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Abstract

High-throughput, “next-generation” sequencing methods are now
being broadly applied across all fields of biomedical research,
including respiratory disease, critical care, and sleep medicine.
Although there are numerous review articles and best practice
guidelines related to sequencing methods and data analysis, there
are fewer resources summarizing issues related to study design
and interpretation, especially as applied to common, complex,
nonmalignant diseases. To address these gaps, a single-day
workshop was held at the American Thoracic Society meeting in
May 2017, led by the American Thoracic Society Section on Genetics
and Genomics. The aim of this workshop was to review the
design, analysis, interpretation, and functional follow-up of high-
throughput sequencing studies in respiratory, critical care, and
sleep medicine research. This workshop brought together experts
in multiple fields, including genetic epidemiology, biobanking,

bioinformatics, and research ethics, along with physician-scientists
with expertise in a range of relevant diseases. The workshop focused
on application of DNA and RNA sequencing research in common
chronic diseases and did not cover sequencing studies in lung
cancer, monogenic diseases (e.g., cystic fibrosis), or microbiome
sequencing. Participants reviewed and discussed study design,
data analysis and presentation, interpretation, functional follow-up,
and reporting of results. This report summarizes the main
conclusions of the workshop, specifically addressing the application
of these methods in respiratory, critical care, and sleep medicine
research. This workshop report may serve as a resource for our
research community as well as for journal editors and reviewers
of sequencing-based manuscript submissions in our research
field.
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Overview

High-throughput, next-generation
sequencing (NGS) technologies (see Box 1
for a glossary of terms) are becoming
increasingly used in studies of common,
complex diseases, including respiratory
diseases such as asthma, chronic obstructive
pulmonary disease, and idiopathic
pulmonary fibrosis; critical illnesses; and
sleep disorders (Table 1, Figure 1) (1–15).
RNA sequencing is now more cost effective
than microarrays, and exome and whole-
genome DNA sequencing are rapidly
replacing genotyping arrays. Given the
widespread application of these techniques
in respiratory, critical care, and sleep
medicine research, a workshop was
organized at the ATS International
Conference in Washington, DC in May
2017. The aim of this workshop was to
review the design, analysis, interpretation,
and functional follow-up of high-
throughput sequencing studies in
respiratory, critical care, and sleep medicine
research. Although reviews and best-

practices guidelines for DNA and RNA
sequencing have been published (16, 17),
this workshop focused on the application of
DNA and RNA sequencing to common,
complex diseases in human populations but
not on epigenome or microbiome studies or
cancer genetics.

Workshop Agenda

The workshop participants focused on
five topics, each of which concluded
with a panel discussion. Areas of
emphasis included study design, ethical
considerations and health inequalities,
applications of DNA and RNA sequencing,
cell type heterogeneity, and functional
studies. Biomedical literature searches were
conducted by the speakers and co-chairs.
The co-chairs collected summaries from
speakers, and a writing group prepared the
document for review by the workshop
participants. Recommendations were
formulated by discussion and consensus
(Box 2, Figure 2).

Principles of Study Design

Study Designs and Phenotyping for
Genetic Epidemiology
The general principles of epidemiology
study design remain true for genetic
epidemiology studies, including subject
ascertainment, phenotype definition, and
sample size considerations, as summarized
in the Strengthening the Reporting of
Genetic Association Studies (STREGA)
Guidelines (18). There are several possible
designs for genetics studies of respiratory
disease. In the past, most studies enrolled
subjects ascertained for a specific condition.
These studies usually use careful
phenotyping to define the disease of
interest using endotypes, such as
methacholine challenge testing or
polysomnography (19–21). General
population (cohort) studies may offer the
advantage of large sample sizes and the
ability to study multiple outcomes,
although the phenotyping may not be as
precise. Questionnaires may be the primary
source of respiratory disease diagnosis,

Box 1. Definitions of Commonly Used Terms in Sequencing Studies
Batch effect: In a large study, library construction and sequencing is done in batches (e.g., 96-well plate), which is a source of technical
variation that should be addressed in the data analysis.

Complex trait: A disease or phenotype that does not followMendelian inheritance. Complex traits are likely influenced by multiple genes
and environmental factors. Most common human diseases would be considered complex diseases.

Deconvolution: RNA sequencing is frequently performed in tissues such as blood or lung, which are composed of multiple cell types.
Deconvolution methods aim to estimate the cell type proportions and/or identify the cell type(s) responsible for the expression of specific
genes.

Exome: The portion of the human genome (approximately 1%) that encodes for proteins. Whole-exome sequencing (WES) specifically
targets these sequences.

Expression quantitative trait locus (eQTL): A genetic variant, usually an SNP (see below), that affects the expression of a gene. eQTLs can
be located near the gene of interest (cis-eQTL) or distant (.1 Mb away) (trans-eQTL).

Genome-wide association study (GWAS): A study that assays hundreds of thousands to millions of SNPs across the genome and tests
each variant for association with a disease or trait of interest.

Mendelian disorder: A disease determined by variation in a single gene (e.g., cystic fibrosis or sickle cell disease).

Next-generation sequencing (NGS): Highly automated parallel sequencing technique of small fragments of DNA or RNA. Millions or
even billions of nucleotides, up to a whole genome, can be determined in 1 day.

RNA integrity number (RIN): A proprietary algorithm that quantifies RNA degradation on the basis of an electropherogram.

Single-nucleotide polymorphism (SNP): A single base pair change in DNA sequence (e.g., C to T) which is prevalent (.1%) in the general
populations. SNPs are the most common type of genetic variation.

Sequencing coverage/depth: For DNA sequencing, the number of reads that include a specific nucleotide in the sequencing experiment.
This can be averaged across the genome (e.g., 303). For RNA sequencing, sequencing depth is usually presented as the total number of
sequencing reads.

