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Abstract: HER2 is overexpressed in 25–30% of breast cancers, and approximately 30% of HER2-positive
breast cancers metastasize to the brain. Although the incidence of brain metastasis in HER2-positive
breast cancer is high, previous studies have been mainly based on cell lines of the triple-negative
subtype, and the molecular mechanisms of brain metastasis in HER2-positive breast cancer are unclear.
In the present study, we performed intracranial injection using nine HER2-positive breast cancer
cell lines to evaluate their proliferative activity in brain tissue. Our results show that UACC-893
and MDA-MB-453 cells rapidly proliferated in the brain parenchyma, while the other seven cell
lines moderately or slowly proliferated. Among these nine cell lines, the proliferative activity in
brain tissue was not correlated with either the HER2 level or the HER2 phosphorylation status. To
extract signature genes associated with brain colonization, we conducted microarray analysis and
found that these two cell lines shared 138 gene expression patterns. Moreover, some of these genes
were correlated with poor prognosis in HER2-positive breast cancer patients. Our findings might be
helpful for further studying brain metastasis in HER2-positive breast cancer.

Keywords: HER2-positive breast cancer; brain metastasis; intracranial injection; in vivo
imaging; microarray

1. Introduction

Breast cancer cells metastasize to various organs, including the lung, bone, liver and brain. Breast
cancer is classified into several subtypes based on the expression levels of hormone receptors and
human epidermal growth factor receptor type 2 (HER2) [1]. HER2 overexpression is observed in about
25–30% of breast cancers [2,3], and approximately 30% of HER2-positive breast cancer patients are
affected by brain metastases [4,5]. HER2-positive breast cancer has a high incidence of brain metastasis
along with triple-negative breast cancer (TNBC) [6–8], but its molecular mechanisms are not well
understood. Currently, radiation therapy and the resection of metastatic lesions are the first-line
treatments for brain metastasis in HER2-positive breast cancer [9,10], while the chemotherapy and
HER2-targeted therapy used for primary tumors are not actively recommended for brain metastasis.
However, recent studies suggested that therapeutic drugs permeate through the damaged blood–brain
barrier (BBB) after brain metastasis occurs and that they can inhibit brain metastasis progression to
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some extent [11–15]. These facts indicate the feasibility of developing chemotherapeutics and molecular
targeted drugs that are effective for brain metastasis. To achieve the goal of developing such drugs,
understanding the molecular mechanisms of tumor growth in the brain parenchyma is required.

To establish brain metastasis in experimental mouse models, the intracardiac injection method is
generally used because the invasion-metastasis cascade from extravasation into the brain parenchyma
to colonization can be mimicked by this method. However, this method induces systemic metastases,
and the dispersion of tumor growth produced by this method is large [16], which is not appropriate for
evaluating tumor growth only in the brain parenchyma. The intracranial injection method has been
used in experimental mouse models of brain tumors [17]. Since this method does not induce metastasis
to any other organs but to the central nervous system and the same number of tumor cells are injected
into the same brain region with this method, we employed the intracranial injection method to evaluate
the brain-colonizing ability of HER2-positive breast cancer cells to elucidate the mechanism of the later
stages of brain metastasis.

In previous research, the TNBC cell line MDA-MB-231 and its brain metastatic derivatives have
been widely used in experimental models of metastasis in breast cancer [18–21]. On the other hand,
little is known about the mechanism of brain metastasis in HER2-positive breast cancer. Many of the
existing studies on brain metastasis in HER2-positive breast cancer use a limited number of cell lines,
such as BT-474 or MDA-MB-361 cells [21–23]. According to the previous studies, breast cancer cell lines
SK-BR-3 and MCF-7 cells are sampled from pleural effusion, but they show weak metastatic activities
to the lung [24,25]. In addition, MCF-7 cells were reported to have bone-colonizing potential [26], even
though this activity is weak. Another study showed that DU4475 cells, which derive from the patient’s
metastatic site, have a poor metastatic activity when injected into the murine left cardiac ventricle [27].
These reports suggested that cell lines sampled at the metastasis sites of the patients do not necessarily
represent original metastatic potential. Conversely, some cell lines derived from primary sites have the
potential to metastasize to other organs. For example, breast cancer cell lines BT-474 and HCC-1954
cells are sampled from the mammary gland, but they can survive in the brain [21–23]. Thus, it is
important to reclassify the metastatic activities of cancer cell lines by transplantation models.

In this study, we evaluated the proliferative ability of nine HER2-positive breast cancer cell lines
administered into the brain by intracranial injection and classified them into two groups based on
the growth rate in brain tissue. Neither the HER2 level nor the HER2 phosphorylation status had a
correlation with the growth rate in the brain parenchyma. Then, we performed microarray analysis
of the nine HER2-positive breast cancer cell lines and identified signature genes associated with
brain colonization.

