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Abstract
Tackling air pollution has become of utmost importance since the last few decades. Different statistical as well as deep

learning methods have been proposed till now, but seldom those have been used to forecast future long-term pollution

trends. Forecasting long-term pollution trends into the future is highly important for government bodies around the globe as

they help in the framing of efficient environmental policies. This paper presents a comparative study of various statistical

and deep learning methods to forecast long-term pollution trends for the two most important categories of particulate

matter (PM) which are PM2.5 and PM10. The study is based on Kolkata, a major city on the eastern side of India. The

historical pollution data collected from government set-up monitoring stations in Kolkata are used to analyse the under-

lying patterns with the help of various time-series analysis techniques, which is then used to produce a forecast for the next

two years using different statistical and deep learning methods. The findings reflect that statistical methods such as auto-

regressive (AR), seasonal auto-regressive integrated moving average (SARIMA) and Holt–Winters outperform deep

learning methods such as stacked, bi-directional, auto-encoder and convolution long short-term memory networks based on

the limited data available.
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1 Introduction

The problem of urban air pollution has become more and

more serious due to rapid industrialization in recent times,

thus badly affecting not only our physical health but also

the environment around us. Research on pollution fore-

casting has thus become a key issue in environmental

protection to better evaluate the necessary steps to be taken

to curb its long-term effects. Major cities around the world

have set up various automatic air quality monitoring sta-

tions that detect the levels of particulate matter (PM) such

as PM2.5 [11] and PM10 [11], in specific areas spread

throughout the city.

Air quality forecasting methods proposed till now can be

broadly classified into two main categories, namely sta-

tistical methods and deep learning methods. The perfor-

mance of each method depends on multiple factors such as

trend, seasonality and noise in the data as well as meteo-

rological and socio-economic trends [12], which also

equally play an important role in contributing to pollution

in a specific region.

Ong et al. [13] proposed a two-stage approach where a

recurrent neural network (RNN) is pre-trained on hourly

data using an auto-encoder-based model, followed by fine-

tuning to filter out sensor data. The resulting network was

then used to predict PM2.5 concentrations. Bashir Shaban

et al. [14] studied the forecasting of support vector

machines (SVM), artificial neural networks (ANN) and

model trees (M5P) using both univariate and multivariate
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modelling to predict hourly forecasts. Tao et al. [15]

worked on air pollution forecasting using one-dimensional

convolution neural networks (CNN) and bi-directional

gated recurrent networks (GRU) based on Beijing PM2.5

dataset [16] which consists of hourly data extracted from

different air quality monitoring stations in Beijing.

Mlakar et al. [17] explored the important task of feature

selection in a model and put forward several algorithms for

feature reduction, all of them based on the case of fore-

casting SO2 half an hour in advance. Li et al. [18] proposed

a multivariate CNN-LSTM model. The authors performed

a thorough comparison with other hybrid long short-term

memory (LSTM) models based on their root mean squared

error (RMSE) and mean average error (MAE) along with

their training times, and in the end, they proposed the

hybrid CNN-LSTM model to be more effective than others.

Wang et al. [19] explored the use of the seasonal auto-

regressive integrated moving average (SARIMA) model,

along with studies on the periodicity of monthly PM2.5

data as well as procedures for parameter estimation, diag-

nostic checking, to predict and forecast the air pollutants in

an effective way. Other related studies in this area can be

found summarized in Table 1.

All of these works are crucial and have been found to be

extremely effective in carrying out short-term predictions

of pollution levels in a city. However, these works do not

account the usage of those methods in prediction horizons

which span for more than a year. To tackle the problem of

long-term forecasting, a different approach had to be

adopted, which involves the usage of monthly data for

predicting long-term trends. Daily data from monitoring

stations are resampled into monthly data in our study as it

has been observed that long-term yearly forecasts per-

formed on the daily data converged to the statistical mean,

thus making the results produced ineffective.

