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Abstract: In recent decades, tremendous interest and technological development have been poured
into thermosets and their composites. The thermosets and composites with unsaturated double
bonds curing system are especially concerned due to their versatility. To further exploit such resins,
reactive diluents (RDs) with unsaturated sites are usually incorporated to improve their processability
and mechanical properties. Traditional RD, styrene, is a toxic volatile organic compound and
one of the anticipated carcinogens warned by the National Institute of Health, USA. Most efforts
have been conducted on reducing the usage of styrene in the production of thermosets and their
composites, while very few works have systematically summarized these literatures. Herein, recent
developments regarding styrene substitutes in thermosets and their composites are reviewed. Potential
styrene alternatives, such as vinyl derivatives of benzene and (methyl)acrylates are discussed in
details. Emphasis is focused on the strategies on developing novel RD monomers through grafting
unsaturated functional groups on renewable feedstocks such as carbohydrates, lignin, and fatty acids.
This review also highlights the development and characteristics of RD monomers and their influence
on processability and mechanical performance of the resulting thermosets and composites.

Keywords: thermosetting resin; styrene-free; reactive diluent; composites

1. Introduction

The fast growth of chemical engineering has driven a wider industrial utilization of thermosets
cured from unsaturated sites, including unsaturated polyester (UPE), vinyl ester (VE), and
triglyceride-based resins. UPE is a linear polymer with unsaturated C=C bonds resulted from
saturated di-alcohols with saturated or unsaturated di-acids via a condensation polymerization
(Figure 1a) [1]. It is welcomed because of its low cost, high strength, excellent chemical corrosion
resistance, good thermal and electrical properties [2]. Bisphenol-A VE is prepared from methacrylic
acid and bisphenol-A epoxy resin (Figure 1b) [3,4]. The fast crosslinking process of C=C bonds
gives the materials favorable mechanical properties and outstanding chemical and water resistance.
In considering the environmental impact and energy consumption, thermosetting resin from vegetable
oils is a greener alternative to get rid of using fossil fuels. Its various triglycerides combined with
three long-chain fatty acids and glycerol have different length of chains and a range of unsaturation
degree, leading to the distinction of curing behavior [5]. As a typical example, acrylated epoxidized
soybean oil (AESO) is one of the commercially available vegetable-oil-based resins (Figure 1c) [6].
These commercially available or synthesized resins and their composites are attractive for respective
merits and have been widely used in coating, adhesive, automobile parts, turbine blade, etc. [7–11].
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a strong intermolecular force, which is significantly harmful to resin processability and efficiency of 
crosslink. For example, UPE is solid at room temperature, which makes it hard to process and 
disperse uniformly for wetting fibers well. The flexible long fatty chains in AESO result in a low 
mechanical property. Therefore, in common cases, introducing small molecular comonomers as RDs 
into crosslink network is necessary to enhance their performance at service.  

Currently, styrene is a traditional and preferential RD that has advantages such as low cost, low 
molecular weight, high reactivity, and excellent polymerizability [12–15]. With the aid of styrene, 
improvements occur in resin processability including reduced viscosity and curing temperature as 
well as increased curing rate and degree, thus leading to better mechanical properties and durability 
[16]. However, styrene is classified as a volatile organic compound (VOC) for low boiling point and 
high saturated vapor pressure. Even worse, styrene is not environmental-friendly as a hazardous air 
pollutant and is harmful to human health [17,18]. The Environmental Protection Agency of USA has 
legislated to limit styrene emission content in composite fabricating workshop (<50 ppm) [19]. In 
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derived from renewable materials. These monomers usually possess a range of characteristics: (1) at 
least one unsaturated site for participating in crosslinking; (2) good compatibility for making 
homogeneous resin; (3) low volatility for avoiding the emission of VOC. It can be regarded as low 
volatile crosslinker in thermosets, and other functions may be bestowed on it as well. The research 
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Upon these resins mentioned above, all of them refer to the free-radical polymerization of
unsaturated C=C bonds from main molecular chains. The large or long main chain structure leads to
a strong intermolecular force, which is significantly harmful to resin processability and efficiency of
crosslink. For example, UPE is solid at room temperature, which makes it hard to process and disperse
uniformly for wetting fibers well. The flexible long fatty chains in AESO result in a low mechanical
property. Therefore, in common cases, introducing small molecular comonomers as RDs into crosslink
network is necessary to enhance their performance at service.

