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Breast tumor segmentation plays a crucial role in subsequent disease diagnosis, and most algorithms need interactive prior to
firstly locate tumors and perform segmentation based on tumor-centric candidates. In this paper, we propose a fully convolutional
network to achieve automatic segmentation of breast tumor in an end-to-end manner. Considering the diversity of shape and size
for malignant tumors in the digital mammograms, we introduce multiscale image information into the fully convolutional dense
network architecture to improve the segmentation precision. Multiple sampling rates of atrous convolution are concatenated to
acquire different field-of-views of image features without adding additional number of parameters to avoid over fitting. Weighted
loss function is also employed during training according to the proportion of the tumor pixels in the entire image, in order to
weaken unbalanced classes problem. Qualitative and quantitative comparisons demonstrate that the proposed algorithm can
achieve automatic tumor segmentation and has high segmentation precision for various size and shapes of tumor images without

preprocessing and postprocessing.

1. Introduction

Breast cancer is the most common disease of women and has
become the second disease which leads to death [1]. The
number of breast cancer patients is increasing gradually
since 1970s. Early detection of breast cancer is beneficial for
improving the survival rate and survival quality. Mam-
mography is the most conventional and noninvasive ex-
amination and is an effective screening method for early
detection and diagnosis of breast cancer. Tumor segmen-
tation provides morphological features and is an essential
step for tumor analysis and classification.

Traditional studies on tumor segmentation mainly rely on
gray-level and texture features which are distinct to partition
mammogram into different regions. Region-based methods
start from a set of manually located seed points or small
patches containing suspicious region, such as region growing
[2] and watershed methods [3]. Different location of seed
points are set to segment tumor according to different image

preprocessing methods, such as Gaussian filtering [4, 5] and
mathematical morphological operation [6]. Watershed
methods mainly used some preprocessing algorithms to re-
duce the number of initial segmented basins [7, 8]. Active
contour model, especially level set [9] is also used for breast
masses segmentation. A radial gradient index- (RGI-) based
segmentation method is applied to yield an initial contour
closer to the lesion boundary location [10]. 3D radial-gradient
index segmentation and 3D level set-based active contour
algorithm [11] are also applied to 3D CT breast images. A
feature embedded vector-valued contour-based level set
method [12] is proposed to perform mammographic mass
segmentation. It used level set method to obtain the initial
boundaries on the smoothed mammogram as the shape
constraint to design stopping function and integrated texture
maps, gradient maps, and the original intensity map to obtain
more accurate segmentation.

Region-based and contour-based methods are all un-
supervised. There are also some supervised segmentation
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algorithms based on deep networks. Dhungel et al. [13]
combined multiple deep belief networks (DBNs), Gaussian
mixture model (GMM) classifier, and a prior of location,
size, and shape of the mass as potential functions and used
structured SVM to learn a structured output and perform
segmentation. They further used conditional random field
(CRF) with tree reweighted belief propagation as structured
prediction function to boost the segmentation performance
[14]. The output of convolutional neural network (CNN) is
also introduced as a complementary potential function in
addition to the aforementioned potential functions, yielding
state-of-the-art segmentation performance [15]. These
methods all used two-stage training. An end-to-end network
was proposed based on the mass region of interest (ROI)
images [16]. It employed fully convolutional network to
model potential function, followed by a CRF to perform
structured learning, and integrated adversarial training to
learn robustly from scarce mammographic images.

CNN has powerful ability of extracting abstracted
features directly from the raw input data and achieves
remarkable achievements in computer vision fields, such
as image classification [17-19], object detection [20-22],
and image segmentation [23-25]. Image segmentation
methods based on CNN could get segmentation result
through discriminating every pixel in the image. Long et al.
[23] proposed the fully convolutional network (FCN) and
performed fine tuning in an end-to-end manner based on
pretrained VGG-Net [26] for image semantic segmenta-
tion. FCN replaced the fully connected layers with the
convolutional layers in order to keep the location in-
formation, which adjusted the classification network for
the segmentation task. Additionally, FCN employed the
skip architecture to merge semantic features and detailed
features and performed deconvolution to obtain more
accurate segmentation results. Since that, the deconvo-
lution operation had been widely used in many semantic
segmentation networks. Hyeonwoo [24] proposed the
symmetrical encoder-decoder architecture called DeconvNet.
The DeconvNet employed successive unpooling layers which
reconstruct the original size of activations through recording
the locations of maximum activations selected during pooling
operation and deconvolution layer with learned filters to
generate dense pixelwise class probability map. SegNet [25] is
another similar symmetrical network which used convolution
after unpooling layer to refine the sparse feature maps. Due to
the low localization precision of reconstructing the resolution
directly from high-level features, U-Net [27] combined the
upsampling output with the high-resolution features from the
encoding path to improve the segmentation performance.
Simon et al. [28] extended DenseNet [29] which achieved
excellent results on image classification tasks to deal with
the problem of semantic segmentation. The proposed Fully
Convolutional DenseNet (FC-DenseNet) also employed
skip connections that the feature maps from the down-
sampling path are concatenated with the corresponding
feature maps in the upsampling path and achieved state-of-
art results. In conclusion, the typical segmentation archi-
tecture built on CNN is mostly fully convolutional network
with encoder-decoder architecture training in an end to
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end manner. It mainly composes of a downsampling path
responsible for extracting coarse semantic features and
an upsampling path trained to recover the input image
resolution.