Variant calling: The process of identifying genetic variants (usually SNPs) in an individual exome or genome sequence.
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although several large cohorts have
included spirometry (22, 23). For common
diseases, the large numbers may offset the
potential for phenotypic heterogeneity (e.g.,
childhood vs. adult-onset asthma) or even
misclassification (e.g., chronic obstructive
pulmonary disease [COPD] misdiagnosed as
asthma, especially in women) (24). Recent
studies have linked genetics to the electronic

medical record (25). General population
cohorts have limited utility in studies of
critical illness, where subjects are enrolled in
the hospital (26). Although most recent
studies have been case–control or cohort
studies, family-based studies still play a role,
especially in the analysis of rare variants,
where transmission can be followed through
a pedigree (27).

As genomic data sharing has become
the norm, secondary analysis for respiratory
diseases is now routinely performed in
general population studies, such as the
Framingham Heart Study (22). When
secondary data will be used or when
multiple studies will be combined in a
meta-analysis, investigators must carefully
review the phenotyping methods, including

Table 1. Examples of human next-generation sequencing studies in respiratory, critical care, and sleep medicine

Technology Disease/Trait Study Design/
Subjects

Main Findings Validation Reference

Whole-exome
sequencing

Narcolepsy 18 Families 8Missense variants in P2Y11 Resequencing in 250 cases, 150
control subjects; in vitro
P2Y11 signaling assays

10

Whole-exome
sequencing

Bronchopulmonary
dysplasia

50 Twin pairs,
including 51
BPD cases

258 Genes with rare
nonsynonymous
mutations

Lung gene expression in
published human data and rat
BPD model, mouse
phenotype database

11

Whole-exome
sequencing

Airflow obstruction 100 Heavy
smokers with
normal
lung function

Nonsynonymous SNP in
CCDC38

Association testing in two
additional studies.
Immunohistochemistry in
bronchial epithelial cells.

6

Whole-exome
sequencing

Idiopathic pulmonary
fibrosis

79 Probands with
familial
pulmonary
fibrosis, 2,816
control subjects

Mutations in PARN found in
cases, not control
subjects. Mutations in
RTEL1 more common in
cases vs. control subjects

Mutations segregated in
families. Shorter leukocyte
telomeres in mutation
carriers.

8

Whole-genome
sequencing

Pulmonary vascular
disease

864 PAH, 16
PVOD/ PCH,
7,134
control subjects

EIF2AK4 mutations in 19
patients with PAH

Phenotype association with
younger age, reduced KCO,
shorter survival

12

Whole-genome
sequencing

Asthma WGS in 8,453
Icelanders,
imputation
in .150 K

Rare variant in IL33
associated with lower
eosinophil count, reduced
asthma risk

Genotyping in 6,465 cases,
.300 K control subjects;
interleukin-33 gene
expression; in vitro assay of
receptor binding

3

RNA sequencing Smoking Blood samples
from 229 current,
286 former
smokers

171 DE genes, including 7
lncRNAs, 8 genes with
differential exon use

Published microarray study 13

RNA sequencing COPD Lung tissue from
98 cases, 91
control
subjects

2,312 DE genes qPCR for seven genes 2

Single-cell RNA
sequencing

IPF FACS-sorted lung
epithelial cells
from
6 IPF, 3 control
subjects

4 Cell clusters: AT2, basal,
goblet, and indeterminate

Immunofluorescence confocal
microscopy for epithelial cell
markers

15

miRNA
sequencing

Sepsis Plasma from 29
sepsis, 44
noninfective
SIRS, 16 control
subjects

6 miRNAs distinguish sepsis
from SIRS

qPCR, correlation with
inflammatory cytokines

9

miRNA
sequencing

Exercise physiology Plasma before/
after treadmill
exercise
test, n = 26

miR-181b increased with
exercise

qPCR in separate cohort (n =
59), Skeletal muscle
expression in mouse exercise
model

14

Definition of abbreviations: BPD = bronchopulmonary dysplasia; COPD = chronic obstructive pulmonary disease; DE = differentially expressed; FACS =
fluorescence-activated cell sorter; IPF = idiopathic pulmonary fibrosis; KCO = carbon monoxide transfer coefficient; lncRNA = long noncoding RNA; PAH =
pulmonary arterial hypertension; PCH= pulmonary capillary hemangiomatosis; PMVEC = pulmonary microvascular endothelial cells, PVOD = pulmonary
veno-occlusive disease; qPCR = quantitative polymerase chain reaction; SIRS = Systemic Inflammatory Response Syndrome; SNP = single-nucleotide
polymorphism; WGS =whole-genome sequencing.
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the specific questionnaire items, to be sure
that similar traits are being compared. In
case–control studies, control subjects should
have comparable exposures, such as smokers

with normal lung function in COPD studies
or patients with multitrauma, pneumonia, or
sepsis who did not develop acute respiratory
distress syndrome (28–30).

Biobanks
Sequencing studies undertaken at the scale
required for well-powered association
testing require organized efforts, with
coordinated biobanking. Rare diseases and
phenotypes may be due to genetic variants
with high penetrance, which may be
detectable in relatively modest numbers of
samples. Even in this situation, and in the
absence of many different mutations
causing similar phenotypes, it is helpful to
draw on very large numbers of sequenced
individuals. Genomics England (the
“100,000 Genomes Project”) (31), the U.S.
National Heart, Lung, and Blood Institute
Trans-Omics in Precision Medicine
(TOPMed) (32), and the Genome
Aggregation Database (33) are initiatives
that will enhance such comparisons, which
are critical to confirm whether variants are
causal for the disease in question (Table 2).
The Genomics England project is recruiting
patients with cancers, infectious diseases
such as tuberculosis, and rare diseases,
including primary ciliary dyskinesia,
spontaneous pneumothorax, familial
pulmonary fibrosis, and familial multiple
pulmonary arteriovenous malformations.

Complementing efforts that specifically
recruit individuals with particular diseases are
population biobanks that are agnostic to
health status, many of which have extensive
longitudinal follow-up. The UK Biobank
recruited 500,000 participants aged 40 to
69 years (34). In addition to a baseline
assessment, subsequent health status is
evaluated via linked electronic healthcare
records. Beginning with respiratory studies in
50,000 participants (35), genome-wide
genotyping has now been extended to all
participants.Whole-exome sequencing (WES)
is underway, and whole-genome sequencing
(WGS) has recently been announced in
collaboration with industry partners. The
sequence data will be made available to the
research community. Although 95% of
the UK Biobank is of European ancestry,
similar efforts are in progress in China in
the Kadoorie Biobank (36).

