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ABSTRACT
Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer,
cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive
therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects
associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight
regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information
regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be
utilized to further facilitate the development of effective pharmacological modulators that can restore
normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the
benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an
overview of available compounds that target key Rac1 regulatory mechanisms and discuss future
therapeutic avenues arising from our understanding of thesemechanisms.
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Introduction

Ras-related C3 botulinum toxin substrate 1 (Rac1) is a
member of the Rac family of guanosine triphosphate phos-
phohydrolases (GTPases), a subfamily of the Rho family of
small GTPases, which are best known for their role in regu-
lating the cytoskeleton and gene expression. Since its
discovery, Rac1 has been implicated in various downstream
cellular functions, including, but not limited to, cellular
plasticity, migration and invasion, cellular adhesions, cell
proliferation, apoptosis, reactive oxygen species (ROS) pro-
duction and inflammatory responses, all of which are central
to normal cell physiology.1-3 However, deregulation of Rac1
signaling can have detrimental effects since Rac1-driven cel-
lular processes are also involved in a number of pathological
conditions, including cancer,4-6 cardiovascular diseases,7

neurodegenerative disorders,8 pathological inflammatory
responses,9,10 kidney disorders11-16 and infectious dis-
eases.17-19 As such, Rac1 presents an attractive therapeutic
target for combatting a number of human diseases. Yet, to
effectively target Rac1 in a clinical setting, a proper under-
standing of its regulation is required.

Given its importance in normal cell physiology and
the consequences associated with deregulation of Rac1
signaling, cells have evolved various mechanisms by

which Rac1 signaling is restricted both spatially and tem-
porally. Similarly to other small GTPases, Rac1 is a
nucleotide-binding protein that associates with both gua-
nosine diphosphate (GDP) and guanosine triphosphate
(GTP), which leads to Rac1 inactivation or activation,
respectively. Thus, Rac1 is mainly regulated via modulat-
ing its GDP-GTP binding, through the actions of gua-
nine nucleotide exchange factors (GEFs), GTPase
activating proteins (GAPs) and Rho guanine nucleotide
dissociation inhibitors (RhoGDIs) Rac1.1-3 Additionally,
Rac1 signaling is also modulated through post-transla-
tional modifications that dictate its activation status,
abundance and localization.20-36 It has also become
apparent that several factors influence Rac1 downstream
signaling, via coupling active Rac1 to specific down-
stream effectors, thereby selectively activating certain
Rac1-driven functions.3,31,33,37-46 Given the diverse
modes involved in Rac1 regulation, studies focused on
deciphering the underlying mechanisms implicated in
governing Rac1 signaling promise to provide insight into
novel therapeutic avenues for effective Rac1 targeting.
In particular, uncovering additional Rac1 signaling
regulatory cascades will help pinpoint key players in
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Rac1 signaling, thus expanding the repertoire of poten-
tial pharmacological targets that could be utilized
to antagonize Rac1 signaling deregulation in human
diseases.

In this review, we explore the benefits and potential
drawbacks of targeting Rac1 in a clinical setting, via
outlining the role of Rac1 in a number of human dis-
eases. We also provide an overview of available com-
pounds that target key Rac1 regulatory mechanisms
and discuss future therapeutic avenues arising from
both our current understanding of these mechanisms
and the recent advancements in drug discovery screen-
ing methodologies.

Rac1 signaling in human diseases

Role of Rac1 in cancer

It has long been established that Rac1 drives tumor initi-
ation, via serving as a Ras downstream effector, with in
vitro data demonstrating the requirement of Rac1 for full
oncogenic Ras transformation of NIH3T3 cells.47 In vivo
studies have also highlighted the importance of Rac1 in
both Kirsten rat sarcoma viral oncogene (K-Ras)-
induced lung cancer48 and Harvey rat sarcoma viral
oncogene (H-Ras)-induced skin cancer.49 Similarly to
other Rho GTPases, Rac1 is also implicated in cell cycle
progression, gene transcription and the release of pro-
angiogenic factors and subsequent promotion of neovas-
cularization, thereby promoting cancer initiation, pro-
gression and metastasis.50-52 In addition, Rac1 plays a
critical role in mediating cell motility and invasion, 2
major steps in the metastatic cascade.52-54 For example,
Rac1 drives the mesenchymal mode of cell migration, via
stimulating the formation of actin-rich membrane exten-
sions, such as lamellipodia, regulating the assembly of
cell-extracellular matrix (ECM) focal adhesions as well
as mediating myosin light chain (MLC) phosphorylation
and cell contraction.4,5,44,46,52,55,56 Additionally, Rac1
facilitates cancer cell invasion via controlling the expres-
sion and release of matrix metalloproteinases (MMPs),
which are required for ECM proteolytic degradation.57-59

Rac1 is also implicated in epithelial-mesenchymal transi-
tion (EMT) and mesenchymal-epithelial transition
(MET), key events in the metastatic cascade of epithelial
tumors, via mediating cellular plasticity and ECM modu-
lation.60-66 More recently, an in vivo study also revealed
that epidermis-specific activation of Rac1 in a transgenic
mouse model of differentiated sebaceous adenomas,
while not affecting tumor initiation, was associated with
the formation of less differentiated tumors that resemble
malignant sebaceous tumors, thereby implicating Rac1
in the malignant progression of sebaceous skin tumors.67

The importance of Rac1 in cancer is further demon-
strated by the reported deregulation of Rac1 protein level
and activity in a variety of tumors, which, in turn, facilitates
tumor initiation, progression and metastasis.6,52,68 For
example, Rac1 overexpression has been implicated in the
initiation and progression of gastric, testicular and breast
cancers.69-71 Overexpression of a splice variant of Rac1, des-
ignated Rac1b, has also been reported in a number of tumor
types, including colorectal cancer, breast cancer and lung
cancer.71,72,73 Unlike Rac1, Rac1b harbors an additional 57
nucleotides, leading to an in-frame insertion of 19 amino
acids immediately following Rac1’s switch II domain. Inter-
estingly, Rac1b is predominantly present in the active GTP-
bound form. This is attributed to a number of characteris-
tics, including a high intrinsic guanine nucleotide exchange
activity, granting Rac1b independence from GEFs, coupled
with a reducedGTPase activity and impaired RhoGDI bind-
ing. Altogether, this enables Rac1b to maintain its activated
state. However, given the location of the insertion and the
role of switch I and II in mediating Rac1 association with
downstream effectors, Rac1b displays impaired binding to a
number of known Rac1 effectors, including p21 activated
kinases (PAKs), leading to the activation of selective Rac1
downstream signaling cascades.74-76 Importantly, expres-
sion of Rac1bwas shown to promote growth transformation
in NIH3T3 cells.76 Additionally, depletion of Rac1b in
colorectal cancer cells results in a significant reduction in
cell viability, demonstrating the importance of Rac1b over-
expression for colorectal cancer cell survival.77 More
recently, in vivo data also implicated Rac1b in lung cancer
initiation and progression, with expression of Rac1b in lung
epithelial cells enhancing spontaneous tumor formation
and promoting EMT.78 Additionally, similarly to Rac1,
Rac1b is also required for K-Ras-induced lung cancer in
transgenic mouse models.73 Given its role in cancer,
together with its unique characteristics and limited down-
stream signaling cascades, Rac1b, thus, presents an attractive
therapeutic target, with potentially limited off-target effects.
Intriguingly, though, expression of Rac1b was shown to
interfere with Rac1 activation and proper plasmamembrane
localization in vitro, while enhancing the activation of the
closely related small GTPase Ras homolog gene family
member A (RhoA).79 Although, the mechanism and func-
tional significance of this Rac1b-mediated regulation of
Rac1 and RhoA is yet to be fully elucidated, it would be
important to determine whether alleviating this regulation
via targeting Rac1b might confer drug resistance in cancer
cells, due to increased Rac1 activation.