Currently, styrene is a traditional and preferential RD that has advantages such as low cost, low
molecular weight, high reactivity, and excellent polymerizability [12–15]. With the aid of styrene,
improvements occur in resin processability including reduced viscosity and curing temperature as well
as increased curing rate and degree, thus leading to better mechanical properties and durability [16].
However, styrene is classified as a volatile organic compound (VOC) for low boiling point and high
saturated vapor pressure. Even worse, styrene is not environmental-friendly as a hazardous air
pollutant and is harmful to human health [17,18]. The Environmental Protection Agency of USA
has legislated to limit styrene emission content in composite fabricating workshop (<50 ppm) [19].
In addition, the National Institute of Health of USA listed it as a potential carcinogen in 2011 and
emphasized it again in 2016 [20]. Therefore, it is highly desired to reduce styrene emission or to replace
styrene with other greener monomers during the preparation of thermosets and their composites.

In this review, we classify RDs into typically crosslinkable monomers and novel monomers derived
from renewable materials. These monomers usually possess a range of characteristics: (1) at least one
unsaturated site for participating in crosslinking; (2) good compatibility for making homogeneous
resin; (3) low volatility for avoiding the emission of VOC. It can be regarded as low volatile crosslinker
in thermosets, and other functions may be bestowed on it as well. The research on greener RDs
has practical engineering benefits like improving product performance, satisfying requirements of
sustainable industry.
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The typical monomers include vinyl derivatives, (methyl)acrylate derivatives, and others. Among
vinyl monomers, the most common one is divinyl benzene (DVB), which has a profound application
in UV curing coatings. N-vinyl-2-pyrrolidone (NVP), tri(ethylene glycol)divinyl ether (TDE), and
dimethyl itaconate (DI) are also investigated as styrene alternatives. (Methyl)acrylates such as
trimethylolpropane triacrylate (TMPTA), trimethylolpropane trimethacrylate (TMPTMA), and methyl
methacrylate (MAA) have been investigated for styrene replacements; meanwhile, some RDs such as
hydroxyethyl methacrylate (HEMA) and hydroxypropyl acrylate (HPA) have raised more concern.
The obtained resins and composites present for responding to the attempts on using typical monomers,
which will be further exhibited and compared in this review.

Novel monomers synthesized from renewable materials are extremely attractive. According
to its chemical composition, the biobased monomers can be divided into the following categories:
(1) oxygen-rich monomers, such as carboxylic acid and furan; (2) hydrocarbon-rich monomers,
such as vegetable oil, terpenes, and rosin acid; (3) hydrocarbon monomers, such as biovinyl,
biopropylene, bioisopropylene, and biobutylene [21]. They attract wide attention from research
and industrial circles for their inherent advantages including low cost, easy availability, renewability,
and biodegradability. The Pacific Northwest National Laboratory (PNNL) and the National Renewable
Energy Laboratory (NREL) of USA concluded 12 kinds of potential renewable building blocks [22].
Bozell et al. further commented on the top 10 biobased products from biorefinery that were affirmed
by the Department of Energy, USA [23]. However, these biobased monomers are unable to perform
free-radical polymerization and hence many strategies were developed for introducing unsaturated
sites to synthesize crosslinkable monomers. The commonly adopted routes for bestowing them
unsaturated groups are classified and discussed detailly in this review. The simple comparison on
material performance between products will be given as well.

The purpose of this review, therefore, is to provide an up-to-date overview of the field
by highlighting and discussing the latest advances in RDs for styrene-free thermosets and their
composites, covering both traditionally crosslinkable monomers and newly developed monomers
from renewable feedstocks.

2. Traditionally Crosslinkable Monomers

Most of traditionally crosslinkable monomers are industrially available and hence easily utilized
as styrene replacements in resins and composites in a large scale. Although these RDs are mostly
derived from fossil fuels and toxic as styrene, they still have advantages over styrene such as high
boiling point and polymerization efficiency. Their products also show superior properties compared to
styrene analogues.

2.1. Vinyl Monomers

2.1.1. Divinylbenzene

As a derivative of benzene, divinylbenzene (DVB) is similar to styrene in structure and is
a well-studied comonomer that can partially or completely replace styrene since early this century.
DVB has two unsaturated double bonds, low molecular weight, and high reactivity (Table 1). However,
DVB can easily occur self-polymerization and is not easy to blend with the resins, producing white
particles because of too high reactivity. Also, the toxicity of DVB used as crosslinking agent is not
entirely clear [24].

Zhan et al. [25] investigated the free-radical copolymerization of AESO with styrene and DVB to
prepare soybean oil-based thermosets. It was found that DVB could reduce resin viscosity, promote gel
process, and increase crosslinking degree. DVB addition resulted in a 14~24 ◦C increase in the glass
transition temperature (Tg) of the resulting resins. Also, the addition of DVB increased the modulus of
AESO resin and widened the glass transition zone. The curing kinetics of styrene mixed with DVB as
crosslinking agents in AESO resin was further studied [26].
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Table 1. Characteristics of commonly used vinyl monomers as reactive diluents (RDs).