2. Results

2.1. Identification of Two HER2-Positive Breast Cancer Cell Lines with Proliferative Ability in the Brain Parenchyma

We established nine HER2-positive breast cancer cell lines expressing the luc2 gene—UACC-893,
MDA-MB-453, HCC-2218, BT-474, ZR-75-1, UACC-812, MDA-MB-361, HCC-202, and HCC-1419
cells—with lentiviral vectors (Table S1), and these cell lines were intracranially injected into NOD-SCID
mice (HCC-1419 and HCC-2218 cells, n = 4; other cell lines, n = 3). All these cell lines originated from
breast tissue, although some of them were sampled from metastasis sites of the subject [28–33] (Table 1).
In addition, cell morphology differed by cell line (Figure S1). Although all the cell lines expressed HER2,
the patterns of hormone receptor expression and cancer-related gene expression, HER2 expression level,
and mutation profile of tumor suppressor genes vary by cell line (American Type Culture Collection
(ATCC); Cancer Cell Line Encyclopedia (CCLE)) [34–49] (Table 2 and Table S2). Among these nine cell
lines, seven had tumor protein p53 (TP53) mutations and five had phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha (PIK3CA) mutations.
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Table 1. Characteristics of Nine HER2-positive Breast Cancer Cell Lines.

Ell Line Metastasis Sites in The
Subject Sampled Site Cell Morphology Culture Properties References

UACC-893 Lymph nodes Primary breast Epithelial Adherent ATCC [29]

MDA-MB-453 Nodes, Brain, Pleural and
Pericardial cavities

Pericardial effusion
(metastasis site) Rounded Adherent ATCC [30]

HCC-2218 Lymph nodes Primary breast Rounded Non-adherent ATCC [31]
BT-474 N/A Primary breast Epithelial Adherent ATCC [32]

ZR-75-1 Ascites Ascitic effusion
(metastasis site) Epithelial Adherent ATCC [33]

UACC-812 Neck, Liver Primary breast Epithelial Adherent ATCC [29]
MDA-MB-361 Brain Brain (metastasis site) Epithelial Adherent ATCC [30]

HCC-202 Lymph nodes Primary breast Epithelial Adherent ATCC [31]
HCC-1419 Lymph nodes Primary breast Epithelial Adherent ATCC [31]

N/A: Not available. Morphology was judged by Figure S1 and categorized based on [28].

Table 2. Gene Mutation Profile of Nine HER2-positive Breast Cancer Cell Lines.

Cell line BRCA1 BRCA2 BRAF HRAS PIK3CA TP53 PTEN References

UACC-893 WT WT WT WT H1047R R342 * ¶ WT CCLE [34,35,42–47]

MDA-MB-453 WT WT WT WT H1047R Deletion(30bp)
at codon 367 ¶ § E307K CCLE [34,35,42–48]

HCC-2218 WT WT E296K N/A WT R283C § WT CCLE [46,47]
BT-474 WT ‡ S3094 * WT WT K111N E285K WT CCLE [34,35,42–47]
ZR-75-1 WT WT WT E162K § WT WT L108R CCLE [34,35,42,44–47]

UACC-812 WT ‡ WT WT WT WT WT WT CCLE [34,35,44–48]
MDA-MB-361 WT ‡ N1657S V600E § WT E545K/K567R E56 */E166 * § WT CCLE [34,35,42–48]

HCC-202 WT WT N/A N/A E545K/L866F T284fs WT CCLE [46]
HCC-1419 WT WT N/A R128W WT Y220C/APA74fs WT CCLE [43,46]