Because of the larger size of digital mammograms, the
segmentation time of active contour model, such as level set,
is greatly increased when the whole image is automatically
segmented. And most of traditional unsupervised methods
rely on low-level features such as the image gray value,
texture, gradient, and other information or the initial priori
settings, such as the initial seed points of region growing and
initial contour of level set method. But this cannot achieve
fully automatic segmentation of breast tumor, and seg-
mentation precision is influenced by the hand-crafted fea-
tures and initial priori position. In addition, some image
backgrounds are complex and similar to the characteristic of
tumor region, such as the pectoral muscles, or the gray value
of internal and external region of the tumor have small
differences. So, many aforementioned segmentation
methods are based on the tumor-centric candidate box
[30, 31]. Although some supervised segmentation algorithms
take into account the category information and can auto-
matically extract tumor features to optimize the segmen-
tation model, they also add priori information of the
location, size, and shape of the tumor. And they are also
based on the small tumor candidate box and cannot directly
segment the entire large size mammograms.

The main goal of our proposed algorithm is to segment
the breast tumor on the entire digital mammogram not on
the tumor-centric rectangle region which is commonly used
in most breast tumor segmentation algorithms. FC-
DenseNet further exploited the feature reuse by upsam-
pling the feature maps created by the preceding dense block
and used skip connections to help the upsampling path
recover spatially detailed information from the down-
sampling path. It outperforms current state-of-the-art re-
sults neither using pretrained parameters nor any further
postprocessing. So, we extend FC-DenseNet to achieve
automatic tumor segmentation. At the same time, consid-
ering that the multiscale information [32, 33] is benefit for
improving the segmentation precision of different sizes of
tumors, atrous spatial pyramid pooling (ASPP) [34] is added
to FC-DenseNet semantic segmentation network. Without
significantly increasing the number of learning parameters,
ASPP extracts multiscale features by concatenating different
sampling rates of atrous convolution [35] to enlarge the
receptive field. Loss function is also improved to solve the
extremely unbalanced class problem according to the pro-
portion of tumor and background pixels in the entire image.
We evaluate this algorithm in our collected digital mam-
mogram dataset, and results demonstrate that our proposed
algorithm has vyielded better performance than other
algorithms.

2. Methods

2.1. Review of FC-DenseNet. FC-DenseNet [28] is an ex-
tension of excellent DenseNet [29] classification network in
semantic segmentation by adding an upsampling path to
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recover the full input resolution. Downsampling path of FC-
DenseNet is composed of dense block layer and transition
down layer. Dense block layer is composed of batch nor-
malization [36], followed by ReLU [37], a 3 x 3 same
convolution (no resolution loss) and dropout with proba-
bility p = 0.2, which is different from DenseNet. A transition
down layer is composed of a 1 x 1 convolution (which
conserves the number of feature maps) followed by a 2 x 2
pooling operation. Upsampling path consists of dense block
layer and transition up layer. Transition up includes a 3 x 3
transposed convolution with stride 2 to compensate for the
pooling operation in the transition down. The upsampled
feature maps are then concatenated to the ones with the
same resolution from the downsampling path to form the
input of a new dense block. But in order to prevent the linear
growth of feature maps, the input of a dense block is not
concatenated with its output. Thus, the transposed convo-
lution is applied only to the feature maps obtained by the last
dense block and not to all feature maps concatenated so far.
The final layer in the network is a 1 x 1 convolution followed
by a softmax nonlinearity function to predict the class label
at each pixel.