Monomers Molecular Weight
(g/cm3)

Boiling
Point (◦C) Toxicity Chemical Structure

Styrene 104.15 145–146 acute toxicity
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Moreover, DVB has been used in other oil-based resins including fish oil and tung oil [27].
The mechanical properties of the cationically polymerized DVB-based resins were similar to those
of styrene-polymerized resins. Larock et al. studied bulk cationic copolymerization of styrene and
DVB with conjugated natural oil for the production of agricultural fibers-reinforced composites.
The composites were much more brittle, but stiffer than the pure resins. The prepared composite has
a renewable content of 88%, and thus has great potential applications in automotive, construction and
furniture industries [27].

Other styrene derivatives include α-methylstyrene, fluorostyrene and vinyltoluene (Table 1).
Compared to styrene, α-methylstyrene shows a lower reactivity and thus lower crosslinking efficiency
of unsaturated double bond in resin system. Fluorostyrene-crosslinked polyesters had better heat
resistance and electrical properties. Due to its high boiling point and less volatility, vinyltoluene is an
ideal crosslinker, but its price is too high and thus has not been widely used [28].

2.1.2. Other Vinyl Monomers

More recently, two new types of vinyl monomers, i.e., NVP and TDE, were selected to replace
styrene in UPE resins for the production of hemp fiber reinforced composites, respectively [29]. As given
in Table 1, NVP has a C=C bond that links with nitrogen, giving the C=C bond with a high reactivity
due to the electronegativity of nitrogen. TDE has two C=C bonds, which has more opportunities
for crosslinking with UPE (Table 1). The results indicated that both monomers could effectively
dissolve solid UPE, reduce the entanglement of UPE chains, and significantly reduce the viscosity of
the resulting resins (from 50 to 500 mPa·s at room temperature). NVP-based resin composites showed
comparable tensile and higher flexural properties with styrene-based resin composites because NVP is
a highly reactive monomer.
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Following this work, NVP was further utilized as a RD for AESO resins for preparing the
hemp fiber reinforced AESO composites with high performance [30]. It was found that NVP-AESO
resins had better processability than styrene-AESO resins, and hemp fiber-reinforced NVP-AESO
composites achieved superior static and dynamic mechanical properties when compared to styrene
analogues. To improve the crosslinking degree of AESO matrix and its interfacial adhesion with hemp
fibers, isophorone diisocyanate (IPDI) was further incorporated into the hemp fibers/AESO composite
system [31]. Due to the chemical characteristic of AESO, the IPDI could serve as two functions in the
composite system: one is crosslinker within AESO resin for increasing its crosslinking density; the
other is coupling agent between hemp fibers and AESO thus giving rise to the interfacial bonding of
the composites. The comparison on tensile-fractured surfaces of composites intuitively showed that
the addition of diisocyanate improved the interfacial adhesion between fibers and resins. The tensile
and flexural properties, storage modulus, and glass transition temperature of the composites were
accordingly increased by significantly enhanced interface and crosslinking density.

2.2. (Methyl)acrylate Monomers

(Methyl)acrylate monomers are commonly obtained from unrenewable resources. Generally, they
have highly reactive (methyl)acrylate C=C bonds and relatively low molecular weight (Table 2).

(Methyl)acrylates have been widely used in the production of coatings, elastomers, adhesives,
thickeners, amphoteric surfactants, fibers, plastics, textiles and inks. Butyl methacrylate (BMA) can
not only be used as crosslinking agent to reduce styrene content, but also toughen the obtained
composites for its soft long molecular chains [2]. The incorporation of BMA into hemp fibers reinforced
UPE composite systems significantly increased the toughness of UPE matrices and thus the resulting
composites. As a highly polar monomer, hydroxypropylacrylate (HPA) was usually used to control the
thermal shrinkage of UPE resin, but its high affinity with organic agent caused insufficient crosslinking,
thus negatively affecting the mechanical properties of resins [32]. In a novel family of UPE derived
from 2,5-furandicarboxylic acid and itaconic acid, 2-hydroxyethylmethacrylate (HEMA) was selected
for copolymerizing with such newly biobased UPE to improve its fluidity and crosslinking degree;
results indicated that the increase of HEMA content led to the increases of gel content and Tg of UPE
resins [33,34]. However, HEMA contributed to the increase in swelling capacity of the resins, which
was likely due to its high hydrophilicity. It is worth to mention that HEMA could be applied in the
preparation of devices used in biomedical applications due to its favorable biocompatibility [35]. In the
work of Meht et al. [36], HEMA, isobornyl methacrylate (IBOMA) and methyl methacrylate (MMA)
were used as RDs for itaconic acid-based UPE, respectively; results showed that these styrene-free
biobased UPE resins had properties equivalent to commercial styrene-based resins. Therefore, these
methacrylates could not only replace styrene to reduce resin viscosity, but also improve resin crosslinking
density and provide feasible coating properties. However, segments of such monomers may set bond
into 3D network and is easy to break down at lower temperature, and thus the HEMA-resulting
thermosets are less thermally stable than pure UPE resins [33,34,36]. Also, BMA, HPA and HEMA had
low boiling points and thus might easily evaporate during processing.