Until recently, overexpression of both Rac1 and its
splice variant Rac1b, together with deregulation of Rac1
regulators was considered the major mode of Rac1 sig-
naling perturbation in cancer.6 However, advancements
in screening methodologies have also enabled the
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identification of a number of activating mutations in
Rac1. Through exome sequencing of 147 melanomas, an
activating Rac1 mutation was identified in 9.2 % of sun-
exposed melanomas in which proline 29, located in the
highly conserved switch I region, is replaced by serine
(P29S).80 This mutation was also identified in a separate
study aimed at mapping driver mutations in melanoma,
further supporting a role for this this mutation in mela-
noma progression.81 Whole exome sequencing data
from 74 tumor and normal sample pairs also identified
Rac1 P29S as an activating mutation in head and neck
squamous cell carcinoma.82 Moreover, following the
sequencing of human cancer cell lines, Rac1 P29S was
also detected in the breast cancer cell line MDA-MB-
157. Additional Rac1 activating mutations were also
uncovered, including the replacement of asparagine 92
with isoleucine (N92I) and cysteine 157 with tyrosine
(C157Y).83 Interestingly, further analysis of the crystal
structure of the Rac1 P29S mutant revealed that this
mutation enhances Rac1 binding to its downstream
effectors due to relieving the conformational restraints
normally imposed by proline 29. This, in turn, leads to
prolonged Rac1 downstream signaling, which promotes
melanocyte proliferation and migration.80 It is unclear
whether Rac1 N92I and Rac1 C157Y induce similar con-
formational changes as observed with Rac1 P29S, how-
ever all 3 mutations are associated with a rapid
nucleotide exchange, thus favoring the GTP-bound state
of Rac1. All 3 mutations were also found to be highly
transforming in a number of cancer cell lines.83 Given
their prevalence in a large number of cancers,83 together
with evidence implicating mutations, such as Rac1 P29S
in conferring resistance against B-Raf proto-oncogene,
serine/threonine kinase (BRAF) inhibitors in mela-
noma,84 Rac1 activating mutants, similarly to Rac1b, rep-
resent attractive anti-cancer therapeutic targets.
However, a better understanding of their downstream
signaling cascades and their signaling overlap with wild
type Rac1 would be important, in order to exploit their
potential therapeutic benefit.

It is important to note that Rac1 also drives anti-tumori-
genic effects. This is mainly attributed to its role in main-
taining cadherin-mediated cell-cell contacts. For example,
expression of constitutively active Rac1 was shown to antag-
onize Ras transformation of Madin-Darby canine kidney II
(MDCKII) cells, by restoring epithelial morphology.85

Metastasis suppressor-1 (Mtss1) was also reported to regu-
late E-cadherin cell-cell adhesion stability through Rac1,
with expression of Mtss1 resulting in reduced hepatocyte
growth factor (HGF)-induced cell scattering through pro-
moting stronger cell-cell contacts. It has, thus, been pro-
posed that the observed loss of Mtss1 in a number of
cancers contributes to increased metastasis through

diminishing Rac1-mediated stabilization of cell-cell con-
tacts.86 Consistently, expression of T-cell lymphoma inva-
sion and metastasis-1 (Tiam1), a Rac-specific GEF, or
constitutively active Rac1 in the renal cell carcinoma cell
line ClearCa-28 inhibits cell migration, via enhancing E-
cadherin-mediated adhesions. In addition to the role of
Rac1 in regulating cell-cell contacts, Tiam1-Rac1 signaling
was also shown to impede cellular invasion through the
upregulation of tissue inhibitor of metalloproteinase-1
(TIMP-1) and -2 (TIMP-2), thereby counteracting MMP-
induced ECM degradation.87 The protective role of Rac1 in
cancer has also been demonstrated in vivo. For example,
while far fewer skin tumors developed in carcinogen-treated
Tiam1 knockout mice, proportionally they more often pro-
gressed to malignancy, thus indicating that Tiam1-Rac1 sig-
naling inhibits cancer progression.88 Similarly, Tiam1
deficiency in adenomatous polyposis coli (APC) mutant
multiple intestinal neoplasia (Min) mice reduced polyp
growth while enhancing the migration and invasion of the
intestinal tumors formed when compared to mice express-
ing Tiam1.89

Taken together, it is evident that deregulation of Rac1
signaling can drive tumor initiation, progression and
metastasis, making it an attractive therapeutic target.
However, given the contrasting roles of Rac1 in cancer, a
thorough understanding of factors that influence Rac1
downstream specificity and biological output is needed
prior to targeting Rac1 in a clinical setting.

Role of Rac1 in cardiovascular diseases

In addition to cancer, deregulation of Rac1 signaling has
been shown to drive cardiovascular diseases.7 For exam-
ple, expression of constitutively active Rac1 in cardio-
myocytes is associated with sarcomeric reorganization,
increased cell size as well as the induction of atrial natri-
uretic factor (ANF) expression, all of which are charac-
teristic of pathological cardiomyocyte hypertrophy, for
example as a consequence of mechanical stress and
ischemic injury.90 In vivo studies also highlight the role
of aberrant Rac1 activation in cardiovascular diseases.
This is evident from the prominent cardiomyopathy
phenotype associated with transgenic mice expressing
constitutively active Rac1.91 Constitutive activation of
Rac1 in vivo has also been shown to enhance the sponta-
neous development of cardiac hypertrophy, with mice
being more susceptible to ischemic injury with notable
increases in myocardial infarcted areas.92,93

In addition to increased Rac1 activation, pathological
cardiomyocyte hypertrophy is also associated with
enhanced ROS production.7 Interestingly, Rac1 plays a
crucial role in the activation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidases.94 For
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example, Rac1 regulates the assembly of NADPH oxidase
2 (NOX2) via binding to p67phox, an important cytosolic
regulatory subunit, and mediating its interaction with
gp91phox, the membrane-associated component of the
oxidase.94-96 NADPH oxidases constitute a family of
multi-subunit enzymes that generate the ROS superoxide
anion (O2

.¡). Deregulation of NADPH oxidases and
ROS overproduction have been extensively linked to car-
diovascular diseases.97 Thus, it is likely that aberrant
Rac1 activation is responsible, at least partially, for the
increased ROS production observed in cardiovascular
diseases. Indeed, expression of dominant-negative Rac1
has been shown to impede ROS production in cardio-
myocytes following mechanical stress-induced cardiac
hypertrophy.98 Similarly, Rac1 inactivation abolishes
angiotensin II-induced ROS generation in cardiomyo-
cytes.99 Importantly, cardiomyocyte-specific Rac1 dele-
tion in a transgenic mouse model was associated with
reduced NADPH activation and myocardial oxidative
stress, which correlated with decreased cardiac hypertro-
phy despite being subjected to angiotensin II-induced
hypertensive stress.100 All together, this demonstrates
that Rac1-mediated modulation of NADPH assembly
and activation as well as ROS production plays a critical
role in the progression of cardiovascular diseases. Thus,
developing compounds that specifically target this cas-
cade, while sparing other Rac1 functions provides an
important therapeutic avenue.

NADPH oxidases have also been shown to contribute
to atherosclerosis,101,102 thereby implicating Rac1 in dis-
ease progression. Inhibition of NADPH and the associ-
ated ROS production attenuates aortic atherosclerosis in
vivo.103 It, thus, follows that Rac1 inhibition or depletion
would also mimic this phenotype. Rac1 also regulates a
number of cellular processes that are associated with
advanced atherosclerosis. For example, expression of
dominant-negative Rac1 abolishes the migration of aor-
tic smooth muscle cells (SMCs),104 which are known to
accumulate in the inner layers of arteries during athero-
sclerosis.105 Rac1 signaling has also been shown to medi-
ate SMCs, migration and accumulation in arterial walls
in response to tumor necrosis factor-a (TNF-a) stimula-
tion.106 Additionally, Rac1 regulates endothelial perme-
ability, a key determinant of lipoproteins’ entry in
vascular walls. Intriguingly, although inactivation or
depletion of Rac1 has been shown to enhance endothelial
permeability,107,108 expression of Rac1 and the subse-
quent activation of its downstream effector PAK in
endothelial cells enhances junction permeability through
regulating adherens junctions as well as promoting cell
contractility through MLC phosphorylation.109 Indeed,
displacement of active PAK from endothelial cell-cell
contacts or inhibition of its activity were shown to

antagonize the role of vascular endothelial growth factor
(VEGF), basic fibroblast growth factor (bFGF), hista-
mine, TNF-a and thrombin in stimulating endothelial
permeability.109 Consistently, inhibition of PAK in vivo
reduces endothelial permeability in atherosclerosis-
prone regions.110 This indicates that increased activation
of Rac1-PAK signaling can stimulate atherosclerosis,
through enhancing the deposition of lipoproteins on vas-
culature walls. It also highlights the importance of down-
stream signaling specificity in determining the biological
output downstream of Rac1, which is of particular rele-
vance for the effective targeting of aberrant Rac1 signaling.