2.2. ASPP-FC-DenseNet Segmentation Algorithm. As the
shape and size of malignant tumor are various, as shown in
Figure 1, the height and width of the tumor are mostly
distributed in 200 and 800 pixel intervals. As the receptive
field of single-image scale or small convolution kernel is
relatively fixed, it is only effective to present the image
features within the scope of the receptive field and cannot be
well depicted on the edges of different sizes of tumor. This
could influence the segmentation precision. Therefore,
extracting multiscale information of the image is helpful to
improve the segmentation precision of different sizes of
tumors.

Multiscale images (image pyramid) [38] are commonly
used as the input of network to extract features for each scale
input, and the segmentation results of each scale are linearly
interpolated and fused. But all layers of parallel CNN need to
compute the features of multiple scale inputs, and the
consumption of feature computation is large. Different sizes
of convolution kernel have different receptive fields, and
exploiting different convolution kernel size [39] to extract
multiscale image features is and alternative approach.
However, multiple parallel branches with different size of
convolution kernels greatly increase the network width and
the network learning parameters. Due to the small digital
mammogram segmentation datasets, the network is easy to
overfit. Therefore, exploiting multiple field-of-views to ex-
tract multiscale image features with relatively less increasing
parameters is more requisite.

Spatial pyramid pooling (SPP) [40] is a common way to
obtain multiscale image information, which was originally
proposed to solve the problem of arbitrary input size of
proposals in object detection. According to the requirement
of the output dimension, SPP divides the input image with
arbitrary size into the corresponding number of spatial bins,
then the pooling operation is performed on each spatial bin.
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Ficure 1: The distribution of breast tumor size.

The features of each spatial bin are combined to get fixed
features output dimension. It can be seen that the output of
SPP layer fuses the features of different level image bins, thus
improves the recognition accuracy. But for image seg-
mentation requiring pixel level semantic classification,
multiple pooling operations lose the image details and
spatial position information.

Atrous convolution [35] is an effective way to expand
the network receptive field without increasing the size of
convolution kernel and network parameters and is mainly
operated by setting different atrous sampling rate. As
shown in Figure 2, atrous convolution is performed
standard convolution with filter ‘with holes” according to
the sampling rates, and the weights of the ‘holes’ are reset
to 0. Atrous convolution with rate r introduces r — 1 zeros
between consecutive filter values, effectively enlarging
the kernel size of a k x k filter to (k+ (k-1)(r—1)) (k+
(k—1)(r—1)) filter without increasing the number of
parameters. The atrous convolution operation could
convolute every pixel of the input by setting a specific
convolution stride. By setting the sampling rate, the small
convolution kernel can also achieve the effect of large
convolution kernel, thus expanding the receptive field of
the network without requiring learning any extra pa-
rameters and increasing the amount of computation.
Atrous convolution could arbitrarily enlarge the field-of-
view of filters at any network layer. As shown in Figure 2,
the 3 x 3 convolution kernel has the same receptive field of
5x5 and 7 x7 convolution kernel by setting different
sampling rates. According to the idea of spatial pyramid
pooling, the extracted features of network are resampled
using parallel atrous convolutional layers with different
sampling rates, and then, the features extracted from each
sampling rate are fused to generate the final result. As a
consequence, the image features of different sizes of re-
ceptive fields are fused to be used to predict the object
label, and this approach is called atrous spatial pyramid
pooling (ASPP) [34].
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FiGure 2: Illustration of atrous convolution with different atrous sampling rates in 1-D. (a) Rate = 1. (b) Rate = 2. (c) Rate = 3.

Because the size of digital mammograms is 4096 x 3328,
FC-DenseNet needs many downsampling operations to
reduce the resolution of feature map to acquire the ab-
stracted image features, and this increases the learning
parameters and is easy to lead network overfit. In addition,
it leads to the deep network and the large computation and
memory consumption. So, we resized the input image to
512 x 512. For the smaller tumors which have 200 pixels,
the final size is almost 30 pixels. But FC-DenseNet has 5
pooling layers, and the down sample rate is 32, resulting in
omitting the small size tumor. Although the upsampling
path of FC-DenseNet is concatenated with the features
extracted from the downsampling path though skip con-
nection, but this still affects the final segmentation pre-
cision. Therefore, the downsampling operation of FC-
DenseNet is reduced to 4. At the same time, the dense
block between the first transition up and the last transition
down of the original FC-DenseNet network is removed to
ASPP module. The ASPP module consists of 1x1 con-
volution and atrous sampling rates of 6, 12, and 18, re-
spectively, and the output feature maps of these 4 atrous
convolutions are combined with the output of the down-
sampling operation before. Finally, the concatenated fea-
ture map pass through another 1 x 1 convolution. At the
same time, the original pooling layer is changed to con-
volution layer with 3 x 3 kernel size and stride of 2, in order
to reduce the information loss in the max pooling oper-
ation. We use FC-DenseNet with 56 layers which has 4
layers per dense block and a growth rate of 12 as based
network The proposed network (we name it ASPP-FC-
DenseNet) finally has 4 transition down, 4 transition up
and ASPP module, totally 47 layers, as shown in Figure 3.