Nebioglu et al. [37] investigated the free-radical polymerization kinetics of a multifunctional
acrylate monomer, i.e., trimethylolpropanetriacrylate (TMPTA) with UPE. Furthermore, TMPTA was
further used as a RD for curable acrylated polyester based hybrid coatings [38]. It was found that the
fracture toughness of the composites is the highest when 15% TMPTA was incorporated. With similar
chemical structures, the impact of unsaturated sites of RDs on AESO resin has also been discussed
by comparing 1,4-butanediol dimethacrylate (BDDMA) and trimethylolpropane trimethacrylate
(TMPTMA) in bamboo fibers reinforced AESO composites [39]. The results indicated that the
methacrylate RDs with more double bonds endowed the resulting resins with higher crosslinking
density. These methacrylates had high molecular weight and thus boiling point, which exhibits almost
no VOC emissions during processing.
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Table 2. Characteristics of commonly used (methyl)acrylate monomers.

Monomer Molecular Weight
(g/cm3)

Boiling
Point (◦C) Toxicity Chemical Structure

Butyl methacrylate (BMA) 140.20 162–165 acute toxicity
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2.3. Other Monomers

Tung oil is a drying oil obtained by pressing the seed from the nut of tung tree. Tung oil hardens
upon exposure to air and has been mostly used for coatings [40,41]. The fatty acids of tung oil consist
of eleostearic, palmitic, oleic, linoleic acids and others (Figure 2). Due to the conjugated double bonds
in eleostearic acid, tung oil can directly participate in the crosslinking of some thermosetting resins.
It was reported by Meiorin et al. [42] that tung oil was cationically copolymerized with AESO, methyl
ester of tung oil, and styrene to produce vegetable oil-based thermosets. The fully tung oil-based resins
presented comparable dynamic mechanical properties with styrene analogues. The addition of low
concentrations of DVB (5~10 wt%) in the resins increased their rigidity and Tg.

Mistri et al. used 20 wt% tung oil to copolymerize with maleated castor oil (MACO) for fabricating
jute fibers reinforced composites [43]. The prepared MACO composites had 42% higher impact strength
than that of jute fibers reinforced UPE composites. The flexural modulus of MACO composites was
almost similar to that of UPE composites. Besides, the MACO composites exhibited higher damping
behavior at room temperature and high temperature. Such composites can be explored further as
environmentally friendly and high damping materials over a wide range of temperature [43].
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Figure 2. Chemical structure of tung oil.

3. Novel Monomers Synthesized from Renewable Materials

Renewable materials have been widely investigated to develop novel crosslinkable monomers.
As summarized in Table 3, the functionalization methods of renewable monomers are classified as
grafting acrylate, grafting methacrylate, and others.

Table 3. Synthesis of novel monomers from renewable materials.

Methods Renewable Monomers Reactive Agents Novel Monomer Sources of
Monomer

Grafting
acrylate

cardanol acryloyl chloride (AC) cardanyl acrylate (CA) [44] cashew nut

castor oil AC a new polyfunctional acrylate
monomer (COPERAA) [45] castor

betulin AC acrylated betulin [46,47] rosin

Grafting
methacr-ylate

cardanol methacrylic acid methacrylated cardanol (MC)
[48,49] cashew nut

cardanol methacrylic anhydride
(MA) methacrylated cardanol (MC) [50] cashew nut

sobrerol MA sobrerol methacrylate (SoMet) [51] α-pinene
isosorbide MA methacrylated isosorbide (MI) [52] starch/cellulose
vanillin MA methacrylated vanillin (MV) [53] lignin
guaiacol MA methacrylated guaiacol (MG) [53] lignin
eugenol MA methacrylated eugenol (ME) [53] lignin
phenol MA phenyl methacrylate (PM) [54] lignin
creosol MA methacrylated creosol (MCre) [54] lignin