This paper presents a comparative study of long-term

pollution forecasts using the best four statistical methods

such as auto-regressive (AR), seasonal auto-regressive

integrated moving average (SARIMA), Holt–Winters and

Prophet along with four best deep learning methods such as

stacked, bi-directional, auto-encoder and convolution

LSTMs. The study is based on the historical pollution data

that are extracted from various government set-up moni-

toring station(s) of the city Kolkata (India). Here, the

overall end-to-end approach for long-term forecasting of

pollution level can be viewed as a combination of three

main stages, namely data pre-processing, time-series

analysis (based upon the pre-processed historical data) and

data modelling (using various statistical and deep learning

models to predict PM2.5 and PM10 values in future).

Table 1 Summary of forecasting models proposed by researchers in recent decades

Author Year Method Description

Mahajan et al.

[1]

(2017) Neural network auto regression

(NNAR)

Hourly forecast of PM2.5 was performed and its prediction was compared with

ARIMA and Holt–Winters models

Xiang [2] (2019) Multiple kernel learning (MKL)

framework

MKL was proposed to forecast the near future PM2.5 values and was compared

to single kernel-based support vector regression (SVR) model

Xie [3] (2017) Deep neural network The proposed model was based on manifold learning along with a deep belief

network (DBN) developed to learn the features of the input candidates for

local PM2.5 forecast

Luo et al. [4] (2018) Adaptive iterative forecast (AIF)

Model

The proposed AIF model could predict the value of PM2.5 for the next few

hours (by linear programming, normalization and time series) based on the

trend of historical data

Feng et al. [5] (2015) Hybrid artificial neural network

(ANN)

A hybrid model combining air mass trajectory analysis and wavelet

transformation was proposed to improve the forecast’s accuracy

Haiming and

Xiaoxiao [6]

(2013) RBF neural network Along with PM2.5, other influence factors were chosen to predict its

concentration and then compared with the classic BP network model

Yan et al. [7] (2018) Encoder–decoder model Three prediction models: BP, stack GRU and encoder–decoder were

constructed to predict the PM2.5 concentration of every hour of the next day

Maria et al.

[8]

(2015) Multilayer perceptron neural

network and clustering algorithm

In addition to multilayer neural network, clustering algorithm was used to find

relationships between PM10 and meteorological variables for increasing

accuracy of forecasting

Al-Kassabeh

et al. [9]

(2013) Nonparametric artificial neural

network (ANN)

For prediction of PM10, other meteorological parameters were also considered

and an artificial neural network based auto regressive with external input

(ANNARX) model was proposed to provide high calibre modelling

Lam and Mok

[10]

(2007) ANN applied three-layer feed-

forward network (TLFN)

Along with six input parameters for each seasonal model, highest absolute

values of correlation coefficients were selected to form the model input

pattern to feed into the ANN for 24 hour predictions
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Unlike previous studies [20–22], this study aims at finding

the optimal combination of techniques for pre-processing,

time-series analysis and finally forecasting, so that statu-

tory bodies focussing on producing similar projections for

their city can take advantage of the proposed approach to

construct their forecasting infrastructure. After pre-pro-

cessing (e.g. missing value imputation), an in-depth time-

series analysis of both PM2.5 and PM10 is conducted to

find the major trends in the data. The results obtained thus

are used to ascertain the hyper-parameters of the predictive

models, which is further tuned using a popular hyper-pa-

rameter finding process called Grid-Search. Different per-

formance metrics (namely RMSE, MAE) are utilized to

analyse the performance of various models. The two-year

forecast produced by different predictive models is then

studied in detail, and domain-specific discussions are pre-

sented based on the projections made.

The main aim/objectives of this comparative study are:

– To evaluate a set of methods and find the optimal ones

for all the stages ranging from data pre-processing to

data modelling, in performing long-term forecasting of

PM2.5 and PM10 time-series data.

– To perform the imputation of missing values in the raw

data by using different imputation techniques like

multivariate imputation and mean before after [23].

– To conduct a comprehensive time-series analysis of

both PM2.5 and PM10 for analysing underlying trends.

– To carry out the evaluation and forecasts of various

models using walk forward approach (WFA) allowing

the results to be more accurate and close to real-world

scenarios.