Health Equity
Many respiratory, critical care, and sleep
disorders have substantial differences in
disease susceptibility, prevalence, and
burden according to race and ethnicity (37).
Genetic and genomic factors, along with
their interplay with the environment,
contribute to these differences. For example,
African ancestry is a strong predictor of lung
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Figure 1. Next-generation sequencing methodology (Illumina). Genomic DNA is fragmented and
sequencing adaptors are attached. The genomic library is then hybridized to complementary oligonucleotide
probes in the flow cell chamber. Because there are adaptors on both ends, hybridization results in a bridge.
Amplification leads to clusters of fragments with the same sequence. Clusters are denatured; then,
sequencing-by-synthesis involves the addition of fluorescently labeled nucleotides, with serial imaging after
the incorporation of each nucleotide. Reprinted by permission from Reference 116.
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function (38). Some disease susceptibility or
pharmacogenetic variants that have been
identified in diseases such as asthma,
emphysema, and sleep apnea (39–41) are
population specific and may be absent or low
frequency in other populations (42, 43).
Although most of these studies have been
performed using common variants, there is
even more ethnic diversity for rare variants
(44). Individuals of African ancestry harbor
a larger number of rare variants than white
individuals, which may have important
clinical implications. For example,
rare variants identified as causing
cardiomyopathy in white individuals were so
common in African Americans as to indicate
that they were unlikely to be pathogenic (45).
To date, there has been a large gap in research
studies involving non-white individuals, for
reasons including convenience, access, and
genetic heterogeneity (46). In addition, there
have also been disparities in funding
minority investigators or diseases that
predominately affect minorities, such as
sickle cell disease (47). By 2060, only 44% of
the United States will be non-Hispanic
white (48). There is a strong scientific
and moral justification for expanding
sequencing studies into other ancestries.
Efforts such as TOPMed are performing

WGS in a large number of non-European
samples. These and other efforts can help
ensure that sequencing efforts improve
health equity for the benefit of all.

Research Ethics
Several ethical challenges have emerged
related to NGS studies. Because of the
ability to assay numerous sites and the
requirements for data sharing by the U.S.
National Institutes of Health (NIH)
and other funders (49), genome-wide
association studies and sequencing data are
often used for secondary studies, which may
be unrelated to the initial trait or disease
proposed. To allow for these studies,
investigators must request and subjects must
provide broad consent for secondary data
analysis, as opposed to narrow consent for a
specific disease. There is no consensus about
what is required for broad consent for
databases such as the National Center for
Biotechnology Information database of
Genotypes and Phenotypes (dbGaP) (50);
these decisions are frequently left to local
institutional review boards.

In addition to the genes of interest, WES
and WGS studies will identify other genetic
variants that may be clinically significant for
the subject or their family members. The

American College of Medical Genetics has
provided recommendations for the reporting
of secondary results from clinical sequencing
(51), providing a list of 59 actionable genes,
which, interestingly, does not include the
genes for cystic fibrosis or alpha-1 antitrypsin
deficiency. However, it is not clear how these
recommendations would apply to research
studies, where the sequencing is not
performed in a Clinical Laboratory
Improvement Amendments (CLIA)-certified
laboratory. There is usually no mechanism or
resources for confirmatory clinical
sequencing or genetic counseling. Sequencing
studies of DNA of patients with a critical
illness require consent from patient proxies
as well as the designation of an individual
to receive study results if the patient remains
incapacitated or dies (52).

Next-Generation DNA
Sequencing

Study Design
Humans carry an extraordinary amount of
genetic diversity. Although most variants
in a given individual are common, most
genetic variants in a population are rare
(i.e., present in ,1% of the population).

Box 2: Recommendations for Design and Analysis of Next-Generation Sequencing Studies
d General principles of genetic epidemiology study design are especially important in next-generation sequencing studies. Disease-

specific studies may have more detailed phenotyping, whereas population studies may allow for larger sample sizes.
d Investigators must clearly define the phenotypes of both cases and control subjects, including consideration of relevant exposures, such

as smoking.
d Relying only on datasets largely composed of individuals of European ancestry will limit discoveries, especially in diseases that may be

more prevalent in other racial or ethnic groups. Therefore, we suggest expanding sequencing efforts in subjects of different ancestries.
d Studies should consider broad consent for secondary data use.
d Researchers should use standardized methods of experimental design and data analysis for exome and whole-genome sequencing

studies.
d Methods for design and analysis in RNA sequencing studies are more variable. Researchers should clearly document their methods,

including software versions and input parameters, and consider validating key results with a different analysis method.
d Multidisciplinary teams should include bioinformaticians, statisticians, and computational biologists to assist in the management and

analysis of large datasets.
d Quality control is the responsibility of the investigators. It should not be assumed that the core sequencing facility has performed all the

necessary quality control steps.
d Data sharing is required by many funders and should be the default.
d Because of the extreme cellular heterogeneity of the lung, future studies should address cellular heterogeneity in the design and analysis

by any of the proposed methods.
d We anticipate an important role of single-cell sequencing in the future. For wider acceptance, single-cell sequencing has to address

specific hypotheses and should be held to the same rigorous standards as other study designs, even while the laboratory and statistical
methods are under development.

d Given the pervasive influence of circadian biology on multiple cellular processes, including gene expression, studies should time stamp
sample collection.

d Integrating different omics datasets, both at the single-cell and at the tissue level, will likely increase our understanding of the complex
diseases in respiratory, critical care, and sleep medicine.

d Laboratory validation is an important next step toward the eventual translation of results.
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Genotyping microarrays, together with
methods of genotype imputation, efficiently
allow testing of more prevalent genetic
variants. However, comprehensive assessment
of DNA variation, including discovery of rare
or novel variants, requires a test that assays
each base pair. The exponential decrease in
sequencing costs has led to the ability to
perform WGS studies to identify the
contributions of rare variants to disease.