4-ethylguai-acol MA methacrylated 4-ethylguaiacol
(MEG) [54] lignin

4-propylgu-aiacol MA methacrylated 4-propylguaiacol
(MPG) [54] lignin

catechol MA methacrylated catechol (MCat) [54] lignin

4-methylcat-echol MA methacrylated 4-methylcatechol
(MMCat) [54] lignin

vanillin alcohol MA methacrylated vanillyl alcohol
(MVA) [55] lignin

furoic acid glycidyl methacrylate
(GMA)

furoic acid glycidyl methacrylate
(FA-GM) [56] cellulose

itaconic acid GMA a UV curable unsaturated monomer
(IG) [57] starch/cellulose

oleic acid Br2/GMA 9-10 dibromo stearic acid glycidyl
methacrylate [3] extractives

oleic acid GMA methacrylated fatty acid (MFA) extractives

tannic acid GMA/glycidyl ester of
versatic acid (CE10) hyperbranched methacrylates [58] starch/cellulose

Others

Hydroxyeth-ylmethacry-late
(HEMA)

2-dodecen-1-ylsuccinic
anhydride

a dimethacrylate reactive diluent
(HEMA-DDSA) [59] -

levulinic acid (LA) vinyl acetate vinyl levulinate (VL) [60] starch/cellulose
rosin derivatives allyl bromide divinyl rosin/trivinyl rosin [61] rosin
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3.1. Grafting Acrylate

Acryloyl chloride (AC) is a highly reactive monomer and usually used in esterification. The reaction
activity of AC with alcohols is much higher than that of anhydride/acid. Cardanol is a phenolic lipid
obtained from anacardic acid which is the main component of cashew nutshell liquid, a byproduct
of cashew nut processing. Cardanol consists of different saturated and unsaturated long-chain
phenols. The unsaturated functionality endows it potentiality to perform free-radical polymerization.
The phenolic hydroxyl groups could be used for introducing more C=C bonds. The rigid structure
of cardanol would effectively enhance the thermal stability of thermosets. Hu et al. [44] synthesized
cardanyl acrylate (CA) from cardanol via reacting with AC for the modification of a castor oil-based
polyfunctional polyurethane acrylate resin (Figure 3a). The Tg, thermal stability, hardness, and
hydrophobicity of the resins were greatly enhanced by the incorporation of CA. Therefore, CA can
replace petroleum-based monomers to produce biobased coatings with special properties such
as high biobased content and low shrinkage. Liu et al. [45] successfully synthesized a new
polyfunctional acrylate monomer (COPERAA) from castor oil-based monoglyceride and AC (Figure 3b).
The COPERAA was used as a RD for AESO UV-curing materials. Compared to petroleum-based
TMPTA, COPERAA endowed superior biobased content and volume shrinkage of the resulting AESO
resins. AESO/COPERAA resins had lower hardness, thermal stability than AESO/TMPTA resins due to
the longer and softer fatty acid chains. Similar designs have been reported by Auclair et al. [46,47]; they
selected AC-grafted betulin as a comonomer for preparing AESO coatings with preferable performance
(Figure 3c).Polymers 2019, 11, x FOR PEER REVIEW 10 of 22 
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3.2. Grafting Methacrylate

Methacrylic group is another functionality that was used to graft on renewable monomers.
Methacrylic acid is one of the simplest approaches for equipping monomers with C=C bonds
by esterification. The functionalization of epoxidized cardanol and soybean oil with methacrylic
groups were directly conducted with methacrylic acid via an epoxy-acid esterification (Figure 4) [48].
The methacrylic monomers were copolymerized with methacrylated dicyclopentadiene prepolymer;
the obtained VE networks presented a Tg from 100 to 130 ◦C. Can et al. prepared cardanol-based
thermosetting resin by using methacrylated cardanol (MC) as RD for VE resin [49]. The increasing
addition of cardanol-based RD from 0 to 50 wt % significantly decreased the viscosity of both commercial
and synthesized fully biobased VE resins, but its long chains weakened the crosslink network and
mechanical performance.Polymers 2019, 11, x FOR PEER REVIEW 11 of 22 
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methacrylic acid [48].