Rac1 also plays a key role in mediating the inflamma-
tory response associated with cardiovascular diseases.
For example, the movement of leukocytes from blood
vessels into arterial walls marks a key step in the inflam-
matory response associated with atherosclerosis.111

Thus, through driving leukocyte trans-endothelial migra-
tion and accumulation in arterial walls, Rac1 contributes
to inflammation in response to vascular injury.112

Together with regulating NADPH assembly and activa-
tion, the role of Rac1 in inflammation also implicates it
in the formation of aortic aneurysms113,114 and the initia-
tion and progression of chronic heart failure.115

Altogether, both in vitro and in vivo studies demon-
strate the role of Rac1 in cardiovascular diseases.
Through modulating actin cytoskeleton rearrangements,
gene expression, cell adhesions and migration, Rac1 con-
tributes to disease progression via affecting key pro-
cesses, such as endothelial permeability, ROS production
and the migration of SMCs and leukocytes. Thus, selec-
tive inhibition of these Rac1-driven processes might
prove particularly useful for attenuating cardiovascular
disease progression.

Role of Rac1 in neurodegenerative diseases

Rac1 signaling plays an essential role in neuronal devel-
opment, outgrowth, migration and plasticity. As such,
deregulation of Rac1 signaling is also implicated in neu-
rodegenerative diseases.8 Through regulating neuronal
survival, it is apparent that Rac1 has a protective function
against apoptosis-mediated neurodegeneration.116-119 In
familial amyotrophic lateral sclerosis (ALS), a neuromus-
cular disorder characterized by the loss of motor neu-
rons, cortex and upper and lower spinal cord, mutations
of Cu, Zn superoxide dismutase 1 (SOD1) have been
shown to contribute to the clinical manifestations of
ALS. Interestingly, expression of constitutively active
Rac1 attenuates neuronal death induced by SOD1
mutants.120 Mutations in alsin, a Rac1 GEF, have also
been reported in familial ALS as well as other motor neu-
ron diseases, such as primary lateral sclerosis and
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infantile-onset ascending hereditary spastic paralysis.121

Under physiological conditions, alsin serves as a Rac1
GEF that mediates Rac1-driven neurite outgrowth.122

Intriguingly, alsin mutants associated with motor neuron
diseases are rapidly degraded when expressed in human
cells.123 This suggests that the loss-of-function of alsin,
and by association failure to activate Rac1, might play a
key role in the propagation of neurodegeneration.
Indeed, knockdown of alsin in murine spinal motor neu-
rons suppresses neuronal outgrowth and induces cell
death, effects that are abrogated by the expression of
constitutively active Rac1.117 Additionally, alsin has been
shown to antagonize the effects of SOD1 mutants on
motor neuronal death in a Rac1-dependent manner,116

further highlighting the protective role of Rac1 in neuro-
degenerative diseases.

The protective function of Rac1 also extends to
Parkinson’s disease, a neurodegenerative locomotive,
cognitive and behavioral disorder that is caused by the
degeneration of the nigrostriatal dopaminergic neurons
of the midbrain. Mutations in leucine-rich repeat kinase
2 (LRRK2) are considered the most common genetic
cause of familial Parkinson’s disease.124 Interestingly,
expression of Rac1 rescues neurite retraction and
neuronal cell death induced by LRRK2 mutants.125 This
suggests that, similar to ALS, Parkinson’s disease pro-
gression might require diminished Rac1 activity.

Intriguingly, despite the apparent protective role of
Rac1 in neurodegenerative diseases, SOD1 mutations in
microglia have been shown to enhance Rac1 activity.
This, in turn, promotes Rac1-driven activation of
NADPH oxidase and ROS overproduction,126,127 which
are known to contribute to the motor neuron degenera-
tion attributed to SOD1 mutations.128 Similarly, abnor-
mal ROS production has also been linked to the
progression of Huntington’s disease, a neurodegenerative
disorder with debilitating clinical manifestations, includ-
ing involuntary body movement, cognitive impairment
and eventually death. This is clearly demonstrated by the
enhanced survival associated with pharmacological inhi-
bition and genetic deletion of NADPH oxidase in
Huntington’s disease mouse models.129 In addition to its
role in ROS production, Rac1 and its downstream effec-
tor PAK have been shown to interact with mutant hun-
tingtin in a yeast 2-hybrid screen.130 Mutant huntingtin
forms toxic protein aggregates that correlate with disease
onset. Thus by directly binding to mutant huntingtin,
Rac1 might directly contribute to the development of
Huntington’s disease.

Rac1 signaling is also implicated in Alzheimer’s disease,
a neurodegenerative disorder characterized by neuronal
loss in the hippocampus and cerebral cortex. A hallmark
of Alzheimer’s disease is the aberrant accumulation of

extracellular amyloid-b plaques, which correlates with
both disease onset and synaptic dysfunction observed dur-
ing disease progression.131 Interestingly, Rac1 has been
shown to regulate the transcription and expression of the
amyloid precursor protein (APP), the proteolytic cleavage
precursor of amyloid-b.132 Additionally, inhibition of
Rac1 was shown to reduce g-secretase-dependent APP
cleavage.133 Thus, via enhancing APP production and
cleavage, Rac1, likely, plays an important role in the for-
mation of the amyloid-b plaques observed in Alzheimer’s
disease.

As highlighted, similar to cancer, Rac1 is associated
with both protective and promoting effects in neurode-
generative diseases. Thus, to exploit the therapeutic
potential of targeting Rac1 it is important to design phar-
macological tools that selectively inhibit Rac1 signaling
cascades involved in disease progression while sparing
its protective functions. However, this requires a detailed
understanding of the cellular contexts in which Rac1 is
to be targeted.

Role of Rac1 in other human diseases

Rac1-driven signaling cascades highlighted above are also
implicated in other human diseases. This is clearly dem-
onstrated by the role of Rac1 in arthritis. Arthritis refers
to a group of diseases that affect the joints, with more
than 100 types identified to date. The underlying causes
for arthritis can vary depending on the form of arthritis.
For example, osteoarthritis, the most common form,
affects joints due to the ware and tare of the protective
cartilage and the underlying bones as a result of aging,
injury or infection.134 Central to osteoarthritis is the accu-
mulation of matrix fragments, such as fibronectin frag-
ments, which induce the production of MMPs by
chondrocytes. This, in turn, leads to the degradation of
the of articular cartilage matrix.135 Interestingly, Rac1 was
shown to mediate fibronectin fragment-induced MMP-
13 production. Consistently, active Rac1 was detected in
osteoarthritis cartilages.136 Rac1 was also shown to pro-
mote expression of ADAMmetallopeptidase with throm-
bospondin type 1 motif 5 (ADAMTS-5),137 an enzyme
responsible for cleaving aggrecan, a major cartilage pro-
teoglycan. Additionally, Rac1 also stimulates the produc-
tion of chondrocyte hypertrophy-related factors, such as
type X collagen (COLX) and runt-related transcription
factor 2 (Runx-2).137 Together, this indicates that Rac1
activation contributes to the development of osteoarthri-
tis via facilitating cartilage matrix destruction. More
recently, it was shown that downregulation of the Rac1
GAP, inositol polyphosphate 5-phosphatase OCRL-1
(OCRL1), in cartilages is responsible for the aberrant acti-
vation of Rac1 in osteoarthritis. Importantly, restoring
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physiological active Rac1 levels by re-expressing OCRL1
was associated with reduced chondrocyte hypertrophy in
vitro and protected against cartilage degeneration in
vivo.138 This clearly highlights the therapeutic potential of
targeting Rac1 to protect against osteoarthritis. Indeed,
recent in vivo evidence demonstrates that inhibition of
Rac1 can help delay osteoarthritis development.137

In addition to promoting chondrocyte hypertrophy
and mineralization, Rac1 is also implicated in the
development of inflammatory arthritis. This is particu-
larly evident in rheumatoid arthritis, a debilitating
autoimmune disorder that is characterized by cartilage
loss due to increased inflammation and catabolism of
the joint lining. In rheumatoid arthritis, the immune
system starts attacking the synovial membrane lining
the joints. As such, rheumatoid arthritis is character-
ized by increased T-cell activation and autoantibody
production. Together, this induces a localized inflam-
matory response that leads to the swelling of the syno-
vial membrane, causing further damage and pain.
Additionally, surrounding synovial cells, such as fibro-
blast-like synoviocytes, also display tumor-like proper-
ties.139 Given the prominent role of Rac1 in cancer, it
is not surprising that Rac1 contributes to the prolifer-
ative and invasive properties of fibroblast-like synovio-
cytes isolated from rheumatoid arthritis patients.
Importantly, both depletion of Rac1 and chemical
inhibition was shown to antagonize the aggressive
tumor-like properties of fibroblast-like synoviocytes.140