The rest of the paper is organized as follows: In Sect. 2, a

brief background of the city and the pollutants that are a

part of the study are presented along with a description and

summary statistics of the data obtained from multiple

sources. Section 3 consists of the detailed description of

the techniques used in missing value imputation, time-

series analysis and the models used in the study. Section 4

is about the approaches used in data preparation, time-

series analysis, model training, evaluation and future

forecasts. The results are laid out in great detail in Sect. 5,

along with a detailed discussion on the quality of forecasts

and efficiency of the models with regard to learning the

underlying trends. The conclusions drawn from the find-

ings are ultimately presented in Sect. 6.

2 Data description

Located on the eastern side of India, Kolkata is the capital

city of the state of West Bengal. As per the 2011 Census,

around 14 million people reside in the city making it one of

the major cities in the world. Due to high socio-economic

activity, the air quality of Kolkata is sub-par due to the

presence of significantly higher levels of particulate matter

and toxic gases in the city atmosphere. Besides the usual

contribution of industries, transportation is also one of the

major air-polluting sectors due to ineffective control

measures and high abundance of poorly maintained vehi-

cles plying in the city [24]. This section deals mainly with

the major pollutants and the statistical description of pol-

lution data used in the study.

2.1 Pollutants

2.1.1 PM2.5

Particulate matter (PM) is a mixture of coarse, fine and

ultra-fine solid and liquid particles suspended in the air.

PM2.5 refers to that particulate matter which has a diam-

eter less than 2:5lm, as a result, they remain suspended in

the air for longer periods. These are mostly produced from

burning fuels, forest fires, volcanic eruptions, etc. Exposure

to PM2.5 can lead to multiple short-term and long-term

health issues. Prolonged exposure may result in permanent

respiratory problems such as asthma, chronic bronchitis

and heart disease.

2.1.2 PM10

PM10 are those solid and liquid particles that have a

diameter greater than 2:5lm and less than 10lm; hence,

they persist in the air for lesser time compared to PM2.5.

These are particles that consist of smoke, dust from

industries, roads and other places. Soil and rocks when

crushed, create such particles that get blown away by the

wind. Being heavier than PM2.5, they cannot go deep

enough into the lungs, hence are less risky than PM2.5;

however, they are responsible for lung injury and can cause

ailments like chronic obstructive pulmonary disease

(COPD) [25].

2.2 Pollution data

The pollution data of Kolkata were provided by the central

pollution control board (CPCB) [26], responsible for pro-

viding field information regarding pollution of various

places throughout the country. In this paper, the pollution

data which form the basis of the study were extracted from

the station positioned at Victoria Memorial Hall (22:5448�

N, 88:3426� E), supplemented with data procured from

other nearby stations.
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Preliminary analysis of the data obtained found it to be

daily in nature, spanning four years from 10th January

2016 to 18th February 2020. The air quality monitoring

station at Victoria Memorial Hall supplied values for

temperature, relative humidity, PM2.5 and PM10. Of the

values supplied, large chunks of the raw data extracted

were found to be missing due to external factors such as

hardware failure, maintenance operations, etc. Hence, these

values needed to be either found out from other external

sources or have to be internally imputed using various

techniques.

Temperature values originally absent were extracted

from the University of Dayton’s Temperature [27] archive.

Relative humidity values were web scraped from Weather

Underground [28], followed by further re-sampling to get

the daily values needed. Missing daily PM2.5 values were

extracted from the US Department of State’s AirNow [29]

web portal.

2.2.1 Descriptive statistics

The descriptive statistics for PM2.5, PM10, temperature

and relative humidity can be seen in Table 2. It shows that

during winter, the PM2.5 levels rise significantly. Low

wind speeds present along with lower temperatures create

conditions for temperature inversion. On the other hand,

during summer and monsoon, comparatively lower levels

of pollution are observed. This can be attributed to the

increased circulation of air in the troposphere as well the

squalls from the north-west direction which the city

experiences during the months just before the onset of

monsoon.

3 Methods

As the study concerns with a general approach for finding an

optimal combination of techniques for pre-processing, miss-

ing value imputation and finally forecasting, only the best

methods (as shown in Fig. 1) in statistical and deep learning-

basedmodelling are studied in depth. The time-series analysis

methodsmentioned inFig. 1 are specifically curated to help in

investigating the underlying patterns and trends present in the

data. In this section, all those techniques are presented in detail

along with a brief discussion of the theory behind them.