Methacrylate anhydride (MA) is another commonly used monomer for esterification with alcohols.
Take a simple example: similar to the route of using methacrylic acid, MA was utilized to graft double
bonds onto cardanol for the synthesis of MC as a RD for commercial and synthesized VE (Figure 5a) [50].
Lima et al. [51] synthesized sobrerol methacrylate (SobMet) from sobrerol with MA (Figure 5b), and
the new monomer is an interesting alternative for styrene in UPE formulations. SobMet-based resins
presented higher Tg and comparable storage modulus than styrene-containing resins. Hence, SobMet
exhibited promising properties to be used as a low-volatile, biobased styrene substitute. Noteworthy,
rigid isosorbide could be synthesized through cellulose and starch hydrolysis to glucose followed
by hydrogenation to sorbitol and subsequent dehydration to isosorbide. In our previous research,
isosorbide was methacrylated and copolymerized with flexible AESO to gain the resins with higher
flexural properties, thermal properties, crosslinking density and curing efficiency (Figure 5c) [52].
The achieved resins were further used as matrices for hemp fibers and bamboo fibers to prepare green
biocomposites [62]. Results indicated that the resulting composites obtained comparable performance
to petroleum-based composites.
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Notably, as novel biobased RDs for thermosets, MA-methacrylated lignin derivatives (Figure 6)
became very attractive during past 10 years. This is because lignin is the second most abundant
polymer in nature, which is only less than cellulose. New catalytic methods for the efficient production
of aromatic monomers from lignin are usually classified as: (1) isolation of lignin by lignocellulosic
fractionation prior to catalytic treatment, (2) reductive catalytic fractionation using lignocellulose in
the presence of a catalyst, and (3) complete conversion of all lignocellulosic components by a one-pot
catalytic process [63]. Especially, under the reductive depolymerization, the yield of the product
is greatly increased; many monomers including phenol, guaiacol, eugenol and catechol could be
achieved [64]. Wool and his fellows used MA to modify vanillin, guaiacol, and eugenol to generate
methacrylated lignin model compounds for VE resins. All the lignin-based resins had relatively high Tg,
low viscosity, and low VOC emission, which meets the requirements for liquid molding technique [53].
Furthermore, as a byproduct of esterification between MA and vanillin, methacrylic acid was further
used to react with glycerol methacrylate for forming a liquid copolymerized crosslinking agent, i.e.,
glycerol dimethacrylate [65]. Additionally, a series of methacrylated lignin-based bio-oil mimics
were comprised of methacrylated phenol, guaiacols and catechols and utilized as low viscosity VE
resins and RDs in typical VE resins [54]. Further work was conducted on the influence of impurities
in methacrylated phenolic compounds from lignin [66]. Results suggested that the substitutes
on the aromatic ring of the RD have less effect, but the purity of the RD strongly influences the
performance of materials. Kessler et al. used vanillin and vanillyl alcohol as feedstocks for reacting
with MA. The obtained biobased and low viscosity monomers were blended with VE and maleinated
AESO resins, respectively [55,67]. The flexible long chains on AESO would compensate for the
brittle drawback on methacrylated vanillin (MV) blended resins. The same method was used to
synthesize methacrylated eugenol (ME) as a sustainable RD for maleinated AESO to produce resins
with low viscosity, fast curing and superior mechanical performance that were suitable for pultrusion
process [68,69]. Dai et al. [70] applied another lignin-based monomer, i.e., methacrylated guaiacol
(MG), as a low emission crosslinking agent for curing with novel full biobased UPE resin. Due to the
development of additive manufacturing, MG and vanillyl alcohol dimethacrylate are also used to mix
with other acrylates for stereolithography 3D printing in recent years [71].
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Glycidyl methacrylate (GMA) is a bifunctional monomer with epoxy group and C=C bond.
The epoxy group of GMA gives the opportunity for endowing the target monomers unsaturation
functionality through epoxy ring-opening reaction (Figure 7). Furan is a renewable monomer derived
from pentose that is obtained from the hydrolysis of corn, oats, and hemicellulose. Both furfuryl alcohol
and furoic acid were derived from furan. Furoic acid glycidyl methacrylate (FA-GM) was synthesized
from GMA and furoic acid (Figure 7a) and then used as a RD for VE resins. Results indicated that
the FA-GM monomer could improve the crosslinking density of resins, leading to admirable curing
property with less usage of RD [56]. Dai et al. [57] synthesized a UV-curable unsaturated monomer (IG)
from itaconic acid with GMA (Figure 7b). IG could be used together with methacrylates and styrene
to significantly improve the strength, modulus and thermal stability of AESO-based resins. Besides,
IG was also used as RD for AESO and monomethyl itaconated epoxidized soybean oil for comparison
with TMPTMA and styrene [72].
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Methacrylated fatty acid (MFA) was obtained by reacting GMA with caprylic acid, caproic acid,
oleic acid, linoleic acid and lauric acid from vegetable oil. Oleic acid was selected to present the typical
reaction route as shown in Figure 7c. Campanella et al. [73] used methacrylated fatty acid (MFA) as a
RD for copolymerizing with maleinated AESO. However, due to the long chain characteristic of fatty
acid, the Tg and storage modulus of the MFA-resulting resins were lower than those of styrene-based
resins. Thus, it is still needed to blend with styrene to reduce resin viscosity and balance properties [74].
During the synthesis process of MFA, bromine atoms was grafted to form 9-10 dibromo stearic acid
glycidyl methacrylate (DSA-GMA), functionalizing the monomer with improved heating and flame
resistance (Figure 7d) [3]. Scala et al. reported that the MFA-based RDs were applied to improve the
fluidity of resins, reduce the emission of volatile organic compound and keep the practicability of
materials, which were gradually used in military application [75]. Dey et al. also conducted a similar
study to prepare MFA by changing the length of basic fatty acid chain [76]. It was found that the
viscosity of VE/MFA resin increased with the increase of fatty acid chain length. Hydrogen bonds
between MFA hydroxyl groups are affected by the chain length of fatty acids and play a crucial role in
controlling the viscosity of the system. However, the Tg of VE/MFA resin increased with the decrease
of fatty acid chain length, which was due to the decrease of free volume of polymer and effective
molecular weight between crosslinks.