The design of a DNA sequencing
study should consider several factors.
Sequencing depth determines the
accuracy of variant calling in an
individual. For example, 303 coverage
leads to high accuracy over most of the
genome. However, one can sequence more
samples for the same cost using lower
coverage (e.g., 3–63). Although less
accurate, lower coverage still provides
suitable variant information for genetic
association testing and may be superior to
genotyping (53). Another consideration
is targeted (e.g., exome) versus WGS.
The exome harbors most rare, highly
deleterious mutations; sequencing only
these regions reduces costs, although
these savings are offset somewhat by
the additional costs and inefficiencies of
library preparation. Some coding regions
may still be poorly covered by WES (54).

Identifying Causal Variants
NGS has led to breakthroughs in the
discovery of genes for Mendelian diseases

and other rare variants of strong effect (55,
56). Several groups have provided
guidelines for identifying causal variants
for Mendelian disease (57) and for
identifying genetic association in WES (58)
andWGS (59). However, the interpretation
of WES and WGS data has specific
challenges. Very small error rates over
billions of base pairs have the potential to
generate many false positives (60),
although advances in technology,
approaches, and bioinformatics methods
have vastly improved data quality.
Similarly, the large number of variants
carried by any individual (27) can also lead
to false positives, and caution must be used
to avoid inflated estimates of pathogenicity
(61). In addition, most studies of rare
variants are likely underpowered (5, 58,
62). The growing availability of population-
specific high-quality reference genomes
will aid comparison of diseased study
populations to these reference datasets.
Coordinated efforts are providing
population-based reference data important
for filtering causal variants (33) and
performing WGS in large numbers of
subjects, such as the NIH Centers for
Common Disease Genomics and TOPMed.
These efforts will lead to new rare variant
discoveries as well as improved reference
panels for genotyping studies and fine
mapping. Table 3 details recommendations
for reporting the results of a WES or WGS
study.

Next-Generation RNA
Sequencing

Study Design
In contrast to genome sequence, gene
expression is dependent on cell, tissue, and
disease state. Although this context
dependence makes sample collection and
assays more challenging, gene expression
may be more closely reflective of disease
pathophysiology. Gene expression
microarrays have been largely replaced
by RNA-seq, which can assay a broader
range of RNA types with increased
sensitivity and lower costs. RNA-seq studies
can be grouped into two broad categories
on the basis of their study designs (63).
Annotation studies aim to define the
transcriptome of a specific cell type or
organism, including novel transcripts. In
comparison, quantification or differential
expression studies compare transcript levels
across experimental conditions or diseases.
An introduction to RNA-seq for bench
science has been recently published (64).

Several factors are important in
designing an RNA-seq study in human
populations. Because sequencing costs
depend on the number of reads, there is
an inherent trade-off between sample size
and sequencing depth, similar to DNA
sequencing. As low as 1 to 10 million reads
per sample may be adequate for differential
expression (65, 66), whereas up to 200
million reads may be required to define all
isoforms (67, 68). For most human disease
studies, the number of samples may be more
important than the number of reads (69).

Sequencing Methods
Sequencing technology has been reviewed
elsewhere (70, 71). Library construction
follows one of three general protocols (72).
Poly-A capture is best for selecting coding
transcripts but requires the highest-quality
input RNA. Total RNA libraries include
more RNA species; ribosomal RNA depletion
is used to improve yield. Methods to capture
specific target sequences can be used for
lower-quality or fragmented RNA, including
formalin-fixed paraffin-embedded tissue.
Globin depletion is a common step for whole
blood samples. Small RNA sequencing
(i.e., microRNA) requires a specific library
construction protocol.

Investigators must determine the
minimum quality for input RNA, on the
basis of RNA integrity number. Other

Table 2. Biobanks and commonly used databases for next-generation sequencing
research

URL

Biobanks and other large sequencing studies
Centers for Common Disease Genomics www.genome.gov/27563570
China Kadoorie Biobank www.ckbiobank.org
Genomics England (“100,000 Genomes Project”) www.genomicsengland.co.uk
Trans-Omics in Precision Medicine (TOPMed) www.nhlbiwgs.org
U.K. Biobank www.ukbiobank.ac.uk

Databases
Database of Genotypes and Phenotypes (dbGaP) www.ncbi.nlm.nih.gov/gap
Ensembl genome browser www.ensembl.org
Gene Expression Omnibus (GEO) www.ncbi.nlm.nih.gov/geo
Genome Aggregation Database (gnomAD) http://gnomad.broadinstitute.org/
Genotype-Tissue Expression project (GTEx) www.gtexportal.org
Human Cell Atlas www.humancellatlas.org
Lung Map www.lungmap.net
Reference Sequence Database (RefSeq) www.ncbi.nlm.nih.gov/refseq
Sequence Read Archive (SRA) www.ncbi.nlm.nih.gov/sra
University of California Santa Cruz (UCSC)

Genome Browser
www.genome.ucsc.edu
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variables in sequencing include stranded
versus unstranded protocols, single versus
paired end reads, and insert length. Single-
end short reads (<75 bp) are acceptable
for standard differential expression (73).
Paired-end longer reads are preferable for
annotating splicing events. In larger studies,
samples should be randomized across
batches to minimize confounding; analysis
should account for batch effects. Gene
expression in human tissues can be quite
variable, depending on sampling, technical
factors, and cellular heterogeneity (74). The
latter can be addressed by deconvolution

methods, which require additional
information, either cell counts or cell-
specific reference transcriptomes.

A review of the specific steps and
analytic tools for RNA-seq data analysis has
been recently published (16). However,
there remains controversy regarding the
optimal methods for normalization of RNA-
seq data and for detecting differential
expression. A few studies have examined
these questions systematically (75–79).
Furthermore, selection of an analytic
approach is also dependent on the
experimental design; for example, not

all available tools support inclusion of
covariates. Caution is advised regarding the
interpretation of results where the number
of biologic replicates in an experiment is
small or where transcripts are expressed at
very low levels.