In the high-resolution digital mammograms image,
there is an extreme imbalance between foreground (tumor)
and background classes, which causes the classifier to be
more biased to the background class in training and leads to
poor segmentation results. Therefore, we improve the simple
softmax cross entropy loss function and take each class
frequency of the image into consideration. Assume that the
frequency of class [ in the training data is f;, and the sum of
the frequency of all categories (background and tumor) is 1;
thatis, ), f; = 1. The inverse frequency of each class is added

Concat.

" Convolution [ Transition up

I Transition down ——+ Concatenation

FIGURE 3: The proposed ASPP-FC-DenseNet.

to the cross entropy loss function, effectively strengthening
each pixel of less frequency classes.

1 &1
loss,, = N Zf—yi log p; (1)
i=17 )i

where N is the number of pixels of the image, y; is the class
label of pixel 7, and p; is the model’s predicted probability for
the pixel with the correct class label.
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3. Results and Discussion

3.1. Data. The data used in our research are digital mo-
lybdenum target mammograms developed by the De-
partment of Radiology in Henan Provincial People’s
Hospital. The mammograms dataset totally contains 190
patient cases, each of which contains the craniocaudal (CC)
view and mediolateral oblique (MLO) view, as shown in
Figure 4. That means there are 380 images in total. MLO and
CC images are gray-level digitized mammograms with a
resolution of 3328 (width) by 4096 (height) pixels saved as
standard DICOM format. All the tumors in the mammo-
grams were depicted by a professional radiologist in the
hospital, as shown in Figure 4. We randomly divided the
dataset into train set, validation set, and test set with no cross
among them. The train set contained 230 images, and the
validation and test set, respectively, contained 75 images.

3.2. Metrics. In this paper, we chose the Dice Index (DI)
which is commonly used in most medical image segmen-
tation task and pixel accuracy (PA) and Intersection Over
Union (IOU) which is commonly preferred in natural image
segmentation task to quantitatively evaluate the segmenta-
tion performance of the breast tumor segmentation algo-
rithm. The calculation is shown as follows:

= 2x TP
" 2xTP+FP+FN

TP
A=——0q, (2)
TP + FN
TP
IOU= ———,
TP + FN + FP

Among them, TP refers to the number of pixels that are
correctly divided into tumors. FP is the number of back-
ground pixels that are wrongly judged as the tumor. TN is
the number of pixels that are correctly identified as the
background, and EN represents the number of tumor pixels
that are identified as background.

3.3. Experimental Evaluation and Discussion. We evaluated
the proposed model on our collected mammogram dataset.
The initial learning rate of our proposed network is set to
0.001, and the Adam optimization algorithm [41] with de-
fault beta values is used to update the gradient and network
parameters. Dropout with a rate of 0.2 and batch normal-
ization are also used as a regularizer. The training batch size
is set to 1, and we train our model for 100 epochs to
compensate for the smaller batch size. Every pixel value in
the mammograms is normalized into 0-1 and subtracts the
pixel mean value as the network input.

In order to verify the performance of the proposed
ASPP-FC-DenseNet, we compared the ASPP-FC-DenseNet
with the original FC-DenseNet containing 5 downsampling
operations on the test set. Figure 5 shows these two methods’
segmentation results for different sizes of tumors. The ASPP-
FC-DenseNet algorithm has a higher segmentation precision

compared with FC-DenseNet and has obvious advantage on
the edge preservation of different sizes of tumor. Therefore,
the fusion of multiscale image information can help to
obtain the multilevel image features and improve the per-
formance of image segmentation which needs pixel level
semantic recognition. At the same time, FC-DenseNet still
has high recognition accuracy for the first two mammogram
images with small difference in the internal and external gray
values of tumor. It can identify the tumor location accurately
and verify the effectiveness of FC-DenseNet for breast cancer
segmentation.