Targeting Rac1 using an inhibitory peptide was also
shown to reduce paw swelling in early arthritis and to
a lesser extent in chronic arthritis in a collagen-
induced arthritis murine model. Additionally, while
Rac1 inhibition did not protect against joint destruc-
tion in this model, it was associated with reduced lev-
els of anti-collagen type II antibodies. Ex vivo analysis
also demonstrated that Rac1 inhibition suppresses T-
cell activation. Together, this suggests that targeting
Rac1 could be of clinical relevance in autoimmune
disorders, such as rheumatoid arthritis.141

In addition to inflammatory arthritis, Rac1 also
contributes to the inflammation associated with kidney
disorders.15 For example, depletion of Rac1 in macro-
phages was shown to suppress lipopolysaccharide
(LPS)-inflammation-mediated kidney injury.16 Interest-
ingly, Rac1 is hyperactivated in several chronic kidney
disease models and is linked to the increased activation
and nuclear translocation of the mineralocorticoid
receptor, 12-14 a member of the steroid receptor family
that plays an essential role in the progression of kidney
diseases.11 Importantly, inhibition of Rac1 was shown
to have renoprotective functions by counteracting the
hyperactivation of the mineralocorticoid receptor.12-14

Thus, inhibition of Rac1 signaling also constitutes an
effective treatment option for attenuating the progres-
sion of several kidney disorders.

Consistent with the role of Rac1 in mediating inflam-
matory responses, deregulation of Rac1 signaling is also
implicated in inflammatory disorders. Increased expres-
sion of Rac1, induced by single nucleotide polymor-
phisms, has been shown to play a role in the pathogenesis
of chronic inflammatory bowel diseases, including ulcera-
tive colitis and Crohn’s disease.9 In fact, thiopurines, a
class of drugs currently utilized for the management of
chronic inflammatory bowel diseases, have been shown to
suppress Rac1 activity.142,143 Thus, inhibiting Rac1 activa-
tion and the associated inflammatory and immune
responses might help alleviate clinical symptoms associ-
ated with inflammatory disorders.

Aberrant regulation of Rac1 signaling is also a key
feature in a number of infectious diseases. Interest-
ingly, a number of pathogens hijack Rac1 signaling in
order to promote pathogenicity. For example, activa-
tion of Rac1 at early stages of Salmonella typhimu-
rium bacterial infection has been shown to promote
bacterial entry into host cells via mediating the neces-
sary actin cytoskeletal rearrangements required for
bacterial internalization.17-19 Similarly, activation of
Rac1 has been implicated in the internalization of
human immunodeficiency virus (HIV) and vaccinia
virus. Additionally, Rac1 regulates the vesicular traf-
ficking of viral particles of adenoviruses, African
swine fever virus as well as Ebola virus.144 However,
demonstrating the complexity of Rac1 signaling in
infectious diseases, Rac1 is also implicated in the
innate immune response.145,146 Therefore, targeting
Rac1 to combat infection requires a detailed under-
standing of its regulation and downstream effector
interactions in order to synthesize effective drugs that
spare its protective functions.

Targeting Rac1 signaling regulatory mechanisms
provides multiple therapeutic avenues

As outlined above, deregulation of Rac1 signaling is
characteristic of a number of human diseases,
highlighting the therapeutic potential of targeting
Rac1. However, given the overlap between its physio-
logical and pathological functions as well as its often
contrasting effects in cellular processes, targeting
Rac1 in a clinical setting might have undesirable
effects on disease progression. Understanding how
Rac1 signaling is regulated can, therefore, provide
additional insights to aid the development of pharma-
cological tools for targeting specific Rac1 downstream
functions. Indeed, a number of compounds have been
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developed to date that suppress Rac1 signaling via
targeting the various steps involved in its regulation
(Figs. 1–4). Here we provide an overview of available
compounds that target key Rac1 regulatory mecha-
nisms and discuss future therapeutic avenues arising
from our understanding of these mechanisms.

Targeting Rac1 activation

Rac1 acts as a molecular switch cycling between an inac-
tive GDP-bound state and an active GTP-bound state.
Binding of GTP to Rac1 and its subsequent activation
induces a conformational change that promotes binding
to downstream effectors.147 As mentioned above, regula-
tion of this GDP-GTP activation cycle is mediated
mainly by 3 groups of proteins: GEFs, GAPs and RhoG-
DIs, with GEFs activating Rac1 while GAPs and RhoG-
DIs inhibiting Rac1 signaling.1-3

The role of GEFs in Rac1 signaling is particularly
important. Through interacting with Rac1, GEFs facili-
tate the exchange of GDP for GTP by promoting GDP
dissociation.148 In principle, GTP loading primes Rac1
for binding to all downstream effectors. However, accu-
mulating evidence supports a role for GEFs, not only in
activating Rac1, but also in dictating its downstream
signaling, through influencing Rac1 effector specific-
ity.38-41,43-46 This is clearly demonstrated by the
reported role of Tiam1 and Ras protein-specific guanine
nucleotide-releasing factor 1 (Ras-GRF1) as scaffolding
proteins. Through binding to the scaffolding protein
mitogen-activated protein kinase 8 interacting protein 2
(IB2/JIP2) and facilitating its interaction with specific
components of the mitogen-activated protein kinases
(MAPK) cascade, including the Rac1 effector mixed
lineage kinase 3 (MLK3), mitogen-activated protein
kinase kinase 3 (MKK3) and mitogen-activated protein
kinase 14 (p38), both GEFs couple activated Rac1 to the
p38 signaling cascade over the Jun N-terminal kinase
(JNK) signaling cascade.39 In addition to IB2/JIP2,
Tiam1 binding to spinophilin, another scaffolding pro-
tein, is also implicated in modulating Rac1 downstream
signaling specificity. In particular, Tiam1-spinophilin
complex formation was shown to increase Tiam1-Rac1-
mediated p70 S6 kinase activation, while suppressing
Tiam1-Rac1-mediated PAK activation.40 The observed
selective activation of p70 S6 kinase following Tiam1-
spinophilin binding is likely a consequence of increased
Rac1 association with p70 S6, which was previously
reported to enhance p70 S6 activation.149 Additionally,
GEFs can also dictate Rac1 signaling, through directly
associating with its downstream effectors. For example,
Tiam1 was shown to bind directly to the Rac1 effector
insulin receptor tyrosine kinase substrate p53 (IRSp53),

thus enhancing its interaction with activated Rac1 and
the WASP-family verprolin-homologous protein 2
(WAVE2).41 IRSp53 has previously been reported to
provide a link between Rac1 and WAVE2 to mediate
Rac1-driven actin polymerization and lamellipodia for-
mation.56,150 Interestingly, Tiam1 expression also stimu-
lates the localization of IRSp53 at Rac1-mediated
lamellipodia, indicating that Tiam1 drives actin poly-
merization and lamellipodia formation through cou-
pling Rac1 to IRSp53 and WAVE2.41 Examples of other
GEFs that bind to Rac1 downstream effectors also
include members of the PAK-interacting exchange fac-
tor (PIX) family of GEFs, which through their Src-
homology 3 (SH3) domain, bind to PAKs.38 More
recently, a similar scaffolding role was also reported for
the Rac GEF phosphatidylinositol-3, 4, 5-trisphosphate-
dependent Rac exchange factor 1 (P-Rex1). Through
directly binding to protein flightess-1 homolog (FLII),
an actin remodeling protein, P-Rex1 was shown to
enhance Rac1-FLII association concomitant with
increased FLII-dependent P-Rex1-driven MLC phos-
phorylation, cell contraction and ECM remodeling,
thereby stimulating Rac1-driven cell migration. More
importantly, expression of Tiam1, under the same cellu-
lar conditions, was not associated with increased Rac1-
FLII interaction, indicating a GEF-specific modulation
of Rac1-effector binding.44 Indeed, comparative quanti-
tative proteomic analysis of the Rac1 interactome
revealed that Tiam1 and P-Rex1 stimulate Rac1 associa-
tion with GEF-specific effector pools that could account
for the contrasting roles of these 2 GEFs in regulating
Rac1-driven cell migration.45,46 Thus, all together this
highlights the importance of the GEF scaffolding func-
tion in mediating specific Rac1-driven signaling cas-
cades in response to different upstream cues.

Targeting Rac1-GEF interactions
Given the importance of GEFs in orchestrating Rac1 signal-
ing and the potential therapeutic benefit of inhibiting selec-
tive Rac1 functions, disrupting Rac1 interactions with
specific GEFs represents an attractive therapeutic avenue.
Indeed, several Rac1 inhibitors identified have been shown
to target specific Rac1-GEF associations (Fig. 1).