Reporting for RNA-Seq Experiments
We propose minimum elements to be
reported for RNA-seq experiments
(Table 3), which extend the Minimal
Information about Microarray Experiments
(MIAME) guidelines (80). These minimal
reporting requirements are important
because of the rapidly evolving landscape of
methods and tools for the analysis of RNA-
seq data, the need to ensure RNA-seq data
are both interpretable and reproducible,
and the need to facilitate access to and
integration of RNA-seq experiments across
a spectrum of biologic and experimental
conditions. Given the lack of consensus on
the optimal methods for mapping versus
assembling RNA-seq reads, normalizing
RNA-seq data, and assessing for differential
expression, we encourage investigators to
repeat key analyses using more than one
approach.

Data Analysis

Bioinformatics
Sequencing technologies have improved
to the point where the greatest barrier to
obtaining scientific insights is more related
to data storage, analysis, and interpretation
than its generation (81). The first critical
component is an interdisciplinary team with
expertise encompassing both the design
and the use of specialized methods on
sophisticated computational resources
(82, 83). Institutional infrastructure or
external service providers that offer high-
performance computing environments,
including cloud computing and core
facilities, are important to facilitate the
generation and analysis of high-throughput
sequence data. One significant advantage
to these solutions is that they distribute
costs over many users. In addition, these
resources can help ensure high-quality data
and results, as they are generated by devoted
personnel who are more familiar with NGS
approaches than occasional users. On the
other hand, some analytic steps are best
performed with feedback from those
familiar with experimental design, rather
than by pipelines that may overlook

Study design

Enrollment

Sequencing

Data analysis

Research products

Formulation of study aims
Consideration of ethical aspects and health disparities

Subject consent and phenotyping
Sample collection

Nucleic acid isolation
Library construction
Next-gen sequencing

Sequence reads

Genome alignment

Quality control
Variant calling
Association analysis

Quality control
Quantification
Differential expression

RNADNA

Downstream analyses

Replication
studies

Data 
integration

Functional
validation

Manuscript Shared 
datasets

Figure 2. Workflow for a next-generation sequencing study in human disease.
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important issues. Ideally, researchers with
1) backgrounds in chemistry and molecular
biology involved in generating the data,
2) in-depth familiarity with analysis of
sequencing data, and 3) backgrounds in
design of a particular experiment will
communicate intermediate results and tailor
analytical steps as needed.

Quality Control
Quality control (QC) in a rigorous and
standardized matter is critical. After
raw reads are demultiplexed after their
generation by the sequencing instrument,
QC steps to ensure sequencing worked
appropriately provide output, including
number of reads per sample, quality score
of reads at each base, and overrepresented
sequences (e.g., primers). Subject-level

QC includes checking for sex
consistencies, duplicates, and related
subjects. After reads are aligned to a
reference genome, additional parameters
assess mapping quality. For example,
software tools (Tables 4 and 5) can be used
to summarize the number of mapped
reads, including junction-spanning reads
for RNA-seq, and can compute the
number of bases assigned to various
classes of DNA/RNA according to a
reference file. For RNA-seq, use
of Ambion External RNA Controls
Consortium spike-ins offers an additional
QC measure. Scripts that provide
standardized and reproducible reports on
the basis of output from these various
programs, such as those that are part of
the Genome Analysis Toolkit (GATK)

best-practices pipeline for DNA-Seq (84)
or taffeta scripts for RNA-seq (85),
facilitate the assessment of QC and
decisions about which samples should be
excluded or what kinds of bias might be
present. Mapped read files that are in bam
format can be converted to bigwig or other
compressed format for display in a
browser, such as the University of
California Santa Cruz (UCSC) genome
browser, to verify that mapping of
particular genes looks as expected (e.g.,
that full lengths of genes are covered vs.
highly irregular portions).

Statistical Analysis
After alignment of reads, DNA-Seq data
are analyzed to search for variation
relative to a reference genome, and
Variant Call Format (vcf/bcf) files are
obtained. There are a variety of statistical
tests for association within the WGS
framework. The simplest consideration is
based on frequency of the variant and/or a
prior probability of being associated with
disease (e.g., known pathogenic,
deleterious, functionally relevant).
Common variants, defined as those with
minor allele frequency greater than 0.01
to 0.05 or minor allele count greater than
10 to 20, depending on the sample size and
factors such as case–control imbalance,
are usually analyzed with a genome-wide
association study approach of single-
nucleotide polymorphism (SNP)
association tests (86). Rare and/or
deleterious variants are generally analyzed
using a window-based approach, where
windows consist of SNPs in or near a gene
or are based on sliding genome regions of
5 to 50 kb. Statistics for each window are
obtained using different approaches:
burden tests collapse many variants into a
single risk score but assume all variants are
similar in effect (i.e., risk alleles); adaptive
burden tests collapse many variants but
allow for risk, protective and neutral; and
variance component tests apply random
effects modeling (87). There is also a class
of window-based rare variant tests that
combine the variance component and
burden test framework to take advantage
of strengths of both; sequence kernel
association test-optimal (SKAT-O) is the
most commonly used (88). It is routine to
apply multiple rare-variant tests and use
alternative options of windows, resulting
in increased multiple testing complexity.
In addition to Bonferroni correction,

Table 3. Minimal elements required in the reporting of high-throughput sequencing
studies.

Analytic Step Required Elements

Whole-exome and genome
sequencing

Preprocessing and preanalysis
quality control

Randomization of samples
Target design, when applicable (e.g., whole-exome
sequencing)

Methods for quality assessment of:
Raw reads
Aligned reads and coverage
Global data quality
Ancestry of samples (comparison with study and

to reference genomes)
Core analytics Method of read alignment

Method of variant calling
Method of association analyses

Advanced analytics Methods for integration with other data types

RNA sequencing
Preprocessing and preanalysis

quality control
Spike-in use
Randomization of samples
Number of raw reads
Methods for quality assessment of:
Raw reads
Aligned reads
Quantification of reads
Reproducibility of replicates
Global data quality

Core analytics Method of transcript/gene identification
Method of transcript/gene quantification
Method of normalization
Method of batch correction
Method of detection of differential expression

Advanced analytics Method of transcript/isoform discovery
Method of indel detection
Method of gene fusion detection
Method of variant detection
Method for single-cell analyses
Methods for integration with other data types

Required elements should also include the package or software name, version number, and settings
used for the analysis.
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permutation and Bayesian approaches
are used to adjust for multiple
comparisons.