N/A: Not available, WT: wild-type, BRCA1: BRCA1 DNA repair associated, BRCA2: BRCA2 DNA repair associated, BRAF: B-Raf proto-oncogene, serine/threonine kinase, HRAS: HRas
proto-oncogene, GTPase, PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha, TP53: tumor protein p53, PTEN: phosphatase and tensin homolog, * Nonsense
mutation, ‡ Some BRCA1 variants are reported in BT-474, UACC-812, and MDA-MB-361 cells, but they are not considered to be pathogenic and regarded as wild-type BRCA1 according to
[35]. ¶ Mutation site is located outside the central DNA-binding core [47]., § Reported as wild-type in some studies [34,44,46,48].
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When injected into the murine brain parenchyma, UACC-893 and MDA-MB-453 cells proliferated
rapidly by 28 days after injection (Figure 1A). The growth rate of ZR-75-1, UACC-812, MDA-MB-361,
HCC-202, and HCC-1419 cells was slow (Figure 1B). HCC-2218 and BT-474 cells moderately
proliferated (Figure 1B). Following these results, we classified these cell lines into two groups
based on brain-colonizing potential. UACC-893 and MDA-MB-453 cells were categorized into the
rapid growth group (RG), while HCC-2218, BT-474, ZR-75-1, UACC-812, MDA-MB-361, HCC-202,
and HCC-1419 cells were categorized into the medium to slow growth group (MSG) (Figure 1A,B).
Among these nine cell lines, the RG cell line MDA-MB-453 proliferated relatively faster in vitro, while
UACC-893 cells, also categorized into the RG, proliferated relatively slower in vitro (Figure S2A). Two
MSG cell lines ZR-75-1 and BT-474 proliferated relatively faster in vitro, while the other five MSG cell
lines grew relatively slower in vitro (Figure S2A). These results show that as for the nines cell lines
used in this study, the growth rate in vivo was not correlated with that in vitro (Figure 2A).
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Figure 1. Intracranial injection of nine HER2-positive breast cancer cell lines. UACC-893-luc2,
MDA-MB-453-luc2, HCC-2218-luc2, BT-474-luc2, ZR-75-1-luc2, UACC-812-luc2, MDA-MB-361-luc2,
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HCC-202-luc2, and HCC-1419-luc2 cells were intracranially injected into NOD-SCID mice (HCC-2218-luc2
and HCC-1419-luc2, n = 4; others, n = 3). Cell proliferation was quantified by measuring bioluminescence
every seven days and plotted in the form of a growth ratio. Each line shows the corresponding mouse. Left:
Bioluminescence on day 0. Right: Bioluminescence on day 28. (A) Cell lines in the rapid growth group (RG).
(B) Cell lines in the moderate to slow growth group (MSG).
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Figure 2. The relationship between in vivo growth and in vitro growth, in vivo growth and HER2
profiles. In all graphs, the vertical axis represents in vivo growth, which is presented on a log10 scale
(mean normalized average radiance (ratio) on day 28). (A) The relationship between brain-colonizing
ability and proliferative activity in vitro. The horizontal axis represents in vitro growth. The cell
number on day 4 was converted to a log2 (N(4)/N0) value for three replicates and their mean value
was defined as in vitro growth. N(4) = The cell number on day 4. N0 = The number of cells seeded
on day 0 (=1.5 × 105 cells). (B) The contribution of HER2 expression and HER2 phosphorylation to
growth activity in vivo. The horizontal axis represents HER2 expression, P-HER2 (Y1221/1222) level,
and P-HER2 (Y1248) level. Each band intensity in Figure S1B was quantified as a raw integrated density
(RawIntDen) using ImageJ. The RawIntDen measured by ImageJ was converted to a log10 (RawIntDen)
value for HER2 expression, the P-HER2 (Y1221/1222) level, and the P-HER2 (Y1248) level.

HER2 overexpression in breast cancer cells promotes brain colonization [50]. To examine the
correlation of HER2 expression levels with brain colonization, we conducted Western blotting with
the nine HER2-positive breast cancer cell lines. Although the RG cell line UACC-893 showed high
expression levels of HER2, some MSG cell lines, such as HCC-2218, UACC-812, and HCC-1419,
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also overexpressed HER2 (Figure S2B). We also examined the major autophosphorylation sites of
HER2, Tyr1221/1222 and Tyr1248 [51,52], but among these nine cell lines, we could not observe
any correlation between HER2 phosphorylation levels and brain-colonizing potential (Figure 2B).
Consequently, considering previous studies on brain metastasis in breast cancer, the potential of brain
colonization might be affected by HER2 to some extent [53], but the presence of novel mechanisms of
cell proliferation in the brain parenchyma is also possible.

2.2. Growth Activities of The RG Cell Lines Induced by in Vitro Coculture with Primary Glial Cells

Metastatic cancer cells grow in the brain, interacting with brain-residential glial cells [54]. To
characterize the RG cell lines in terms of interaction with glial cells, we cocultured UACC-893 and
MDA-MB-453 cells with murine primary glial cells in serum-free medium. As a result, both UACC-893
and MDA-MB-453 cells were able to grow attached to the layer of glial cells, while they floated and
grew as aggregates when cultured alone in the same medium (Figure 3). The MSG cell lines also
grew under this coculture condition, suggesting that the in vivo condition is more stringent for these
cell lines.
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Figure 3. Coculture of HER2-positive breast cancer cell lines and murine glial cells. Pictures of two
RG cell lines cultured in serum-free medium with or without glial cells for six days are shown (n = 3).
Pictures were taken every other day. Scale bars = 100 µm.

2.3. Gene Expression Analysis Between Two Groups of HER2-Positive Breast Cancer Cell Lines

To identify the genes responsible for regulating brain-colonizing potential in HER2-positive
breast cancer, we conducted microarray analysis of the nine HER2-positive breast cancer cell lines.
The microarray data obtained in the previous study were reanalyzed for the present study [55].
The expression level of each gene was converted to a z-score, and genes with a z-score > 1.0 and z-score
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< −1.0 were extracted as upregulated genes and downregulated genes, respectively (Figure 4A). To
extract signature genes that were differentially expressed between the RG and MSG, we first calculated
the log fold-change (FC) ratio of the RG average gene expression to the MSG average gene expression.
Second, the logFC ratio of the expression in MDA-MB-453 cells to that in UACC-893 cells (both in the
RG) was calculated. As a result, 57 upregulated genes and 81 downregulated genes were extracted and
defined as brain-colonizing signature genes in HER2-positive breast cancer (Figure 4B). Transmembrane
4 L-six family member 1 (TM4SF1) and aspartate beta-hydroxylase (ASPH), both reported as multiorgan
metastasis-promoting genes in breast cancer [56,57], were included in these signature genes.
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Figure 4. Signature genes associated with brain colonization in the RG. (A) The number of upregulated
genes and downregulated genes in the RG or MSG is described in Venn diagrams. (B) Genes that were
differentially expressed between the RG and MSG according to microarray data were analyzed by
hierarchical clustering and are shown in a heatmap.

