (16 × 5 = 80 
trials), whereas the blue symbols ‘o’ stand for the EEG trials from all source subjects (80 × 15 = 1200 trials).

Figure 4.   Classification accuracies of two target subjects (#5 and #7) yielded by the two transfer learning 
algorithms TL (a,b) and TL-LEDA (c,d) with the EEG trials of only one source subject transferred to the target 
subject. The sold line in each subplot stands for the accuracy yielded by SSL (baseline) algorithm.
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are taken from 1 to 3 with an interval of 0.25, i.e. k = 1, 1.25, . . . , 3 . The number of training trials and the 
number of channels used for classification are 20 and 9 respectively. It is easily seen from the figure that 
although the overall trend of the accuracy yielded by each algorithm is to increase with data length, the 
ITR indeed decreases monotonically. Statistical analysis based on paired t-tests showed that the ITRs of 
the four algorithms at one stimulus cycle are significantly higher than those at all other data lengths with 
p < 0.001 . Therefore, the data length of one stimulus cycle was used in the following analysis.

(2)	 The number of channels: Fig. 6 shows the relationship between the averaged classification accuracy across 
subjects and the number of channels for each of the four algorithms SSL, TL-ASS, TL-LEDA-ASS and 
TL-LEDA-TSS. In the study, the nine channels (P3, Pz, P4, PO7, POz, PO8, O1, Oz, O2) were used to 
record EEG data and kept sequentially in the dataset. The number of channels used for classification was 
taken from 3 to 9 with the step length of 1. To simplify the analysis, the channels were selected sequentially 
according to their order in the dataset. The number of training trials used for classification is 20. As shown 
in the figure, accuracies of all the four algorithms first rise rapidly, then slow down and fall after reaching 
the maxima. For SSL, TL-ASS and TL-LEDA-ASS, the maximal accuracies were achieved at 8 channels, 
whereas for TL-LEDA-TSS, that was derived at 7 channels. Paired t-tests showed that TL-LEDA-TSS has 
no significant differences in accuracy between 7 and 8 channels with p = 0.10 . Thus, 8 channels were used 
for following analysis.

(3)	 The number of chosen source subjects: In this study, we screened the source subjects with Algorithm 1. It is 
noted that the testing data set PT of the target subject was derived from training data of all targets obtained 
by shifting those of the reference target, whereas the training data set PNS  of N source subjects was derived 
from the testing data, i.e., 5 trials per target. Figure 7 shows the classification accuracies of the two target 
subjects (#5 and #7 as examples) varying with the number of source subjects used for transferring data. 

Figure 5.   Relationship between the averaged accuracy (a) and ITR (b) of the four algorithms (SSL, TL-ASS, 
TL-LEDA-ASS and TL-LEDA-TSS) across subjects and the data length used for target recognition. The data 
length is denoted as the multiple of the stimulus cycle.

Figure 6.   Relationship between the averaged accuracy across subjects and the number of channels used for 
target recognition for the four algorithms SSL, TL-ASS, TL-LEDA-ASS and TL-LEDA-TSS.
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The number of training trials is taken as 20. The solid line in each subplot denotes the accuracy of SSL 
(baseline) algorithm for comparison. Obviously, the accuracy does not increase monotonically with the 
number of source subjects, but fluctuates up and down near the baseline accuracy. Based on the TL-LEDA-
TSS algorithm, the number of chosen source subjects yielding the highest accuracy is 4 and 6 for the two 
target subjects respectively.

Table 1 lists the classification accuracies of the 16 target subjects under three conditions: Acc1—the maximum 
accuracy achieved actually; Acc2—the minimum accuracy achieved actually; Acc3—the accuracy yielded by 
TL-LEDA-TSS algorithm. The corresponding number of transferred source subjects is shown in parentheses. As 
shown in the table, the accuracy of each target subject yielded by TL-LEDA-TSS algorithm (Acc3) is not identi-
cal to the maximum accuracy achieved actually (Acc1), so is their corresponding numbers of chosen source 
subjects. The mean accuracy of all target subjects achieved by the algorithm is lower than Acc1, meaning that 
this TSS algorithm is not optimal. However, the TSS algorithm achieved a near-optimal mean accuracy much 
higher than the minimum accuracy achieved actually. It is better to show which source subjects were selected 
for a target subject. We ignored this problem for sparing space.

(4)	 The number of training trials: Fig. 8 illustrates the averaged classification accuracies across all subjects of 
the three transfer learning algorithms varying with the number of training trials, which ranges from 5 to 50 
with the interval of 5 trials, i.e., Ntr = 5, 10, . . . , 50 . The classification accuracy of SSL algorithm is shown 
as baseline for comparison. Clearly, the accuracy of each algorithm increases consistently with the number 
of training trials, but the increase slows down as it gets bigger. The accuracies of TL-ASS are always lower 
than those of SSL except for Ntr = 5 trials, meaning that without additional processing of c-VEP data, 
directly transferring them from source domains to a target domain is generally not feasible.