The search for selective inhibitors that target specific
Rac1-GEF interactions was greatly facilitated by solving
the crystal structure of Rac1 in complex with the Dbl
homology (DH) and pleckstrin homology (PH) domains
of Tiam1, which provided important details of the mech-
anism and specific sites involved in Rac1-GEF interac-
tions.151 This information paved the way for structure-
based virtual screening that led to the discovery of
NSC23766, the first selective Rac1 inhibitor. Functional
characterization of this compound revealed that it inhibits
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Figure 1. Targeting Rac1 activation and downstream signaling via blocking Rac1-GEF interactions. (A) Similarly to other Rho GTPases, Rac1
cycles between an inactive guanosine diphosphate (GDP)-bound state and an active guanosine triphosphate (GTP)-bound state. This cycle is reg-
ulated, in part, by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Following Rac1 prenylation, in which a ger-
anylgeranyl moiety is covalently attached to cysteine 189, carboxyl-terminal methylation and the addition of a palmitate moiety on cysteine 178,
GDP-bound Rac1 associates with the plasma membrane. The Polybasic region (PBR) of Rac1 has also been implicated in targeting Rac1 to the
plasma membrane. This, in turn, allows GEFs present at the plasma membrane to bind to Rac1 and facilitate the exchange of GDP for GTP,
thereby activating Rac1. As a result of GTP binding, Rac1 undergoes a conformational change in its switch I and switch II regions (depicted as I
and II, respectively) that promotes binding with downstream effectors, thus translating upstream signals into downstream responses. In addition
to Rac1 activation, GEFs can also serve as scaffolding proteins, via indirectly or directly associating to Rac1 effectors, thereby enriching specific
Rac1-effector complexes and dictating Rac1 downstream signaling cascades. It is unclear, however, whether plasma membrane localization is
essential for the GEF scaffolding function. In contrast, GAPs serve as Rac1 inhibitors, through enhancing the intrinsic GTPase activity of Rac1 and
promoting the hydrolysis of bound GTP. (B) Given the importance of GEFs in activating Rac1 and mediating Rac1 downstream signaling, a num-
ber of Rac1 specific inhibitors have been developed that target Rac1 activation via blocking Rac1-GEF interactions. Examples of chemical struc-
tures and selectivity toward specific Rac1-GEF interactions are outlined.
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Rac1 activation via blocking the surface groove of Rac1,
responsible for mediating GEF association, particularly
between Rac1 and Tiam1 as well as between Rac1 and tri-
ple functional domain protein (Trio). In vitro validation
assays using this compound demonstrated the specificity
of NSC23766 in inhibiting Tiam1- and Trio-mediated
cell growth and transformation while not affecting signal-
ing cascades driven by the Rac GEF Vav or the activation
of the closely related small GTPases, RhoA and cell divi-
sion control protein 42 homolog (Cdc42).152 Interestingly,
NSC23766-mediated Rac1 inhibition has been shown to
inhibit Rac1-driven pro-tumorigenic effects in a number
of cancer models.153 The protective effects of NSC23766
also extend to other disease models, including neurode-
generative and kidney disorders as well as arthri-
tis.8,12,137,140 More recently, in vivo experiments also
indicated that NSC23766-mediated inhibition of Rac1
might have anti-viral properties.154

Despite the promising results associated with
NSC23766, this compound lacks the efficacy required for
clinical purposes. This instigated a number of virtual
screening strategies in search for more potent Rac1
inhibitors. Indeed, a pharmacophore virtual screening
approach led to the identification of 5 compounds that
selectively inhibit Rac1 GTP loading while not affecting
RhoA and Cdc42 activation, 2 of which, ZINC08010136
and ZINC07949036, function through inhibiting
Rac1-Tiam1 binding with potencies greater than
NSC23766.155 The chemical structures of these 2 com-
pounds were then used to virtually screen commercially
available N-(sulfamoylaryl)arylamides, which led to the
identification of 5 additional compounds that displayed
yet even more potent and selective inhibition of Rac1
with IC50 values ranging from 5.3 to 24.2 mM as opposed
to 50 mM observed with NSC23766. In particular, one of
these compounds, referred to as compound 4, was shown
to inhibit GEF-mediated Rac1 GTP loading via interfer-
ing with Rac1 binding to Tiam1, Trio and Vav2, thereby
suppressing cell adhesion and Rac1-mediated cellular
events.156 Additionally, preliminary in vitro analysis
demonstrated that this compound suppresses platelet-
derived growth factor-BB (PDGF-BB)-mediated Rac1-
driven lamellipodia formation as well as SMCs’ migra-
tion.7 These results may have important implications on
the pathological role of Rac1 in cardiovascular diseases,
although in vivo studies are still required to determine
the efficacy of this compound in preclinical disease
models.

ITX3 represents another selective Rac1 inhibitor that
interferes with Rac1-Trio binding. While treatment of cells
with ITX3 results in the selective inhibition of Trio N-termi-
nal RhoGEF domain (TrioN)-dependent cell structures, the
IC50 of ITX3 is 100 mM.157 As a result of its low efficacy,

ITX3 is not ideal for clinical purposes. More recently, how-
ever, further optimization of the chemical structure of
NSC23766 has led to the identification of more potent Rac1
inhibitors, such as EHop-016, which represents a highly
potent Rac1 inhibitor with an IC50 of 1.1 mM. Similar to
NSC23766, EHop-016 functions through interfering with
Rac1-GEF binding. However, unlike NSC23766, EHop-016
does not affect Rac1-Tiam1 association. Instead EHop-016
blocks Rac1-Vav2 binding and has been shown to suppress
Rac1-driven directed cell migration of metastatic cancer
cells.158 This highlights the potential importance of EHop-
016 and similar compounds in combating Rac1-mediated
cancer metastasis, a major cause of death in cancer patients.
Interestingly, EHop-016 has also been shown to decrease
Rac1-mediated activation of PAK1. As highlighted earlier,
PAKs play a major role in cardiovascular diseases via
increasing endothelial membrane permeability, with inhibi-
tion of PAK suppressing endothelial permeability.109,110

Thus, EHop-016, through suppressing Rac1-mediated acti-
vation of PAK1, might have beneficial effects not only in
cancer but also in other human diseases, including cardio-
vascular diseases. A drawback of this compound, however,
is that it also targets Cdc42. This calls for additional preclini-
cal studies in order to pinpoint potential side effects arising
from its promiscuity.

Recently, yet another virtual screen was reported in
which more than 200, 000 compounds from the ZINC
database were screened to identify compounds that can
interfere with Rac1-GEF binding.159,160 This led to the
identification of a novel Rac1 inhibitor, ZINC69391,
which was associated with high docking scores for the
Rac1-GEF interface, suggesting a similar mode of action
to NSC23766. Indeed, further in vitro validation of this
compound demonstrated the ability of ZINC69391 to
interfere with Rac1-Tiam1 binding.161 However, it is
unclear whether this effect is limited to Tiam1 or extends
to other Rac GEFs. Inhibition of Rac1 by ZINC69391
was also associated with reduced epidermal growth factor
(EGF)-mediated Rac1 activation and efficient inhibition
of cell proliferation, cell cycle progression and cell migra-
tion in highly metastatic breast cancer cell lines. More
importantly, these anti-metastatic effects were also
observed in vivo, where ZINC69391 significantly reduced
lung colonization in a breast cancer metastasis mouse
model. Interestingly, via using ZINC69391 as a lead
compound, a more potent analog, 1A-116, was also iden-
tified. Similar to ZINC69391, both in vitro and in vivo
assays highlighted the anti-metastatic role of 1A-116.
Further analysis of the mode of action of the compound
indicated that it exerts its effects through interfering with
Rac1-P-Rex1 binding and suppressing Rac1 activation.161

Although, it is yet to be determined whether 1A-116 is
limited to targeting the Rac1-P-Rex1 binding interface or
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whether it interferes with other Rac1-GEF complexes,
1A-116 represents a promising Rac1 selective inhibitor
that might be of clinical relevance, particularly in cancer.
This warrants additional studies to further elucidate its
mechanism of action and its clinical applicability.

Given the role of GEFs in dictating Rac1 signaling,
compounds that target Rac1 binding to specific GEFs,
might, indeed, pave the way towards selective inhibition
of Rac1-downstream functions (Fig. 1). Further valida-
tion of existing compounds and how they affect the scaf-
folding function of GEFs is, therefore, important to
determine the full therapeutic potential of this mode of
Rac1 inhibition.