To examine the correlation between the expression level of the signature genes and the prognosis
of HER2-positive breast cancer patients, we conducted survival analysis using the Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC) dataset (Table 3; Figure 5A,B). High expression
of 11 genes (CD9 molecule (CD9), ubiquitin-like 3 (UBL3), transmembrane 4 L six family member 1 (TM4SF1),
microsomal glutathione S-transferase 3 (MGST3), netrin 4 (NTN4), NOVA alternative splicing regulator 1
(NOVA1), aspartate beta-hydroxylase (ASPH), embryonic ectoderm development (EED), ubiquitin specific
peptidase 53 (USP53), mediator complex subunit 17 (MED17), and sphingomyelin phosphodiesterase acid like
3B (SMPDL3B)) and low expression of six genes (transcription termination factor 2 (TTF2), cystatin A
(CSTA), ATP binding cassette subfamily C member 2 (ABCC2), heat shock protein family B (small) member 8
(HSPB8), flotillin 2 (FLOT2), and NLR family pyrin domain containing 2 (NLRP2)) was correlated with
poor prognosis of HER2-positive breast cancer patients.
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Table 3. Signature Genes Associated with Poor Survival of HER2-positive Breast Cancer Patients.

Gene HER2-Positive METABRIC-ALL

Official Gene
Symbol Gene Name Loci p-value High_Mean

(Month)
Low_Mean

(Month) p-value High_Mean
(Month)

Low_Mean
(Month)

High
CD9 CD9 molecule 12p13.31 0.00311 98.47881944 177.3011905 0.0722 123.8943511 127.9186293

UBL3 ubiquitin like 3 13q12.3 0.00853 99.91584699 151.0207207 2.35 × 10-5 129.3927165 121.1346243
TM4SF1 transmembrane 4 L six family member 1 3q25.1 0.00999 98.17402863 138.0701754 0.00971 126.4676768 114.0395173
MGST3 microsomal glutathione S-transferase 3 1q24.1 0.0108 99.85749559 161.2677419 0.148 123.9532677 128.1961192
NTN4 netrin 4 12q22 0.0234 94.23703703 113.1540161 0.00656 135.0298174 121.5295063

NOVA1 NOVA alternative splicing regulator 1 14q12 0.0248 100.9984848 116.0230303 0.018 126.2173607 114.8102178
ASPH aspartate beta-hydroxylase 8q12.3 0.0302 102.4326531 158.1486111 0.117 123.0002328 131.1684322
EED embryonic ectoderm development 11q14.2 0.0351 102.2848485 164.5439394 0.00837 125.8268839 122.2849961

USP53 ubiquitin specific peptidase 53 4q26 0.0366 94.01504425 123.8193146 0.26 121.9426163 133.6808
MED17 mediator complex subunit 17 11q21 0.0447 105.1683502 138.5924242 0.00204 126.367115 113.1962199

SMPDL3B sphingomyelin phosphodiesterase acid like 3B 1p35.3 0.045 97.18613139 127.2032128 0.0127 125.2631605 124.8943857

Low
TTF2 transcription termination factor 2 1p13.1 0.00408 112.5996616 73.4884058 3.05 × 10-5 122.2683455 132.0977528
CSTA cystatin A 3q21.1 0.0188 112.0973333 100.8252381 0.0667 114.8275058 126.8276679

ABCC2 ATP binding cassette subfamily C member 2 10q24.2 0.0233 117.5826211 98.20582524 0.00525 123.9990103 132.8795455
HSPB8 heat shock protein family B (small) member 8 12q24.23 0.038 115.2397206 87.3081761 0.125 127.2404999 116.6156171
FLOT2 flotillin 2 17q11.2 0.039 111.9188482 86.06436781 0.0274 123.5043384 125.5109725
NLRP2 NLR family pyrin domain containing 2 19q13.42 0.0401 114.8108434 89.14382716 0.000946 115.3892634 126.5967624