At all numbers of training trials, the accuracies of TL-LEDA-ASS are higher than those of SSL and the 
accuracies of TL-LEDA-TSS are higher than those of TL-LEDA-ASS, meaning that both data alignment and 
subject selection promoted the performance of transfer learning. The fewer the training trials, the greater is the 
performance improvement. Especially when the number of training trials is 5, the accuracies of TL-LEDA-TSS 
and TL-LEDA-ASS are 13.6% and 11.33% higher than that of SSL respectively. This makes sense for transfer 
learning because its goal is to decrease calibration time. Based on paired t-tests, statistically significant differences 
in accuracy (p values) among the four algorithms at 95% confidence level are shown in Table 2.

Figure 7.   The classification accuracies of the two target subjects (#5 and #7) change with the number of chosen 
source subjects. The solid line in each subplot denotes the accuracy of SSL (baseline) algorithm for comparison.

Table 1.   The classification accuracies (%) of the 16 target subjects (TS) and their mean (M) under three 
conditions: Acc1—the maximum accuracy achieved actually; Acc2—the minimum accuracy achieved actually; 
Acc3—the accuracy yielded by TL-LEDA-TSS algorithm. The digits in parentheses denote the corresponding 
number of source subjects.

TS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 M

Acc1 100 (2) 100 (7) 100 (15) 97.5 (1) 82.5 (4) 100 (1) 90 (15) 90 (9) 100 (6) 97.5 
(15)

88.75 
(7) 100 (8) 75 (5) 86.25 

(15)
91.25 
(10) 62.5 (1) 91.33 

(7.56)

Acc2 98.75 
(1)

98.75 
(1) 95 (3) 92.5 

(10) 75 (1) 95 (15) 75 (2) 70 (2) 97.5 (8) 92.5 
(14)

83.75 
(2) 95 (1) 65 (12) 65 (2) 87.5 (1) 62.5 (1) 84.3 

(4.75)

Acc3 100 (13) 100 (9) 98.75 
(9) 97.5 (4) 81.25 

(6)
98.75 
(11)

91.25 
(8) 87.5 (9) 100 (7) 97.5 (8) 90 (8) 100 (8) 72.5 (5) 82.5 

(10)
86.25 
(8) 62.5 (7) 90.39 

(8.13)
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(5)	 Riemannian space vs Euclidean space: Fig. 9 shows the comparison of averaged classification accuracies 
across subjects yielded by the two groups of algorithms developed in Euclidean and Riemannian space 
respectively in the cases of 10 and 50 training trials. It is clearly observed from the figure that for the two 
numbers of training trials, the subject-specific learning algorithm from Euclidean space performs bet-
ter than or equal to that from Riemannian space, whereas the three transfer learning algorithms from 
Riemannian space are superior to those from Euclidean space. Using the subject-specific algorithm from 

Figure 8.   Averaged classification accuracies across all subjects of the four algorithms varying with the number 
of training trials, which ranges from 5 to 50 with the interval of 5 trials. The error bars represent the standard 
error.

Table 2.   Statistically significant differences in accuracy (p values) among the four algorithms based on paired 
t-tests at the confidence level of 95%. NT: Number of training trials; M1: SSL; M2: TL-ASS; M3: TL-LEDA-
ASS; M4: TL-LEDA-TSS. Significant values are in bold.

NT M1-M2 M1-M3 M1-M4 M2-M3 M2-M4 M3-M4

5 0.090 0.001 0.0002 0.011 0.005 0.294

10 0.938 0.017 0.003 0.011 0.010 0.160

15 0.212 0.126 0.002 0.016 0.005 0.056

20 0.186 0.119 0.006 0.026 0.013 0.109

25 0.250 0.229 0.019 0.032 0.009 0.123

30 0.252 0.508 0.046 0.052 0.010 0.135

35 0.634 0.291 0.032 0.078 0.014 0.357

40 0.832 0.070 0.013 0.022 0.007 0.094

45 0.800 0.052 0.012 0.030 0.009 0.237

50 0.531 0.070 0.021 0.015 0.009 0.211

Figure 9.   Averaged classification accuracies across subjects yielded by the two groups of algorithms derived 
from Euclidean and Riemannian space respectively in the cases of 10 and 50 training trials. ES and RS denote 
Euclidean space and Riemannian space respectively. The error bars represent the standard error.
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Euclidean space (SSL (ES)) as a baseline, the two transfer learning algorithms from Riemannian space 
(TL-LEDA-ASS (RS) and TL-LEDA-TSS (RS)) still improved the classification performance, especially 
when the number of training trials is small. For all 10 numbers of training trials, statistically significant 
difference in accuracy (p values) between each pair of algorithms derived from Riemannian and Euclidean 
space based on paired t-tests at 95% confidence level is listed in Table 3.