As shown in Table 1, the mean Dice Index of ASPP-FC-
DenseNet algorithm on the tumor segmentation test set is
0.7697, the mean IOU is 0.6041, and the mean pixel accuracy
is 0.7983. Both the Dice Index and the IOU of ASPP-FC-
DenseNet algorithm have a small increase. The Dice Index is
increased by 3.42%, the IOU is increased by 1%, and the pixel
accuracy is almost not improved. Because the pixel accuracy
is mainly concerned with the false negatives rate of tumor
pixels, and the Dice Index and the IOU consider the false
negatives rate and misdetection rate of the tumor pixels at
the same time, which can more comprehensively illustrate
the segmentation precision of the algorithm. Therefore, it
also reflects that ASPP-FC-DenseNet has a competitive
advantage in reducing the misdiagnosis rate of the tumor
pixels in the same case.

We proposed the weighted cross entropy loss to mitigate
the extreme imbalance between foreground (tumor) and
background pixels counts. We also compared with normal
cross entropy loss (no weighted) and dice loss which is
recently proposed in medical image segmentation [42] to
show the importance of the weighted cross entropy loss. The
tumor segmentation results of ASPP-FC-DenseNet model
with different loss functions are shown in Figure 6. From the
segmentation results, weighted loss model has a lower false
negative rate, and the segmented tumor contour is more
accurate than other two loss models. For this reason, the dice
coefficient of weighted loss is obviously higher which is same
with the quantitative comparisons of Table 2. This shows that
the weighted cross entropy loss has a better performance in
class imbalance problem compared with common cross
entropy loss. The computation of dice loss might lead the
gradient and training unstable, and sometimes influence the
performance.

We also performed experiments compared with the
original PSPNet [43], deeplab v3+ [44], and U-Net to
demonstrate the selected model superiority. The tumor
segmentation results of different models are shown in
Figure 7. Compared with other baseline models, our
proposed ASPP-FC-DenseNet model has high segmen-
tation precision for different size of tumors and complex
backgrounds. All models have accurate tumor localiza-
tion, but other three models could not obtain accurate
tumor boundaries compared with our model. From these
comparison results, we also found that U-Net had high
false negative rate. Compared with U-Net, PSPNet and
deeplab v3+ models all merge multiresolution image
features and have a better segmentation performance. This
also proves the importance of multiscale image features
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FIGURE 4: The mammogram data with different views and corresponding annotations. (a) CC view. (b) CC annotation. (¢) MLO view.

(d) MLO annotation.

FIGURE 5: Segmentation results of different sizes of breast tumor. (a) Image. (b) FC-DenseNet. (c) ASPP-FC-DenseNet. (d) Ground Truth.

(a)

and verifies the advantage of added ASPP module at the  superior to the other three models on the three evaluation
same time. metrics. The minimal improvement also reaches 4%.

The quantitative comparison results of these four  Deeplab v3+ model with encode-decode structure and
models are shown in Table 3. Our model is obviously = ASPP module has higher segmentation precision compared
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TaBLE 1: The quantitative comparisons of the proposed and original FC-DenseNet algorithms.

Methods DI 10U PA

FC-DenseNet 0.7355 0.5948 0.7968

ASPP-FC-DenseNet 0.7697 0.6041 0.7983

(d) (e)

FIGURE 6: The tumor segmentation results of ASPP-FC-DenseNet model with different loss functions. (a) Image. (b) Dice loss. (c) No

weighted loss. (d) Ours. (e) Ground Truth.

TaBLE 2: The quantitative comparisons of ASPP-FC-DenseNet
model with different loss functions.

Methods DI 10U PA

No weighted loss 0.7151 0.5974 0.8015
Dice loss 0.7108 0.5920 0.7988
Ours 0.7697 0.6041 0.7983

with the other two models, which also demonstrated the
advantage of these two structures. But the decode module
of deeplab v3+ model used simple bilinear upsample op-
eration which might lose detailed low-level features. Our
model refers to U-Net decode module to recover image
resolution step by step and concatenates with image fea-
tures in the encode module. Therefore, it has a higher
segmentation precision.

We also select the level set [45], graph cut [46], and
threshold segmentation algorithm for qualitative and

quantitative comparison on the breast tumor segmentation
test set.

The gray value of the pectoralis in the MLO view image is
very close to the tumor, which affects the segmentation
precision. Before using the level set, graph cut, and threshold
segmentation algorithm, the pectoralis of the MLO image is
removed first according to the location information and the
gray threshold, as shown in Figure 8. Threshold segmen-
tation algorithm is a simple image segmentation algorithm.
We used a double threshold segmentation method. Firstly,
the initial tumor region is obtained by the iterative threshold
segmentation algorithm. Then the final threshold segmen-
tation result is obtained by calculating the gray mean value of
the first step of the tumor region as the threshold of the
second step segmentation. For the segmentation results of
these three contrast algorithms, the area of connected region
is calculated and the isolated small connected region is
deleted as the final segmentation result.