High_mean: mean survival time of high expression group. Low_mean: mean survival time of low expression group.
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Figure 5. Survival analysis of signature genes upregulated in the RG. Survival analysis was conducted
using the METABRIC dataset. The colored region along the curve shows the 95% confidential interval.
Nine upregulated genes (kynurenine 3-monooxygenase (KMO), inhibin subunit beta B (INHBB), zinc finger
protein 663, pseudogene (ZNF663P), egl-9 family hypoxia-inducible factor 3 (EGLN3), transmembrane protein
45B (TMEM45B), MAGE family member F1 (MAGEF1), COMM domain containing 2 (COMMD2), ZNF205
antisense RNA 1 (ZNF205-AS1), and multiple EGF like domains 6 (MEGF6)) and four downregulated genes
(DNAJC25-GNG10 readthrough (DNAJC25-GNG10), intraflagellar transport 57 (IFT57), MYB proto-oncogene
like 1 (MYBL1), and adhesion molecule with Ig like domain 2 (AMIGO2)) were not analyzed because there
were no data for these genes in the METABRIC dataset. (A) Survival analysis of signature genes
upregulated in the RG. The number of specimens was as follows: METABRIC-ALL: CD9 (high = 1369,
low = 535), MGST3 (high = 1423, low = 481), ASPH (high = 1432, low = 472), and USP53 (high =

1404, low = 500); HER2-positive: CD9 (high = 192, low = 28), MGST3 (high = 189, low = 31), ASPH
(high = 196, low = 24), and USP53 (high = 113, low = 107). (B) Survival analysis of signature genes
downregulated in the RG. The number of specimens was as follows: METABRIC-ALL: CSTA (high =

286, low = 1618) and HSPB8 (high = 1507, low = 397); HER2-positive: CSTA (high = 150, low = 70) and
HSPB8 (high = 167, low = 53).

3. Discussion

Brain metastasis worsens the prognosis and survival of breast cancer patients [15]. HER2-positive
breast cancer has the shortest median time period between the diagnosis of breast cancer and the
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detection of brain metastasis among all breast cancer subtypes [15], yet its molecular mechanism has
not been elucidated in detail.

Many studies have relied on BT-474 and MDA-MB-361 cells for brain metastasis models of
HER2-positive breast cancer [21–23]. However, no studies in breast cancer brain metastasis have used
multiple cell lines and compared gene expression or proliferative ability among them. In this study, we
intracranially injected nine HER2-positive breast cancer cell lines and observed differences among
these cell lines in growth rate. Moreover, we found that BT-474 and MDA-MB-361 cells proliferated
relatively slowly in the brain parenchyma, suggesting that it might be more suitable to use UACC-893
or MDA-MB-453 cells for brain metastasis assays. However, there are more HER2-positive breast
cancer cell lines besides those used in this study. It is possible that the novel RG cell lines will be
identified by using the intracranial injection method. Although cell lines categorized into the MSG
continued to proliferate with low speed until the endpoint of the experiment (56-84 days after injection;
Figure S4), we regarded them as the MSG from the viewpoint of metastatic potential.

Both UACC-893 and MDA-MB-453 cells had the H1047R mutation in PIK3CA, while no MSG
cell lines had that mutation. Instead, two MSG cell lines, MDA-MB-361 and HCC-202 cells, had the
PIK3CA-E545K mutation in common. H1047R and E545K are major mutations in PIK3CA and are
often found in cancer patients, including breast cancer patients [58,59]. Both H1047R and E545K are
activating mutations, and H1047R is a stronger activating mutation than E545K, promoting the growth
of cancer cells and angiogenesis [60]. PIK3CA encodes p110α, a subunit of phosphoinositide 3-kinase
(PI3K), and the proliferation signal from PI3K is transduced to protein kinase B (PKB; AKT) [59,61,62].
In a previous study, the pan-AKT inhibitor GDC-0068 decreased the viability of MDA-MB-453 cells
in vitro [63]. Considering that activation of the PI3K/AKT pathway is observed in breast cancer patients
with brain metastasis [64,65], this signaling pathway might be a potential target for curing brain
metastasis. On the other hand, the results of signaling analysis show that the P-AKT (S473) level did not
correlate with growth activity in the brain parenchyma (Figure S2B). A previous study demonstrated
that in some cases, PI3K/AKT signal activation was observed only in the brain microenvironment and
that inhibition of PI3K reduced the invasion ability of breast cancer cells induced by macrophages
and microglia under coculture conditions [66]. Based on this fact, in brain-metastatic HER2-positive
breast cancer cells, PI3K/AKT signaling might be activated in the in vivo brain microenvironment, or
there might be other mechanisms for cell growth in the brain parenchyma. According to the mutation
profiles from CCLE, 15 genes were found to be mutated both in UACC-893 and MDA-MB-453 cells but
not in any MSG cell lines (Table S3; in this study, mutations without protein change and mutations in
splice sites were not regarded as gene mutations.). Aberrant expression of interleukin 1 receptor associated
kinase 1 (IRAK1), serpin family I member 2 (SERPINI2), and WW and C2 domain containing 1 (WWC1) was
reported to be associated with breast cancer metastasis [67–69], although the relationship between
their mutation status and brain metastasis remains to be elucidated. Additionally, both UACC-893 and
MDA-MB-453 cells had frame shift insertion (A1733fs) in listerin E3 ubiquitin protein ligase 1 (LTN1), but
its effects on brain metastasis are unknown.