Targeting Rac1-nucleotide interactions
Another important class of inhibitors that target Rac1
activation includes compounds that specifically interfere
with Rac1 nucleotide binding, such as EHT 1864. This
compound is highly potent relative to NSC23766 with an
IC50 of 5 mM. It was found to bind with high affinity to
Rac1 and its closely related isoforms, Rac1b, Rac2 and
Rac3. As a consequence of Rac1 binding, EHT 1864 dis-
places bound nucleotides resulting in an inert and inac-
tive Rac1 state, which prevents GEF-mediated nucleotide
exchange as well as Rac1 binding to downstream effec-
tors (Fig. 2). Importantly, EHT 1864 was shown to

effectively block transformation mediated by constitu-
tively active Rac1.162 This, together with the fact that it
can also bind to the constitutively active splice variant
Rac1b, suggest that this type of Rac1 inhibition might
prove beneficial for targeting Rac1 activating mutants
that have recently been described in a number of cancer
types.80-83 Inhibition of Rac1 by EHT 1864 has also been
shown in vitro and in vivo to suppress Rac1-driven APP
processing and to decrease amyloid-b production.163

Thus, this mode of Rac1 inhibition also represents a
potential therapeutic avenue in Alzheimer’s disease.

Additional insights for targeting Rac1 activation
In addition to Rac1-GTP loading by GEFs, Rac1 has also
been shown to undergo post-translational modifications
that help regulate its GTP-bound state. For example,
binding of Rac1 to protein inhibitor of activated STAT3
(PIAS3), a small-ubiquitin related modifier (SUMO) E3-
ligase, and its subsequent SUMOylation in response to
HGF treatment leads to the maintenance of the GTP-
bound state of Rac1, thus stimulating lamellipodia forma-
tion as well as cell migration and invasion. To date, Rac1
represents the only small GTPase reported to undergo
SUMOylation. Interestingly, depleting PIAS3 inhibits
HGF-mediated Rac1 activation. Similarly, it was shown
that a Rac1 mutant that could not be SUMOylated

Figure 2. Targeting Rac1 activation and downstream signaling via blocking Rac1-nucleotide interactions. (A) Rac1 is a nucleotide-binding pro-
tein that associates with both guanosine diphosphate (GDP) and guanosine triphosphate (GTP). The dissociation of GDP is facilitated by guanine
nucleotide exchange factors (GEFs), resulting in Rac1 GTP loading and activation. In contrast, GTPase activating proteins (GAPs) promote the
hydrolysis of GTP, thus inactivating Rac1. Following GTP binding, Rac1 undergoes conformational changes in the switch I and switch II regions
(depicted as I and II, respectively) that expose the effector binding domain, allowing Rac1 to bind to downstream effectors, thereby mediating
downstream signaling. EHT 1864 is a selective Rac1 inhibitor that binds with high affinity to Rac1. This, in turn, promotes the dissociation of
nucleotides bound to Rac1, placing Rac1 in an inert and inactive state that is unable to enter the activation GDP-GTP cycle or bind to downstream
effectors. (B) The Chemical structure of EHT 1864 and its reportedmode of action are outlined.
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displays reduced activity following HGF stimulation.
More importantly, expression of this mutant in Rac1
knockout mouse embryonic fibroblasts (MEFs) failed to
restore HGF-induced lamellipodia formation, migration
and invasion but rescued a proliferation defect. Thus,
inhibiting Rac1 SUMOylation might provide a selective
approach to destabilize the active form of Rac1 and sup-
press the associated Rac1-downstream signaling cas-
cades.26 This might be particularly relevant in selectively
targeting Rac1 pro-migratory properties in a clinical set-
ting. It is, thus, important to further examine the abun-
dance of this modification in disease models and whether
Rac1 activating mutants are also subjected to SUMOyla-
tion. Additionally, further characterization of the Rac1-
PIAS interaction from a structural perspective will be
essential to help develop compounds that efficiently
interfere with their interaction site.

Targeting Rac1 spatial regulation

Post-translational modifications also play a crucial role
in Rac1 activation via regulating its subcellular localiza-
tion. Of particular relevance for Rac1 signaling is mem-
brane targeting, via carboxyl-terminal modifications by
lipid moieties.21,24,29,30,36 Translocation of Rac1 to the
plasma membrane is mediated by a series of modifica-
tions that are triggered by Rac1 prenylation. Protein pre-
nylation involves the addition of a 15-carbon farnesyl or
a 20-carbon lipophilic geranylgeranyl isoprenoid moiety,
through the action of farnesyltransferases (FTases) or
geranylgeranyltransferases (GGTases), respectively. The
specificity of these enzymes is dictated by the sequence
within a CAAX motif, where C represents a cysteine resi-
due to which the isoprenoid moiety is transferred, the 2
A residues represent aliphatic amino acids and the X
denotes the terminal amino acid. Given that Rac1’s
canonical CAAX motif ends with a leucine, Rac1 is typi-
cally recognized by GGTase type I (GGTase I), which
mediates the covalent attachment of a geranylgeranyl
isoprenoid moiety to cysteine 189. In turn, this facilitates
the cleavage of the AAX amino acids by the RAS-
converting CAAX endopeptidase (RCE1) and the meth-
ylation of Rac1 on the isoprenylated cysteine residue
by the isoprenylcysteine carboxyl methyltransferase
(ICMT). Together, this increases the hydrophobicity of
Rac1 and mediates its association with the plasma mem-
brane, where it can be activated.24,30 Prenylation also
primes Rac1 for S-palmitoylation, in which a 16-carbon
fatty acid palmitate is covalently attached to cysteine
178. This, in turn, enhances Rac1’s stability and mem-
brane association (Fig. 3). Indeed, inhibition of Rac1 pal-
mitoylation disrupts Rac1 localization and suppresses
Rac1-driven cell spreading and migration.21,29

Targeting Rac1 lipid modifications
Given the importance of these modifications in mediat-
ing Rac1 localization, activation and downstream signal-
ing, blocking Rac1 lipid modifications represents an
additional mode for targeting Rac1 signaling. Three
major classes of compounds affecting this regulatory
mechanism have been developed and show promising
results in hindering disease progression (Fig. 3). The
first class, known as statins function by inhibiting
the 3-hydroxy-2-methylglutaryl-coenzyme A reductase
(HMG-CoA reductase), a rate-limiting enzyme in the
isoprenoid pathway. Statins have proved quite successful
in primary and secondary prevention of cardiovascular
diseases.164 Although this was initially attributed to their
role in lowering cholesterol, several studies have now
identified cholesterol lowering-independent effects. Of
particular relevance is the statin-mediated inhibition of
isoprenoid synthesis, products of which play a key role
in the spatial regulation of small GTPases (Fig. 3A). As a
consequence, statins have been shown to improve endo-
thelial dysfunction, attenuate vascular remodeling as well
as suppress inflammatory responses associated with
cardiovascular diseases. Interestingly, statins suppress
Rac1 carboxyl-terminal methylation, a key step required
for the proper localization of Rac1.165 Consistently, sta-
tins have been shown to affect Rac1-mediated cellular
effects. For example, simvastatin treatment suppresses
Rac1-dependent MMP-1 production and release in
SMCs cultured on collagen concomitant with a reduction
in GTP-bound Rac1 levels. Additionally, this was associ-
ated with reduced collagen degradation.166 As indicated
earlier, Rac1 contributes to the accumulation of SMCs
in the inner layer of arteries in atherosclerosis through
regulating SMCs’ migration.104 Thus, inhibiting Rac1-
mediated SMCs’ migration represents an important
mechanism of action of this class of drugs in cardiovas-
cular diseases. Importantly, co-incubation of simvastatin
with mevalonate and geranylgeraniol, precursors of the
geranylgeranyl moiety that associates with Rac1,
completely abolished the inhibitory effects of simvastatin
on Rac1-mediated MMP-1 production, thereby demon-
strating that statins do indeed exert their effects through
inhibiting protein prenylation.166 Despite this evidence,
it is still unclear whether the statin-mediated inhibition
of protein prenylation observed experimentally is rele-
vant in a clinical setting. Thus, it would be informative
to examine the effect of statins on protein prenylation in
samples obtained from treated patients.