Controversy about the best way to
analyze RNA-seq data still exists, and
methods development is ongoing (89). For
samples passing initial QC, the next step
involves quantification of levels of genes
or transcripts. In most cases, reference
gene or transcript files are obtained
from Ensembl (90) or RefSeq (91). The
output of the quantification process is
then used with an appropriate software
package to measure differential expression
and assess related QC. Regardless of
program used, it is important to report
false-discovery rate, adjusted P values and
fold changes.

Data Sharing

To ensure that high-throughput sequence
results are reproducible and that costly
data can benefit all stakeholders, data-
sharing resources have grown

significantly. Both raw data and results
generated from projects sponsored by
major funders are required to be deposited
into publicly available databases. DNA-
Seq data, including that of TOPMed,
are deposited in dbGaP, along with
individual-level phenotype and
association results (50). RNA-seq and
other sequencing data are available in
the Sequence Read Archive and can be
discovered via the Gene Expression
Omnibus (92).

Cell Type Heterogeneity

An important issue for consideration in
many omics studies of the lung is cell
heterogeneity. The lung is a complex
organ comprising approximately forty
resident cell types (93), a growing number
of cell subpopulations that are present
either transiently during development or
in adult lung (94), as well as many types of
inflammatory cells that infiltrate the
airways and alveoli during periods of

injury or disease. Thus, a signal measured
by omics technologies in the whole lung
can reflect a change in the pattern of
expression of the molecules measured
within a certain cell type, a change in the
cellular composition of the lung, or both.
There are three main approaches to deal
with cellular heterogeneity. One approach
is to perform statistical deconvolution of
omic profiles by relying on cell-specific
features from reference datasets. This
approach has been used widely in
peripheral blood profiling studies (95) and
more recently on complex tissues (96), but
it is highly dependent on known markers
and difficult to implement for lung cell
populations because of the limitations of
appropriate reference datasets. The
second approach is to isolate cell types on
the basis of cell surface markers using flow
cytometry or specific areas of the lung by
laser capture microdissection (LCM).
Although cell sorting is often used in
immunological studies and has facilitated
major contributions to the field (97), it is
limited by the need for known cell markers
and antibodies for cell populations of
interest, as well as concerns that stress
from cell sorting may affect gene
expression patterns. LCM can be
technically challenging on human lung
tissue but has had some success in
conjunction with sequencing technologies
(98). However, in most benign tissues,
the resolution of LCM allows for enriching
for a regional microenvironment but
not for dissecting between different cell
types.

Single-Cell Sequencing

The recently developed single-cell
technologies provide the best solution
to identification of all relevant cell
populations, although technical
limitations remain (99–101). The
reproducibility and success of such
studies depend greatly on availability
of high-quality human tissue, on cellular
susceptibility to stress, and on the
platforms used (102). Despite these
limitations, single-cell RNA-seq studies
have shed light on lung cell population
heterogeneity during lung development
(103) and in lung diseases such as
idiopathic pulmonary fibrosis (15). The
recent development of single-nucleus
RNA-seq may address some of the issues

Table 4. Software for DNA sequencing studies

Task Tools URL

Alignment BWA-MEM (117) http://bio-bwa.sourceforge.net
Bowtie2 (118) http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml
Quality
control

Raw reads
FastQC http://www.bioinformatics.babraham.ac.

uk/projects/fastqc/
FASTX-Toolkit http://hannonlab.cshl.edu/fastx_toolkit/

Mapping
BAMtools (119) https://github.com/pezmaster31/bamtools/
Picard Tools https://broadinstitute.github.io/picard/

Variants
GATK (120) https://software.broadinstitute.org/gatk/

Variant
calling

SAMtools (121) http://www.htslib.org
GATK unified genotyper,

haplotype caller, variant
quality score
recalibration (122)

https://software.broadinstitute.org/gatk/

Visualization Integrative Genomics
Viewer (IGV) (123)

http://software.broadinstitute.org/software/
igv/

UCSC Genome Browser
(124)

http://www.genome.ucsc.edu/

Association
analysis

PLINK 2 (common
variants) (125)

https://www.cog-genomics.org/plink2/

SKAT-O (rare variants)
(88)

https://www.hsph.harvard.edu/skat/

GENESIS (rare
variants) (126)

https://bioconductor.org/packages/release/
bioc/html/GENESIS.html

BOLT-LMM (127) https://data.broadinstitute.org/alkesgroup/
BOLT-LMM/

This table provides an overview of commonly used software tools for performing analysis of next-
generation sequencing data. Because the field continues to evolve rapidly, additional tools not listed in
this table may also be useful to researchers.
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with tissue quality (104). To address
cellular heterogeneity in human lung
disease, the field needs a “lung (disease)
atlas,” such as the one proposed by the

human cell atlas (105), a large
collaborative set of studies that will
systematically profile all cells in
diseased and healthy human lungs.

Multiomics Integration

DNA-seq offers the opportunity to detect
different sources of DNA variation,
including common and rare single-
nucleotide variant and small and large
deletions and insertions, whereas RNA-seq
provides full assessment of the cell or tissue
transcriptome at a given point in time, with
a high dynamic range of these transcripts,
different mRNA transcript isoforms, as well
as different classes of mRNA and noncoding
RNAs (ncRNAs). Integrative genomics
methods evaluate the functional significance
of DNA variation on gene expression. First,
these address the relation of genetic
variation with transcript abundance
(expression quantitative trait locus, eQTL).
Because SNP variants can be called in RNA-
seq, this offers a direct assessment of an
eQTL effect if an SNP is present in its
heterozygous form; comparison of the allelic
expression demonstrates the relation of an
SNP with transcript abundance (allelic
imbalance). Because many disease SNPs
exert their function through eQTLs, well-
powered lung-relevant eQTL datasets are
needed. Until now, many studies have been
performed in mixed cell populations of
white blood cells (106) or whole lung (107).
Because eQTLs may be cell specific, lung cell
eQTL maps are needed to increase our
understanding of lung-specific disease
SNPs. Second, RNA-seq enables assessment
of the relation of genetic variation with
splicing events leading to alternative isoform
expression (splice QTL). Finally, the
association of genetic variation with
transcripts induced by disease or specific
stimuli (context-dependent eQTLs) can be
investigated either in paired observational
human studies or ex vivo in laboratory
settings (Table 6). Because most respiratory
diseases develop as a result from
environmental exposures and genetic
background, the study of inducible eQTLs
may offer a good model to understand
disease development by integrating
genetic variation with induced gene
expression.