To characterize the RG cell lines, we cocultured nine HER2-positive breast cancer cell lines with
glial cells for six days in serum-free medium. Although we confirmed that both UACC-893 and
MDA-MB-453 cells proliferated well when cocultured with glial cells, not only the RG cells but also
some MSG cells grew under these conditions (Figure 3), suggesting that our coculture system of tumor
cells and glial cells only partially mimicked the brain microenvironment. We also found that cocultured
HER2-positive breast cancer cells adhered to glial cells and proliferated by using them as a scaffold,
although they grew as nonadherent cells when cultured without glial cells in this serum-free medium.
According to previous studies using MDA-MB-231 cells, continuous direct contact between tumor
cells and astrocytes upregulates genes related to survival, chemoresistance, and growth in tumor
cells [70,71]. Considering these reports, our coculture system could be employed for measuring the
direct interaction between tumor cells and primary glial cells.



Cancers 2020, 12, 1811 11 of 18

Based on the microarray analysis results, we believed there are novel mechanisms of cell
proliferation in addition to HER2 signaling in brain tissue. To confirm the contribution of HER2
to brain colonization, we examined HER2 expression in tumor cells that survived in brain tissue
after intracranial injection (Figure S5). We also examined the phosphorylation levels of P-HER2
(Tyr1221/1222) and P-HER2 (Tyr1248), which are the binding sites of SHC and activate RAS/MAPK
signaling [72]. The HER2 expression level and its phosphorylation status were almost the same between
the original cell lines and surviving cells. A previous study examining the roles of HER2 in brain
metastasis demonstrated that HER2 promotes the growth of cancer cells in the brain [50], but it does not
exclude the possibility of a HER2-independent brain-colonizing mechanism. These facts suggest that
certain expressions of HER2 might be required for tumor growth in the brain parenchyma, although it
is not the only factor that mediates brain metastasis progression. To identify novel genes that promote
brain colonization, we conducted microarray analysis and extracted signature genes from the RG
cell lines. According to the survival analysis, 11 upregulated genes and six downregulated genes,
representing the brain-colonizing signature, were correlated with the prognosis of HER2-positive breast
cancer patients. These genes might have the potential to be novel prognostic markers for HER2-positive
breast cancer patients. TM4SF1, one of the upregulated signature genes, is a known multiorgan
metastasis-promoting gene, and knockdown of TM4SF1 significantly reduces brain metastasis in
mouse mammary tumor cells transformed with rat erb-b2 receptor tyrosine kinase 2 (Erbb2) [56,73].
Overexpression of CD9, another upregulated signature gene, promotes bone metastasis in TNBC [74].
CD9 is also known as a marker of extracellular vesicles (EVs), and EVs are associated with breast
cancer metastasis [75]. Considering that treatment with anti-CD9 antibodies decreases metastasis to
the lungs, lymph nodes, and thoracic cavity in TNBC [75], CD9 might also be a potential target of brain
metastasis treatment in HER2-positive breast cancer. ASPH, which encodes aspartate beta-hydroxylase,
was also highly expressed in the RG cell lines. When injected into the mouse mammary fat pad,
ASPH-overexpressing MDA-MB-231 cells metastasize to the lungs, lymph nodes, spleen, intestine,
mesentery, and liver by activating the Notch signaling pathway and subsequent synthesis and release
of metastasis-inducible exosomes [57]. In addition, the inhibition of ASPH suppresses the migration
of ASPH-overexpressing MDA-MB-231 cells in vitro [57], suggesting that ASPH might be a potential
target for the treatment of brain metastasis in HER2-positive breast cancer as well. High expression of
MGST3 and USP53 was also correlated with poor clinical outcome in HER2-positive breast cancer,
although the contribution of these two genes to brain metastasis has not been reported. Among the
downregulated signature genes, low expression of CSTA and HSPB8 was correlated with unfavorable
outcomes in HER2-positive breast cancer, while no correlation was observed with outcome in all breast
cancers. On the other hand, low expression of TTF2, ABCC2, FLOT2, and NLRP2 was correlated with
poor prognosis in HER2-positive breast cancer patients, whereas their low expression was correlated
with better prognosis in the overall METABRIC cohort. This result implies that some candidate
prognostic marker genes applicable in breast cancer overall work inversely in HER2-positive breast
cancer and that the results of genetic testing should be interpreted based on patient subtype.