(6)	 Computational complexity: As shown in Fig. 1, the classification process of this proposed algorithm 
TL-LEDA-TSS includes two phases of training and testing. In the training stage, the algorithm contains 
the five procedures of aligning data, creating super-trials, estimating SCMs, selecting source subjects and 
computing log-Euclidean mean per class; In the testing stage, the algorithm contains four procedures, the 
first three of which are the same as those in training stage, whereas the last one is to classify single-trial 
data based on the MDM classifier. The training stage is long because the shrinkage approach is used to 
estimate SCMs and numerous trials are required for training, whereas the testing stage is much shorter 
because data processing in online experiments is done trial by trial. The evaluation process was carried 
out on a computer with the configuration of Intel (R) Core (TM) i5-6500 CPU @ 3.20 GHz, 8.00 GB RAM 
and 64-bit OS. Assume that 20 training trials are available from a target subject and all source subjects are 
acted as transferred ones, the training stage takes about 9.8 min. Fortunately, the log-Euclidean mean per 
class used for testing stage can be calculated offline. Classifying a single-trial EEG data takes only 0.75 s, 
which is suitable for online processing.

Discussion
A typical c-VEP BCI system requires a training stage to obtain sufficient calibration data. However, this cumber-
some training procedure will limit its practical application. How to reduce the training time without sacrificing 
the accuracy is one of the main research directions. The results in this study indicated that compared to the 
subject-specific (baseline) algorithm, the transfer learning algorithm incorporating LEDA and TSS significantly 
increased the classification accuracy at each given number of training trials. In other words, the proposed algo-
rithm achieved the similar accuracy to the baseline algorithm using much fewer training trials, and thus reduced 
the training time substantially.

The experimental results show that TL-LEDA-ASS is better than TL-ASS, and the TL-LEDA-TSS is better 
than TL-LEDA-ASS. These findings prove that both data alignment and source subject selection can improve 
transfer learning. At the same time, both TL-LEDA-TSS and TL-LEDA-ASS are better than SSL especially in the 
case of fewer training trials, where the improvement in accuracy is more obvious. These conclusions support our 
goal to reduce training time while maintaining high accuracy.

In the previous studies on c-VEP BCI, we did some meaningful work. We first made a study on stimulus 
specificity of c-VEP BCIs55. Five experiments were devised to investigate the effect of size, color and proximity 
of the stimuli, length of modulation sequence and the lag between two adjacent stimuli on target recognition. An 
optimal value of each parameter was attained in terms of classification performance, and thus provides a basis 
for designing a high-performance c-VEP BCI. To make BCI suitable for complex applications like word input, 
we then presented a novel c-VEP BCI paradigm for increasing the number of stimulus targets based on group-
ing modulation with different codes17. Using the paradigm, a BCI with 48 targets divided into three groups was 
implemented with a high ITR of 181 bits/min. Finally, we further expended the paradigm to four target groups 
and implemented a c-VEP BCI of 64 stimulus targets with an ITR of 184.6 bit/min56. All these methods were 
developed in Euclidian space. In this study, we developed a Riemannian geometry-based classification frame 
for c-VEP BCIs.

As mentioned in section Introduction, the methodologies of Riemannian geometry have been successfully 
applied to BCIs based on MI, f-VEP and P300. For MI-based BCIs, Riemannian geometry is mainly used for 
matching the statistical distributions of two datasets so that transferring data from source subjects to a target 
subject becomes effective. Zanini et al.47 proposed a RA approach that aligns the covariance matrices of a sub-
ject with the reference matrix estimated by the EEG data of resting states, i.e., the transitional periods between 
two trials. Rodrigues et al.24 presented a Procrustes analysis-based method for aligning two data sets using 
geometrical transformations (translation, scaling and rotation) over the data points. Tang et al.26 proposed a 
Riemannian mean-based rotation alignment (RMRA) domain adaptation method by rotating the SPD matrix 
in Riemannian space. Another study conducted by Kalaganis et al.25 presented a method called discriminative 

Table 3.   Statistically significant difference in accuracy (p values) between each pair of algorithms developed in 
Riemannian and Euclidean space respectively based on paired t-tests at 95% confidence level, at 10 numbers of 
training trials. Significant values are in bold.