Using study-specific subsets of RNA-
seq data or external reference datasets such
as the GTEx (Genotype-Tissue Expression
project) consortium (108) allows for the
ability to impute gene expression in large
numbers of individuals for whom only
genetic variant data are available (109).
These integrative approaches can expand

Table 5. Software for RNA sequencing studies

Task Tools URL

Alignment Bowtie (128) http: //bowtie-bio.sourceforge.net/index.
shtml

STAR (129) https: //github.com/alexdobin/STAR/
TopHat (130) https: //ccb.jhu.edu/software/tophat/index.

shtml
Transcript
quantification

Cufflinks (130) http: //cole-trapnell-lab.github.io/cufflinks/
eXpress (131) https: //pachterlab.github.io/eXpress/
HTSeq-count (132) http: //htseq.readthedocs.io/en/master/

count.html
Kallisto (133) https: //pachterlab.github.io/kallisto/
RSEM (134) https: //github.com/deweylab/RSEM

Quality control Raw reads
FastQC http: //www.bioinformatics.babraham.ac.uk/

projects/fastqc/
FASTX-Toolkit http: //hannonlab.cshl.edu/fastx_toolkit/

Mapping
BAMtools (119) https: //github.com/pezmaster31/bamtools/
Picard Tools https: //broadinstitute.github.io/picard/
RSeQC (135) http: //rseqc.sourceforge.net

Quantification
NOISeq (136) https: //bioconductor.org/packages/release/

bioc/html/NOISeq.html
Differential
expression

DEGseq (137) https: //bioconductor.org/packages/release/
bioc/html/DEGseq.html

DESeq2 (138) https: //bioconductor.org/packages/release/
bioc/html/DESeq2.html

edgeR (139) http: //bioconductor.org/packages/release/
bioc/html/edgeR.html

limma/voom (140) https: //bioconductor.org/packages/release/
bioc/html/limma.html

PoissonSeq (141) https: //cran.r-project.org/web/packages/
PoissonSeq/index.html

NOISeq (136) https: //bioconductor.org/packages/release/
bioc/html/NOISeq.html

Sleuth (142) https: //pachterlab.github.io/sleuth/
Alternative splicing CuffDiff2 (143) http: //cole-trapnell-lab.github.io/cufflinks/

cuffdiff/
DEX-Seq (144) http: //bioconductor.org/packages/release/

bioc/html/DEXSeq.html
DSG-Seq (145) http: //bioinfo.au.tsinghua.edu.cn/software/

DSGseq/
MISO (146) http: //genes.mit.edu/burgelab/miso/
rSeqDiff (147) http: //www-personal.umich.edu/zjianghui/

rseqdiff/
Leafcutter (148) https: //github.com/davidaknowles/leafcutter

Visualization CummeRbund (130) http: //compbio.mit.edu/cummeRbund/
Integrative Genomics
Viewer (IGV) (123)

http: //software.broadinstitute.org/software/
igv/

RNASeqViewer (149) http: //bioinfo.au.tsinghua.edu.cn/software/
RNAseqViewer/

SplicePlot (150) http: //montgomerylab.stanford.edu/
spliceplot/index.html

SpliceSeq (151) https: //bioinformatics.mdanderson.org/
main/SpliceSeq:Overview

SplicingViewer (152) http: //bioinformatics.zj.cn/splicingviewer/
UCSC Genome
Browser (124)

http: //www.genome.ucsc.edu

This table provides an overview of commonly used software tools for performing analysis of RNA
sequencing data. Because the field continues to evolve rapidly, additional tools not listed in this table
may also be useful to researchers.