Intriguingly, recent data also uncovered a prenyla-
tion-independent mode of action in which the protec-
tive effects of statins were attributed to the degradation
of the nuclear pool of Rac1.167 Indeed, a number of
imaging-based studies have demonstrated the presence
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of Rac1 in the nucleus,168,169 which is mediated via a
nuclear localization sequence (NLS) embodied in the
polybasic region (PBR) within Rac1.21 Interestingly,
the nucleocytoplasmic shuttling of Rac1 has been
implicated in regulating cell cycle progression,170

nuclear membrane shape and actin polymerization in
the nucleus.171 Therefore, by stimulating nuclear Rac1
degradation, the protective effects of statins might also
be a direct consequence of suppressing nuclear Rac1,
although more studies are required to further elucidate

Figure 3. (For figure legend, see page 151).
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the full spectrum of nuclear Rac1-mediated functions,
to accurately assess this possibility. The prenylation-
independent effects of statins might also be of clinical
importance in other diseases, such as cancer. For exam-
ple, analysis of Rac1 expression in cervical pre-malig-
nant biopsies indicated increased expression of Rac1 in
biopsies with low-grade squamous intraepithelial
lesions (SIL) and high-grade SIL, compared to biopsies
without SIL. Importantly, nuclear Rac1 was only
detected in samples with SIL. Consistently, nuclear
Rac1 was observed in the cervical cancer cell lines
C33A and SiHa, but not in non-tumorigenic cells, such
as HaCat, suggesting a role of nuclear Rac1 in disease
progression.172 It was also shown that Rac1 nuclear
accumulation mediates tumor cell invasion due to
increased RhoA signaling in the cytoplasm.171 Thus, by
promoting the degradation of nuclear Rac1, statins
might also be beneficial for targeting cancer metastasis.
Yet, it would be important to thoroughly examine the
anti-metastatic potential of statins in various cancer
disease models, to accurately ascertain their therapeutic
potential and the underlying molecular mechanisms. It
is important to note, however, that statins have also
been shown to suppress signaling cascades mediated by
other small GTPases, such as RhoA and, thus, their
protective effects are, most likely, not solely dependent
on Rac1.164

The second class of compounds, which interfere
with Rac1 spatial regulation, are GGTase I inhibitors
(GGTIs). These compounds target GGTase I, thereby
inhibiting protein prenylation (Fig. 3B). In vivo studies

demonstrate the anti-tumorigenic effects of this class
of compounds. For example, inhibition of GGTase I in
a human pancreatic cancer xenograft mouse model
was associated with reduced tumor growth concomi-
tant with inhibition of protein geranylgeranylation.173

Similar effects were also observed in a non-small cell
lung cancer xenograft model.174 Together, these studies
highlight the benefit of GGTIs as anti-cancer therapies.
Although the full spectrum of GGTIs’ protein targets is
yet to be elucidated, it is speculated that these com-
pounds will affect multiple small GTPases. Impor-
tantly, it has been shown that Rac1 is a target of
GGTIs, with GGTI treatment impeding Rac1-driven
membrane ruffling.175 Interestingly, one GGTI, GGTI-
2418, has entered clinical trials.176 It would be interest-
ing to examine, whether in a clinical setting this inhib-
itor suppresses Rac1-mediated pro-tumorigenic effects.
Additionally, while Rac1 is typically geranylgerany-
lated, expression of a farnesylated carboxyl-terminal
Rac1 mutant was shown to retain Rac1 signaling abili-
ties, including transformation and membrane ruf-
fling.175 Although this has not been reported for
geranylgeranylated proteins, it would still be important
to investigate whether inhibition of Rac1 geranylgera-
nylation by GGTIs might lead to an isoprenoid modifi-
cation switch, a phenomenon observed with K-Ras and
neuroblastoma Ras viral (v-ras) oncogene homolog
(N-Ras) following treatment with FTase inhibitors.177

Inhibitors of palmitoylation constitute the third class
of compounds targeting Rac1 spatial regulation
(Fig. 3C). Protein palmitoylation has been implicated in

Figure 3. (see previous page) Targeting Rac1 activation and downstream signaling via blocking Rac1 lipid modifications. (A) The isoprenoid
pathway is a multi-step chemical cascade, initiated by the 3-hydroxy-2-methylglutaryl-coenzyme A reductase (HMG-CoA reductase). HMG-CoA
resides in the endoplasmic reticulum (ER) and represents a rate-limiting step in the conversion of acetyl-CoA intomevalonate, which is converted
into isopentenyl diphosphate (IPP), the precursor of geranyl diphosphate (GPP) and farnesyl diphosphate (FPP). Via the action of squalene syn-
thase, FPP can be converted into squalene, the committed precursor for cholesterol production. Alternatively, FPP can be converted into geranyl-
geranyl diphosphate (GGPP) by GGPP synthase. Both FPP and GGPP can serve as lipid backbones for protein prenylation, which involves the
addition of a farnesyl or geranylgeranyl moiety to the cysteine residue within the CAAX motif (where C represents the cysteine, AA represent 2
aliphatic amino acids and X is the terminal amino acid) by farnesyltransferases (FTases) or geranylgeranyltransferases (GGTases), respectively. (B)
Following Rac1 protein expression, the CAAXmotif (CLLL) located at the carboxyl-terminus is recognized by GGTase type I (GGTase I). This results
in the covalent attachment of a geranylgeranyl moiety to cysteine 189. (C) Rac1 prenylation promotes Rac1 translocation and association with
the ER membrane where the RAS-converting CAAX endopeptidase (RCE1) and the isoprenylcysteine carboxyl methyltransferase (ICMT) mediate
Rac1 post-prenylation modifications on the cytosolic surface of the ER. First, RCE1 cleaves the 3 amino acids (LLL) following the prenylated cyste-
ine residue. This exposes the carboxyl-group of the cysteine amino acid (COO¡), thus allowing the transfer of amethyl group (CH3) from S-adeno-
syl methionine (AdoMet) to Rac1 by ICMT, releasing S-adenosyl- L homocysteine (AdoHcy) as a by-product. The fully processed prenylated Rac1
protein can then be trafficked to the plasmamembrane. Rho guanine nucleotide dissociation inhibitors (RhoGDIs) have been implicated inmedi-
ating Rac1 extraction from the ER membrane, with the RhoGDI-Rac1 association being tightly regulated and reversible, thus allowing cycling
between Rac1membrane/nuclear translocation and cytoplasmic sequestration. Rac1 prenylation and processing also primes Rac1 for palmitoyla-
tion, in which a 16-carbon fatty acid palmitate is attached to cysteine 178 by palmitoyl acyltransferases (PATs). Rac1 palmitoylation also depends
on the polybasic region (PBR) within the carboxyl-terminus of Rac1. It is unclear whether palmitoylation of Rac1 occurs in the cytoplasm or on
the plasma membrane. It is also yet to be determined whether palmitoylation preferentially occurs on GDP-bound or GTP-bound Rac1, for sim-
plicity the latter was not depicted in the figure. Rac1 palmitoylation enhances Rac1 stability and mediates Rac1 localization to the plasma mem-
brane, particularly to lipid-ordered subdomains, as well as nuclear translocation. Statins, GGTase I inhibitors (GGTIs) and PAT inhibitors have been
shown to target HMG-CoA reductase, GGTase I and PAT enzymes, respectively. As a result, all 3 classes of compounds have been shown to disrupt
Rac1 localization, activation and downstream signaling.
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a number of human diseases, including cancer, cardio-
vascular diseases and neurodegenerative disorders. This
is mainly attributed to its role in modulating the proper
localization and activity of a number of proteins that are
critical for the development of human diseases.178 This,
in turn, sparked the interest for the development of pal-
mitoylation inhibitors. Palmitoylation is mediated by
palmitoyl acyltransferases (PATs). As such, a number of
inhibitors have been developed against PATs.178,179

Although the therapeutic potential of these compounds
is yet to be elucidated in different diseases models,
inhibition of palmitoylation has been shown to induce
an increased perinuclear localization of Rac1 as opposed
to its normal subcellular distribution at the cytoplasm,
plasma membrane and nucleus. This effect was also asso-
ciated with decreased Rac1 GTP loading.29 This suggests
that inhibition of palmitoylation in a clinical setting,
while probably, influencing the localization of other pro-
teins that undergo this modification, might also target
Rac1 signaling cascades. This warrants additional in vitro
and in vivo studies that examine the effect of PAT inhibi-
tors on Rac1-driven cellular processes.