4. Materials and Methods

4.1. Cell Culture

MDA-MB-453, UACC-893, HCC-2218, HCC-1419 (ATCC, Manassas, VA, USA), and ZR-75-1
cells (Institute of Development, Aging and Cancer (IDAC), Miyagi, Japan) were cultured in Roswell
Park Memorial Institute medium (RPMI-1640, FUJIFILM Wako Pure Chemical Corporation, Osaka,
Japan) supplemented with 10% heat-inactivated fetal bovine serum (FBS, NICHIREI BIOSCIENCES
INC., Tokyo, Japan), 100 U/mL penicillin (Meiji-Seika Pharma Co., Ltd., Tokyo, Japan), and 100
µg/mL streptomycin (Meiji-Seika Pharma) at 37 ◦C with 5% CO2. MDA-MB-361 and HCC-202 cells
(ATCC) were cultured in RPMI-1640 (FUJIFILM Wako Pure Chemical Corporation) supplemented
with 15% heat-inactivated FBS, 100 U/mL penicillin (Meiji Seika Pharma), and 100 µg/mL streptomycin
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(Meiji-Seika Pharma) at 37◦C with 5% CO2. BT-474, UACC-812, and 293T cells (ATCC) were cultured
in Dulbecco’s modified Eagle’s medium (DMEM, FUJIFILM Wako Pure Chemical Corporation)
supplemented with 10% heat-inactivated FBS, 100 U/mL penicillin (Meiji Seika Pharma), and 100 µg/mL
streptomycin (Meiji-Seika Pharma) at 37 ◦C with 5% CO2. Luc2-expressing breast cancer cell lines
were established by infection with lentivirus (pLenti-PEF1-luc2-IRES-BlaR) and selection by blasticidin
(Kaken Pharmaceuticals Co. Ltd., Tokyo, Japan).

4.2. Viral Infection

pPACKHI-REV, pPACKHI-GAG, pVSV-G, and pLenti-PEF1-luc2-IRES-BlaR were cotransfected into
293T cells by the calcium phosphate method. Two days later, the culture supernatant was collected for
lentivirus infection. UACC-893, MDA-MB-453, HCC-2218, BT-474, ZR-75-1, UACC-812, MDA-MB-361,
HCC-202, and HCC-1419 cells seeded in 12-well plates were incubated in two-fold diluted lentiviral
solution for 24 h, and then, the media were replaced with fresh culture media.

4.3. Luciferase Assay

A total of 1 × 105 cells from luc2-introduced HER2-positive breast cancer cell lines were lysed in
200 µL Cell Culture Lysis Reagent (CCLR) (25 mM Tris-phosphate, 2 mM Na2EDTA, 10% glycerol, 1%
Triton X-100, and 2 mM DTT). The cell lysate was centrifuged, and 10 µL supernatant was suspended in
90 µL Milli-Q. Twenty microliters of the 10-fold diluted lysate was added to 3 wells of a white 96-well
plate. Fifty microliters of firefly solution (7 mM DTT, 280 µM CoA, 210 µM ATP, 196.5 µg/mL luciferin,
and 41% Firefly Salts (Firefly Salts: 150 mM Tris-HCl, 75 mM NaCl, and 3 mM MgCl2)) was added to
each well, and bioluminescence was measured using TriStar2 S LB942 (Berthold Technologies GmbH &
Co. KG, Bad Wildbad, Germany).

4.4. Western Blotting

Nine HER2-positive breast cancer cell lines expressing the luc2 gene were seeded in 6 cm dishes.
Cells were lysed in 350 µL RIPA buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1% NP-40, 0.1% SDS,
1 mM PMSF, 1 mM Na3VO4, and 10 mM NaF). Protein concentrations of cell lysates were measured by
the BCA method. Then, 150 µL 3× SDS sample buffer (150 mM Tris-HCl (pH 6.8), 30% glycerol, 0.015%
BPB, and 6% SDS) was added to each cell lysate (300 µL). Protein samples (15 µg) were subjected to
SDS-PAGE and transferred to poly vinylidene di-fluoride (PVDF) membranes (Immobilon-P; Millipore,
Darmstadt, Germany). Blots were incubated overnight with primary antibodies (targeting P-ERBB2
(Tyr1221/1222), 2243S; P-ERBB2 (Tyr1248), 2247S; ERBB2, 4290S; P-STAT3 (Tyr705), 9145S; STAT3, 9139S;
P-AKT (Ser473), 4060S; AKT, 4691S; P-ERK (Thr202/Tyr204), 4370S; ERK, 4695S; and β-ACTIN, sc-69879)
and for 1 h with peroxidase-linked secondary antibody (Anti-rabbit IgG, HRP-linked antibody, GE
Healthcare Life Sciences; Anti-mouse IgG, HRP-linked antibody, GE Healthcare Life Sciences). Proteins
were detected using chemiluminescent HRP substrate (ImmobilonTM Western; Millipore, Darmstadt,
Germany).

4.5. Growth Analysis of HER2-Positive Breast Cancer Cell Lines in Vitro

A total of 1.5 × 105 cells from each HER2-positive breast cancer cell line were plated in 12-well
plates (n = 3 for each time point). Cells were harvested using 0.25% trypsin every other day, and the
cell number was counted.