AMERICAN THORACIC SOCIETY DOCUMENTS

10 AnnalsATS Volume 16 Number 1| January 2019

http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
https://github.com/alexdobin/STAR/
https://github.com/alexdobin/STAR/
https://ccb.jhu.edu/software/tophat/index.shtml
https://ccb.jhu.edu/software/tophat/index.shtml
https://ccb.jhu.edu/software/tophat/index.shtml
http://cole-trapnell-lab.github.io/cufflinks/
http://cole-trapnell-lab.github.io/cufflinks/
https://pachterlab.github.io/eXpress/
https://pachterlab.github.io/eXpress/
http://htseq.readthedocs.io/en/master/count.html
http://htseq.readthedocs.io/en/master/count.html
http://htseq.readthedocs.io/en/master/count.html
https://pachterlab.github.io/kallisto/
https://pachterlab.github.io/kallisto/
https://github.com/deweylab/RSEM
https://github.com/deweylab/RSEM
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
https://github.com/pezmaster31/bamtools/
https://github.com/pezmaster31/bamtools/
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
http://rseqc.sourceforge.net
http://rseqc.sourceforge.net
https://bioconductor.org/packages/release/bioc/html/NOISeq.html
https://bioconductor.org/packages/release/bioc/html/NOISeq.html
https://bioconductor.org/packages/release/bioc/html/NOISeq.html
https://bioconductor.org/packages/release/bioc/html/DEGseq.html
https://bioconductor.org/packages/release/bioc/html/DEGseq.html
https://bioconductor.org/packages/release/bioc/html/DEGseq.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/PoissonSeq/index.html
https://cran.r-project.org/web/packages/PoissonSeq/index.html
https://cran.r-project.org/web/packages/PoissonSeq/index.html
https://bioconductor.org/packages/release/bioc/html/NOISeq.html
https://bioconductor.org/packages/release/bioc/html/NOISeq.html
https://bioconductor.org/packages/release/bioc/html/NOISeq.html
https://pachterlab.github.io/sleuth/
https://pachterlab.github.io/sleuth/
http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/
http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/
http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioinfo.au.tsinghua.edu.cn/software/DSGseq/
http://bioinfo.au.tsinghua.edu.cn/software/DSGseq/
http://bioinfo.au.tsinghua.edu.cn/software/DSGseq/
http://genes.mit.edu/burgelab/miso/
http://genes.mit.edu/burgelab/miso/
http://www-personal.umich.edu/%7Ejianghui/rseqdiff/
http://www-personal.umich.edu/%7Ejianghui/rseqdiff/
http://www-personal.umich.edu/%7Ejianghui/rseqdiff/
http://www-personal.umich.edu/%7Ejianghui/rseqdiff/
https://github.com/davidaknowles/leafcutter
https://github.com/davidaknowles/leafcutter
http://compbio.mit.edu/cummeRbund/
http://compbio.mit.edu/cummeRbund/
http://software.broadinstitute.org/software/igv/
http://software.broadinstitute.org/software/igv/
http://software.broadinstitute.org/software/igv/
http://bioinfo.au.tsinghua.edu.cn/software/RNAseqViewer/
http://bioinfo.au.tsinghua.edu.cn/software/RNAseqViewer/
http://bioinfo.au.tsinghua.edu.cn/software/RNAseqViewer/
http://montgomerylab.stanford.edu/spliceplot/index.html
http://montgomerylab.stanford.edu/spliceplot/index.html
http://montgomerylab.stanford.edu/spliceplot/index.html
https://bioinformatics.mdanderson.org/main/SpliceSeq:Overview
https://bioinformatics.mdanderson.org/main/SpliceSeq:Overview
https://bioinformatics.mdanderson.org/main/SpliceSeq:Overview
http://bioinformatics.zj.cn/splicingviewer/
http://bioinformatics.zj.cn/splicingviewer/
http://www.genome.ucsc.edu
http://www.genome.ucsc.edu


the value of smaller sample sizes with
transcript data to the larger datasets to
identify gene expression correlated with
phenotype (Table 6).

We anticipate that further integration
of other omics data in bulk tissue or at the
single-cell level, through efforts such as the
Lung Map (110), will markedly increase
our understanding of respiratory disease.
The efficiency and speed of these types
of analysis may be improved by the
implementation of composite measures
(111) in future research programs in
respiratory medicine, particularly as the
approach can be used for all types of
omics analysis, including transcriptomics,
proteomics, metabolomics, and epigenetics.
Omics integration analysis has advanced
considerably, and many machine learning
methods are now being used, including
Bayesian and network-based approaches
(112), and, more recently, deep learning and
neural networks (113).

Functional Validation

In functional studies, gene expression
may also be used as outcome, either in vivo

when human subjects or patients are
exposed to an environmental stimulus or
drugs or in human samples or animal
models. Comparative analysis of humans
and mouse models through RNA-seq may
enable swift validation of downstream
targets and provide insight in the validity
of the animal model (114). Additional
sequencing methods such as DNA-Seq,
Assay for Transposase-Accessible
Chromatin sequencing (ATAC-Seq),
and Chromatin Immunoprecipitation
sequencing (ChIP-Seq) can identify
functional regions affected by genetic
variants. Gene editing techniques
including Crispr-Cas9 that enable
knockdown of genes or SNP-specific
editing may be followed up by a readout on
the effects of gene regulatory networks
(115) (Table 6).

Conclusions

With large efforts such as TOPMed and
the U.K. Biobank, in addition to specific
disease studies, there is an ever-increasing
amount of sequencing data available for
studies of respiratory disease, critical care,

and sleep medicine. Because of the complex
nature of these studies, it is critical to
include researchers with multiple
backgrounds at the outset of study design,
including clinician-scientists and
epidemiologists who can enroll and
phenotype subjects; laboratory personnel
with skills in biobanking, sample
management, and high-throughput
sequencing; bioinformaticians,
statisticians, and computational biologists
who can manage and analyze data; and
molecular biologists who can conduct
functional validation studies. All of these
experts must collaborate to design studies,
interpret data, and present results. This
should not discourage new investigators
from participating in omics studies, as each
person can provide complementary
expertise. Specific recommendations
regarding study design, analysis, and
follow-up (Box 1) should serve as guides
for starting a new sequencing study or for
the critical appraisal of a completed study.
Genomics is a rapidly evolving field, and
researchers must keep abreast of best
practices. However, general principles of
study design and data reporting are likely
to remain valid in the future. n
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Table 6. Selected examples of omics integration and using omics for functional
validation studies

Technique Example

Context-dependent eQTLs Li and colleagues showed that cytokine production
by peripheral blood mononuclear cells on
stimulation depends on six specific SNPs (153).
One inducible cytokine QTL at the NAA35-
GOLM1 locus markedly modulated interleukin-6
production in response tomultiple pathogens and
also showed association with susceptibility to
candidemia.

Imputed gene expression (PrediXcan) Ferreira and colleagues tested for associations
between asthma and 17,190 genes found to have
cis- and/or trans-eQTLs across 12 cell types
relevant to asthma (154). They confirmed 37
geneswhere the associationwas driven by eQTLs
located in established risk loci for allergic disease
and discovered 11 novel genetic associations.

Gene knockdown Dixit and colleagues investigated the effect of gene
knockdown by CRISPR/Cas9 on RNA-seq
expression in human LPS stimulated bone
marrow dendritic cells, a method they called
Perturb-seq (155). By analyzing the transcriptional
consequences of perturbations of transcription
factors in these cells, they were able to interpret
the functional consequences of these
transcription factors, as well as their interaction,
uncovering their molecular mechanisms.

Definition of abbreviations: eQTL = expression quantitative trait locus; LPS = lipopolysaccharide;
QTL = quantitative trait locus; SNP = single-nucleotide polymorphism.
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