Number of trials 5 10 15 20 25 30 35 40 45 50

SSL 0.002 0.469 0.011 0.013 0.045 0.054 0.116 0.052 0.155 0.876

TL-ASS 0.287 0.277 0.327 0.354 0.243 0.202 0.101 0.159 0.098 0.075

TL-LEDA-ASS 0.004 0.003 0.002 0.001 0.001 0.002 0.004 0.003 0.002 0.003

TL-LEDA-TSS 0.033 0.037 0.016 0.016 0.007 0.035 0.045 0.010 0.011 0.003
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covariance reduction (DCR) to reduce the dimensionality of covariance matrices by turning the problem of sen-
sor selection as a maximization of a function over the manifold of SPD matrices. In terms of f-VEP-based BCIs, 
Kalunga et al.27 conducted the first study of online classification based on Riemannian geometry, in which they 
proposed a novel algorithm for asynchronous processing of brain signals, borrowing the principles of from semi-
unsupervised approaches and following a dynamic stopping scheme to provide a prediction as soon as possible. 
In another study, Kalunga et al.28 presented a transfer learning method for SSVEP-based BCIs by making use of 
available data from previous users, relying on Riemannian geometry to estimate the similarity with a muti-user 
dataset and borrowing the notion of composite mean to partition the space. As for P300-based BCI, Li et al.29 
proposed a transfer learning algorithm that combines XDAWN spatial filter and Riemannian geometry classifier. 
The XDAWN is used to enhance the P300 component in the raw signal as well as reduce its dimensions. The 
Riemannian mean is acted as the reference matrix to perform the affine transformation of SPD matrices that 
makes the data from different subjects comparable.

When Riemannian geometry methodologies are applied to c-VEP based BCIs, the dimensionality of covari-
ance matrices is Nc(Z + 1)× Nc(Z + 1) as shown in Eq. (3), which is high when both the number of channels 
Nc and the number of stimulus targets Z are large, resulting in high computational complexity of class means. To 
address the problem, a method for channel selection is usually necessary to select a small number of discrimina-
tive channels for given brain tasks. Recently, Jin et al. proposed two methods57,58 for improving the classification 
performance of MI-based BCIs. They are based on the assumption that the channels related to MI should contain 
common information when participants are executing the same tasks. One method is called the correlation-based 
channel selection (CCS) and the other is named bispectrum-based channel selection (BCS). The former aims to 
select task-related channels and meanwhile exclude those channels containing redundant information and noise. 
A novel regularized CSP is used to extract effective features and an SVM classifier with the radial basis function 
is trained to accurately identify MI tasks; The latter aims at extracting non-linear and non-Gaussian information 
from EEG signals with bispectrum analysis. The method uses the sum of logarithmic amplitudes (SLA) and the 
first-order spectral moment (FOSM) to select EEG channels without redundant information. In the previous 
study on electrocorticogram (ECoG)-based MI BCIs, we proposed a wrapper method for selecting a suitable 
number of task-related channels to increase the discriminability of feature signals59. CSP algorithm was used for 
feature extraction, and channel selection was performed by genetic algorithm (GA) for optimizing the feature 
extraction. Fisher discriminant analysis (FDA) was used as the classifier, and the channel subset chosen at each 
generation was evaluated by classification accuracy. As for the current study, a channel selection algorithm can 
decrease the number of channels and resulting computational complexity in the estimation of SCMs, but this is 
beyond the scope of this study.

This study evaluated the proposed algorithm offline and applied it to a c-VEP BCI containing 16 stimulus 
targets. The effectiveness of the proposed algorithm is verified in terms of reducing training time. One limita-
tion of the proposed algorithm is that the dimensionality of super-trials increases rapidly with the number of 
stimulus targets, leading to long time for estimating SCMs with the shrinkage approach and the consequent 
difficulty in estimating class means. Another limitation is that all subjects participated in the study are healthy 
ones without the involvement of the people with severe neural impairments. Future work will focus on general-
izing the algorithm to c-VEP BCIs with more stimulus targets, experimenting on subjects with nerve injury and 
its online implementation.

Conclusion
This paper proposes a transfer learning algorithm of c-VEP BCIs based on Riemannian geometry, which com-
bines data alignment and subject selection to improve the performance of transfer learning. In the proposed algo-
rithm, log-Euclidean data alignment (LEDA) is employed to reduce the difference in data distribution between 
subjects, whereas training accuracy-based subject selection (TSS) is utilized to select out the source subjects with 
higher similarity to the target subject. A comprehensive off-line analysis was conducted on the experimental data 
derived from 16 subjects. The results indicated that compared to the subject-specific algorithm, the proposed 
transfer leaning algorithm effectively reduces the training time of the c-VEP BCI at the same performance level, 
and thereby facilitates its application in real world.

Data availability
The data can be made available upon reasonable request by contacting the corresponding author.
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