The monomers containing phenolic hydroxyl groups could also react with the epoxy rings of GMA.
Tannic acid is a water-soluble polyphenolic compound with high molecular weight and abundant
phenolic hydroxyl groups. The reactivity of phenolic hydroxyl groups is much higher than that of
alcohols. Thus, the phenolic hydroxyl groups of tannic acid are able to react with the epoxy groups of
GMA in the absence of catalyst. A hyperbranched methacrylates (TAHAs) was synthesized from tannic
acid with GMA and glycidyl ester of versatic acid (CE10) (Figure 8) [58]. The content of methacrylate
groups in the TAHAs was adjusted by controlling the ratio of GMA to CE10. The addition of TAHAs
into AESO remarkably improved the hardness, adhesion, and tensile strength of the resulting coatings.
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3.3. Others

Shen et al. [59] synthesized a multifunctional methacrylate (HEMA-DDSA) monomer from HEMA
and 2-dodecen-1-ylsuccinic anhydride (DDSA) via esterification (Figure 9). The resulting monomer
had relatively high molecular weight so that the volatility is insignificant. TMPTA has superior
reactivity than styrene for its three unsaturated sites. Combination of HEMA-DDSA with TMPTA as
co-crosslinker for UV-cured resins would accelerate the curing process [77].

Levulinic acid (LA) could be synthesized from hexose, which is hydrolyzed from biomass such as
starch or cellulose. Levulinic acid contains a carboxylic group and a keto group, which could react
with vinyl acetate via transesterification to form vinyl levulinate (VL) for use as a RD in UPE resins
(Figure 10). However, the replacement of styrene with VL is limited due to its low reactivity and
residual components that plasticize resin, hence weakening the crosslinking density and mechanical
properties of the resulting resins [60].
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Rosin acid with rigid hydrogenated phenanthrene ring is beneficial for improving strength and
modulus of the resulting resins [78]. Two kinds of rosin acid derivatives, i.e., malaypimaric anhydride
and acrylicpimaric acid, were used to react with allyl bromide to obtain novel comonomers with
divinyland trivinyl functionalities, respectively (Figure 11) [61]. The novel monomers were used as
RDs for AESO resin, but their application is limited by their low reactivity. By contrast, a preferable
curing system would be achieved by the reactions between rosin acid and GMA [78].
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A series of biorenewable RDs from vanillin and eugenol were synthesized as possible styrene
replacements in biobased VE thermosets [79]. In their routes, malonic acid was introduced into
vanillin through piperidine-mediated addition, then the intermedia was obtained by an in situ
double decarboxylation. After further methylation, the target compound 4-vinylveratrole was
synthesized. In another route, vanillin was firstly allylated in solvents followed by aromatic-Claisen
rearrangement. Similarly, the intermedia after rearrangement went through piperidine-mediated
addition, decarboxylation and methylation to prepare 3-allyl-5-vinylveratrole. Following similar
procedures, 3,5-diallyl-1,2-dimethoxybenzene was synthesized from eugenol.