FIGUre 7: Tumor segmentation results of different CNNs. (a) Image. (b) U-Net. (c) PSPNet. (d) Deeplab v3+. (e) Ours. (f) Ground Truth.

TaBLE 3: The quantitative comparisons of different CNNG.

Models DI 10U PA

U-Net 0.6763 0.5608 0.7562
PSPNet 0.6785 0.5427 0.7202
Deeplab v3+ 0.6827 0.5641 0.7072
ASPP-FC-DenseNet 0.7697 0.6041 0.7983

The segmentation results of our proposed algorithm are
compared with other three segmentation algorithms, as
shown in Figure 9. It is obvious that other three segmentation
algorithms using preprocessing that removes the pectoralis
and postprocessing still have a poor segmentation perfor-
mance compared with proposed ASPP-FC-DenseNet seg-
mentation algorithm. The other three segmentation
algorithms can accurately locate the location of the tumor, but
it has a high misdetection rate, especially for the tumor images
with small difference and similar characteristics inside and
outside the tumor. This is due to the differences of the tumor
grayscale, texture, and other characteristics with the normal
breast tissue, so it is easy to locate the tumor position. Al-
though level set and graph cut are interactive segmentation
algorithms, which can minimize the energy function by
manually setting the initial location of the tumor as a priori,
they are mainly based on the tumor grayscale and texture
properties to update the evolution curves and lack the high-
level semantic information of the image. For the non-tumor
region whose characteristic is similar to tumor, these three
algorithms have a poor segmentation result. The proposed

Journal of Healthcare Engineering

FiGgure 8: The original MLO mammogram and pectoralis deleted
mammogram.

algorithm has powerful feature extraction and representation
ability and can obtain more accurate segmentation results.
The quantitative comparison results of these four seg-
mentation algorithms are shown in Table 4. The proposed
ASPP-FC-DenseNet algorithm has significant improvement
on the three evaluation metrics compared with the other
three segmentation algorithms. Compared with the graph
cut algorithm, ASPP-FC-DenseNet improved 30.34% on the
Dice Index, increased by 25.50% on the IOU, and increased
by 17.63% on the pixel accuracy. Even compared to the level
set which has better segmentation performance in the three
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FIGURE 9: The tumor segmentation results compared with other segmentation algorithms. (a) Image. (b) Level set. (c) Grab cut. (d) Double

threshold. (e) Ours. (f) Ground Truth.

TaBLE 4: The quantitative comparisons of the proposed model and
other algorithms.

Methods DI 10U PA

Level set 0.5989 0.4893 0.6813
Grab cut 0.4663 0.3491 0.6220
Threshold 0.5464 0.4322 0.6440

ASPP-FC-DenseNet 0.7697 0.6041 0.7983

algorithms, the proposed algorithm also increased by 17.08%
on the Dice Index. The IOU increased by 11.48%, and the
pixel accuracy increased by 11.70%. The segmentation
precision was improved significantly. At the same time, it
can be seen that the proposed algorithm is more effective in
improving the Dice Index and IOU, indicating that under
the same misdetection rate, the proposed algorithm has a
lower false negative rate compared with the other three
algorithms and has a higher segmentation precision.

4. Conclusions

In this paper, a fully convolutional network ASPP-FC-
DenseNet, which combines multiscale image information,
is proposed to achieve automatic segmentation of breast
tumor. The algorithm uses FC-DenseNet which further
exploits the feature reuse by using skip connections to help
the upsampling path recover spatially detailed information
from the downsampling path. Considering that five pooling

layers in the network lead the small size tumor that cannot be
identified easily, the number of pooling layers in the network
is reduced to 4. Then the atrous spatial pyramid pooling
module is added to the network after the last downsampling
operation, which concatenates different field-of-views of
image features through the combination of multiple sam-
pling rates of atrous convolution. Finally, the loss function of
the network is improved according to the proportion of the
tumor pixels in the image, in order to weaken unbalanced
class problem. Qualitative and quantitative experimental
results prove that the algorithm proposed in this paper has
high segmentation precision for various sizes and shapes of
tumor mammograms without preprocessing and post-
processing and achieves automatic tumor segmentation.
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