4.6. Mouse Xenograft and In Vivo Bioluminescence Imaging

Six-week-old female NOD.CB-17-Prkdcscid/J mice (NOD-SCID; Charles River Laboratories Japan,
Inc., Kanagawa, Japan) were used for intracranial transplantation. A total of 1.0 × 105 luc2-expressing
breast cancer cell lines suspended in 4 µL D-PBS (−) (FUJIFILM Wako Pure Chemical Corporation)
were injected intracranially using a 26-gauge syringe. After intracranial transplantation, 200 µL
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D-luciferin (15 mg/mL) (Gold Biotechnology, Inc., St. Louis, MO, USA) was injected intraperitoneally
into NOD-SCID mice, and bioluminescence imaging was conducted every seven days using an in vivo
imaging system (IVIS Lumina XRMS; Perkin-Elmer, Waltham, MA, USA). All animal experiments were
approved by the Animal Committee of Waseda University.

4.7. Isolation of Tumor Cells Surviving in Brain Tissue

Mouse brains were extracted 4–12 weeks after intracranial transplantation. Each brain was cut
into small pieces in 5 mL culture medium in four 6 cm dishes. Tumor cells that survived in the
brain parenchyma were isolated and cultured as previously described [76]. After cells proliferated
and reached approximately 60% confluence, drug-induced selection was conducted using blasticidin
(Kaken Pharmaceutical Co. Ltd.) for four days to isolate tumor cells from brain-resident cells.

4.8. Coculture Assay with Mouse Primary Glial Cells and HER2-Positive Breast Cancer Cell Lines

Primary cortical glial cultures were prepared from E17 mice as described previously [77,78] with
modifications: dissociated cerebral cortex hemispheres were plated in PEI-coated 10 cm2 culture dishes
with Neurobasal-A medium (Gibco/Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
L-glutamine, MACS Neurobrew-21 (Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany),
and 0.05% penicillin-streptomycin. After 10 days in culture, the cells were suspended with 0.05%
trypsin in Hanks’ balanced salt solution without Ca2+ and Mg2+ and plated on PEI-coated 24-well
plates with the same culture medium (5 × 104 cells/well). On the following day, 1.5 × 104 cells of each
of the nine HER2-positive breast cancer cell lines were seeded on glial cells. These cells were incubated
for 6 days at 37 ◦C in a 5% CO2 incubator. Pictures were taken every other day.

4.9. DNA Microarray Analysis and Statistical Data Analysis

DNA microarray data provided in the previous research were subjected to reanalysis to study the
brain colonization of HER2-positive breast cancer cell lines [55]. Gene probes that met the following
criteria were extracted and analyzed further with Venn diagrams: “–1.0 < RG logFC < 1.0 and RG
z-score > 1.0”, “–1.0 < RG logFC < 1.0 and RG z-score < –1.0”, “MSG z-score > 1.0”, and “MSG z-score
< –1.0”. The Venn diagrams were created using ‘GeneVenn’ (http://genevenn.sourceforge.net/). To
construct the heatmap, gene probes with the following criteria were extracted: “–1.0 < RG logFC <

1.0, RG-MSG logFC > 1.0, and RG z-score > 1.0” or “–1.0 < RG logFC < 1.0, RG-MSG logFC < –1.0,
and RG z-score < –1.0”. The heatmap was drawn by the ‘pheatmap’ package using the R statistical
programming language (version 3.6.1., https://cran.r-project.org/bin/windows/base/old/3.6.1/).

4.10. Survival Analysis

Survival analysis was conducted for breast cancer patients in the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) datasets as previously described [26,79]. We used a
cohort of HER2-positive breast cancer patients and all breast cancer patients for this survival analysis.

5. Conclusions

In conclusion, we measured the brain-colonizing potential of nine HER2-positive breast cancer
cell lines by intracranial injection and identified two cell lines that rapidly proliferated in the brain
parenchyma. Some of the brain-colonizing signature genes extracted from these cell lines have the
potential to be utilized as prognostic marker genes for HER2-positive breast cancer patients. Our
findings might contribute to the further understanding of the mechanisms of brain metastasis in
HER2-positive breast cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/7/1811/s1.
Figure S1: Cell morphology of nine HER2-positive breast cancer cell lines.; Figure S2: Proliferative activity
and HER2 signaling in nine HER2-positive breast cancer cell lines.; Figure S3: Coculture of MSG cell lines and
mouse-derived glial cells.; Figure S4: Intracranial injection and subsequent long-term IVIS imaging of some MSG
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cell lines., Figure S5: Western blotting of three original HER2-positive breast cancer cell lines and their derivatives
that survived in the brain tissue.; Table S1: The intensity of bioluminescence per 1 × 105 cells in vitro.; Table S2:
Gene expression profile of nine HER2-positive breast cancer cell lines.; Table S3: Genes that are mutated in the RG
but not in the MSG.
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