4. Properties of Styrene-Free Thermosets and Their Composites

4.1. Processibility of Thermosets

Processability should be primarily considered for the development of new resins in composites
preparation. Viscosity of resin is one of the most important flow parameters to determine the end
application of thermosetting resin. Viscosity not only affects the production cost of resin, but also is
related to the properties and application of composites. Thus, in the process of developing resins with
new RDs, the following factors that affect the viscosity of resin should be concerned. (1) Molecular
weight of RDs: the increase of molecular weight can cause a sharp increase of apparent viscosity.
Viscosity is directly related to the average molecular weight of resin. (2) Intermolecular force: generally,
if there is an internal force such as hydrogen bond, the mobility of resin will be restricted and thus the
viscosity increased [80]. For instance, the replacement of styrene with triglyceride in UPE significantly
increased the viscosity of the resin system, which dramatically increased the difficulty of fabricating
bamboo fibers reinforced composites [81].

Curing temperature of resins is closely related to the production cost of composites because of
the required energy consumption. The maximum curing temperature of a resin system is determined
by the reactivity of C=C bonds in the comonomers and the types of initiators. For the resins with
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different RDs, the curing temperature is affected by the reactivity of RDs and their reactivity ratio
with main component. For example, the reactivity ratios (r) of VL-UPE (rVL = 0.01 and rUPE = 0.81)
system are lower than 1 [60], which attests that both monomers are more likely to copolymerize
rather than homopolymerize with a tendency toward alternation. To demonstrate the influence of
RDs on the curing temperatures of resins, the AESO resin systems with different RDs initiated by
tert-butyl perbenzoate (TBPB) were investigated. It is reported that NVP-AESO resin has higher
curing temperature than styrene-AESO resin because of the high reactivity of NVP [30,82]. Similarly,
isocyanatoethyl methacrylate (IEM) containing methacrylate groups has a much higher reactivity than
styrene, which makes the maximum curing temperature of IEM-AESO resin significantly lower than
that of styrene-AESO resin [83].

4.2. Properties of Thermosets and Their Composites

The dynamic and static mechanical properties of resins are contributed by their molecular structure
and crosslinking degree, which further determines the properties of the composites when same fiber
reinforcements were used. The reason why styrene is commonly used as RD is that its rigid benzene
structure of styrene would endow rigidness on the resulting resins. For example, two bifunctional
isocyanates, i.e., IEM and 3-isopropenyldimethylbenzyl isocyanate (TMI), were used as RDs for hemp
fibers reinforced AESO composites, respectively [83]. Both IEM and TMI carries one C=C bond and
one isocyanate group, which could concurrently improve the crosslinking density of AESO resins and
the fiber-matrix interfacial adhesion of composites. However, the TMI-AESO composites presented
much higher Tg, storage modulus, tensile strength, tensile modulus, flexural strength and flexural
modulus than the IEM-AESO composites because TMI monomer contains a benzene ring [83]. Thus,
the renewable monomers with rigid structure such as lignin derivatives have been generally studied
to develop biobased RDs. The VE resins mixed with MG or ME had comparable Tg with styrene-VE
resins [53]. By contrast, the thermosets using fatty acids-derived RDs showed much lower Tg than
others due to the flexible fatty acid chains [74].

On the other hand, crosslinking density reflects the curing degree and polymerization efficiency to
some extent. For example, NVP with high reactivity would accelerate the free radical polymerization,
resulting in the generation of cured resins with high crosslinking density [81]. BDDMA and TMPTMA
were used to replace styrene in AESO system because they have more double bonds than styrene
and hence can provide more unsaturated sites, resulting in resins with high crosslinking density and
Tg [39]. According to the rubbery elastic theory, the calculated crosslinking density of IG-AESO and
TMPTMA-AESO resins are 22921 and 46537 mol/m3, respectively, which are much higher than that of
pure AESO (5612 mol/m3), leading to the higher Tg and modulus [72]. This proves that the Tg and
stiffness of the crosslinked polymers have a close relationship with their crosslink density, which is in
agreement with other polymer resin systems [84–87].

5. Conclusions

Many petroleum-based monomers could be directly used as styrene replacements and easily
commercialized in thermosets and their composites. However, this is along with many drawbacks that
limits their application. The synthesis of RDs from renewable resources is an increasingly interesting
field. Several biobased RDs are available to replace petroleum feedstocks and highly volatile styrene.
Their advantages are as follows: (1) The raw materials are renewable, reducing the use of fossil fuel
resources; (2) new polymers with improved properties are produced; (3) they can replace styrene and
reduce the emission of VOC. However, more systematic efforts are needed to realize commercial value
that will enable them more competitive. Lignin derivatives show great prospects because they have
similar structure to styrene. After the introduction of vinyl groups, they are believed to be the best
alternative to styrene. In recent years, although some progress has been made in the production of
biobased RDs with considerable properties, this field is still not fully developed. It is needed to do
more work to promote the commercialization of these biobased RDs to the next stage.
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