Additional insights for targeting Rac1 spatial
regulation
Although the compounds highlighted above target Rac1
in a non-selective manner, they provide insight into the
therapeutic benefits of targeting mechanisms that regu-
late Rac1 localization. RhoGDIs, therefore, represent an
interesting class of proteins that can aid in the develop-
ment of selective Rac1 inhibitors that interfere with Rac1
localization. Functional characterization of RhoGDIs
revealed that they inhibit Rac1 signaling via stabilizing
the GDP-inactive form through binding to the carboxyl-
terminus of GDP-bound Rac1, thus masking the lipid
moieties responsible for plasma membrane translocation.
As a consequence, GDP-bound Rac1 is sequestered in
the cytoplasm where GTP loading cannot occur
(Fig. 3).180,181 Additionally, determination of the crystal
structure of Rac1 in complex with RhoGDI also provided
important details regarding their interaction sites and
how RhoGDIs mask Rac1 lipid modifications.182 Utiliz-
ing this information to design structure-based virtual
screening approaches might, therefore, facilitate the
development of small molecules that mimic the func-
tional role of RhoGDIs, which, in turn, can be used to
suppress Rac1 signaling. This strategy might prove par-
ticularly useful in combination with GGTIs, especially if
Rac1 undergoes an isoprenoid modification switch in
vivo, since it will provide an efficient method for masking
Rac1 lipid modifications despite the nature of the modifi-
cation. However, the specificity of such compounds will

need to be tested against other small GTPases that might
share similar interaction sites with RhoGDIs.

Targeting specific Rac1 downstream effects

Although all of the compounds described above ultimately
function through inhibiting Rac1-effector binding indirectly,
via reducing Rac1-GTP levels, inhibition of specific Rac1-
effector interactions is perhaps a more direct way to block
specific Rac1-driven cellular effects whilst not affecting other
downstream signaling cascades.While promising, thismode
of Rac1 targeting requires detailed knowledge of pathologi-
cal Rac1 signaling cascades and the identification of Rac1-
effector complexes that are more relevant under pathologi-
cal but not physiological conditions, which is often difficult.
However, there are a number of examples that highlight the
importance of pursuing this avenue further. For instance,
the therapeutic potential of selectively inhibiting Rac1-medi-
ated ROS production has instigated the search for com-
pounds that target Rac1 binding to its downstream effector
p67phox, in an attempt to suppress Rac1-mediated assembly
and activation of NOX2. This led to the identification of
Phox-I class inhibitors, such as Phox-I1, as novel Rac1
inhibitors (Fig. 4). Indeed, functional analysis of Phox-I1
demonstrated the efficiency of this compound in inhibiting
ROS production in neutrophils, via blocking the interaction
site of p67phox with Rac1.183 Although, additional validation
of this class of compounds is required, targeting Rac1-
p67phox binding promises to have protective effects in a
number of human diseases. The identification of Phox-I1
also highlights the feasibility of targeting Rac1 binding to
specific downstream effectors. Thus, adopting a similar
approach to target Rac1-effector protein complexes involved
in disease progression will provide a highly selectivemode of
Rac1 signaling inhibition that help retain its protective and
physiological functions and reduce side effects associated
with treatment. Although this requires a detailed under-
standing of protein structures and the binding interface
between Rac1 and the respective effectors, advancements in
the field of structural biology will soon allow more rapid
screening for Rac1-effector targeting.

In addition to targeting Rac1-effector interactions,
compounds that inhibit specific Rac1 downstream signal-
ing cascades have also been described. For example, 8-
hydroxy-2-deoxyguanosine (8-OHdG), a naturally occur-
ring marker for oxidative stress, has been shown to spe-
cifically target Rac1-driven NADPH oxidase activation
and ROS production (Fig. 4).7 Indeed, Rac1 inhibition
following 8-OHdG treatment was associated with protec-
tive effects in an in vivo atherosclerosis model, with
treated animals displaying a significant reduction in ves-
sel lumen occlusion due to reduced ROS production in
the arterial wall as well as inhibition of macrophage
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Figure 4. (For figure legend, see page 154).
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accumulation.184 This further highlights the therapeutic
benefit of targeting specific Rac1 downstream effects and
warrants the search for more potent inhibitors that selec-
tively inhibit Rac1 signaling cascades that are implicated
in human diseases.

Concluding remarks and future perspectives

Deregulation of Rac1 signaling is implicated in several
human diseases. Therefore, targeting Rac1 in a clinical set-
ting presents an exciting therapeutic opportunity. Indeed,
as highlighted in this review, several screening approaches
have been developed that led to the identification of a
number of Rac1 inhibitors. While some of these com-
pounds show promising results, it is evident that more
potent inhibitors are yet to be identified. This, together
with the lack of extensive in vivo validation and clinical
evaluation, make it difficult to accurately assess the bene-
fits and potential drawbacks of targeting Rac1. However,
advancements in high-throughput screening assays
together with our expanding knowledge of the mecha-
nisms involved in regulating Rac1 signaling pave the way
toward the development of highly specific and context-
dependent Rac1 inhibitors. To facilitate this process fur-
ther, it would be important to pinpoint regulatory mecha-
nisms that are relevant under physiological and
pathological conditions. In particular, understanding the
mechanisms involved in dictating specific Rac1 down-
stream cellular outcomes will aid in the discovery of
potent compounds that target specific Rac1 downstream
signaling cascades. It is important to note, however, that
while targeting Rac1 binding to specific effectors provides
a directed approach to inhibiting selective Rac1 down-
stream cascades, it is equally important to investigate the
role of upstream regulators, such as GEFs, in dictating
Rac1 signaling. In fact, rational design of additional com-
pounds that selectively interfere with one Rac1-GEF com-
plex and not the other, might provide an alternative and

effective approach for the selective inhibition of specific
Rac1 downstream effects. This is particularly relevant
given the large repertoire of inhibitors identified to date
that target Rac1-GEF association, together with the docu-
mented role of GEFs in influencing GEF-specific Rac1
downstream signaling cascades. Additionally, as
highlighted in this review, there are multiple ways by
which Rac1 inhibition can be achieved. Thus, it would
also be important to investigate the potential benefits of
combining several targeting approaches to accommodate
different cellular contexts. For example, combining an
inhibitor that targets Rac1-nuceotide binding with a com-
pound that interferes with specific Rac1-GEF complexes,
might help effectively inhibit constitutively active Rac1
mutants, via inactivating Rac1 as well as interfering with
GEF scaffolding functions. However, regardless of the
approach adopted, it will be necessary to supplement the
overwhelming in vitro evidence, highlighting the benefits
of targeting Rac1, with additional validation in different
preclinical disease models, in order to truly assess the ben-
efit and drawbacks of inhibiting Rac1.
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ADAMTS-5 ADAM metallopeptidase
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Figure 4. (see previous page) Targeting Rac1-mediated assembly and activation of NADPH oxidases and ROS production. (A) Guanine nucleo-
tide exchange factors (GEFs), GTPase activating proteins (GAPs) and Rho guanine nucleotide dissociation inhibitors (Rho GDIs) regulate Rac1
cycling from an inactive guanosine diphosphate (GDP)-bound state to an active guanosine triphosphate (GTP)-bound state. RhoGDIs also play a
role in Rac1 cytoplasmic sequestration. (B) Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are multimeric protein complexes
that transfer electrons from intracellular NADPH to extracellular molecular oxygen, generating superoxide anions (O2

.¡), a reactive oxygen spe-
cies (ROS), in the process. Rac1 has been shown to regulate the assembly and activation of NADPH oxidases. For simplicity only one NADPH oxi-
dase isoform, NADPH oxidase 2 (NOX2), is depicted. Activation of the complex involves the assembly of the cytosolic regulatory proteins
(p67phox, p40phox and p47phox) with the membrane-associated components (the catalytic subunit gp91phox and p22phox). This is mediated through
the phosphorylation of the autoinhibitory region of p47phox, thereby releasing the autoinhibitory conformation and promoting p47phox-p22phox

interaction. Additionally, activated Rac1 has been shown to directly bind to the p67phox subunit, thereby further facilitating complex assembly.
Although not depicted in the figure, lipid metabolismwithin the plasmamembrane also plays an important role in providing the anchoring sites
for p40phox and p47phox. (C) Given the role of Rac1-mediated NADPH assembly and activation and ROS production in the progression of a number
of human diseases, inhibitors that specifically target this Rac1 downstream signaling cascade have been identified. Phox-I1 represents a Phox-I
class inhibitor that functions via blocking the interaction between Rac1 and p67phox, thereby inhibiting Rac1-mediated complex assembly.
Another example includes 8-hydroxy-2-deoxyguanosine (8-OHdG), which also inhibits Rac1-medaited NADPH activation and ROS production.
The chemical structures andmode of action of both compounds are outlined.
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