3.1 Missing value imputation

Here, two widely used missing value imputation methods,

namely mean before after and multivariate imputation, are

discussed.

3.1.1 Mean before after

The mean before after method replaces the missing value at

time i by the mean of the value at one time instant iþ 1 in

the future and the value at one time instant i� 1 in the past.

xi ¼
xi�1 þ xiþ1

2
ð1Þ

Norazian et al. [23] showed that mean before after method

of imputation gave the least error when compared to other

univariate imputation methods. However, it must be noted

that the mean before after method works best only when

there are non-null values present in the window being

considered. If there are a high amount of null values

Table 2 Descriptive statistics for PM2.5, PM10, temperature and relative humidity

Month PM2.5 (lg/m3) PM10 (lg/m3) Temperature (�C) Relative humidity (%)

l r min max l r min max l r min max l r min max

Jan 163.35 69.28 46.38 508.0 194.18 75.04 75.32 451.42 18.34 1.93 11.61 23.28 70.69 7.61 49.77 95.51

Feb 111.49 44.40 18.33 281.0 159.88 66.16 27.58 303.09 23.05 2.82 17.28 30.17 65.22 9.69 45.00 95.15

Mar 67.18 27.42 2.71 159.0 82.02 32.60 29.15 193.57 27.44 2.25 20.40 31.22 65.01 10.13 43.10 88.90

Apr 38.09 13.47 3.04 74.0 56.62 20.27 20.18 137.81 30.02 2.05 25.62 34.89 69.33 7.78 44.20 81.70

May 37.08 14.53 0.72 114.0 55.88 19.97 2.29 120.07 30.34 1.61 25.35 33.28 73.01 6.06 59.10 94.20

Jun 33.58 19.25 0.30 172.0 53.25 43.81 0.59 298.22 30.08 1.59 25.32 34.18 78.82 6.20 61.89 95.89

Jul 29.61 15.44 2.00 112.0 42.00 39.63 8.97 288.13 28.97 1.18 26.25 31.51 85.07 5.89 71.80 97.57

Aug 28.75 14.07 0.04 72.0 37.50 16.13 6.74 85.66 28.74 1.29 25.07 31.61 85.19 9.04 14.72 98.88

Sep 30.77 18.10 3.29 113.0 44.30 26.95 5.22 111.23 28.79 1.42 25.17 31.94 84.08 5.68 70.80 97.27

Oct 62.83 38.37 8.91 257.0 92.93 51.59 13.01 204.75 27.37 1.89 22.57 31.83 79.52 8.19 63.30 97.77

Nov 120.50 65.64 12.38 308.0 165.74 68.57 17.34 354.31 23.73 1.94 19.00 28.61 72.46 8.65 54.60 97.57

Dec 152.33 67.50 26.00 402.0 193.37 66.46 74.53 365.14 19.47 2.26 14.67 24.06 72.59 7.09 49.84 90.50

l, r, min and max represent the mean, standard deviation, minimum and maximum, respectively
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present, this technique may not give satisfactory results. In

such cases, other imputation techniques must be

considered.

3.1.2 Multivariate imputation

The method of multivariate imputation on electronic

computer devices was proposed by Buck [30]. If m out of n

rows have the complete set of k observations for all the

features, we can consider a matrix X containing all the n

rows, having those m rows at the very first. From the matrix

X, we can obtain k equations of the form

EðxrjÞ ¼ fjðxr1; xr2; . . .; xrj�1; xrjþ1; . . .; xrkÞ ð2Þ

where fj resembles the fitted regression function and xrj
ðr ¼ 1; 2; 3; . . .;mÞ implies the expected value by forming

a multiple regression of j on the other k � 1 variables for

the rth row. By replacing the value of r with the row i, we

can estimate the value of the missing variable.

EðxijÞ ¼ fjðxi1; xi2; . . .; xij�1; xijþ1; . . .; xikÞ ð3Þ

By extending this idea for univariate imputation, multi-

variate imputation can be performed by calculating the

multiple regression formula for each missing variate on

k � v other variates. For any combination of v variates

missing,

k
k � 1

v� 1

� �
ð4Þ

equations have to be calculated. The missing value can be

estimated by selecting the proper equation and solving it.

3.2 Time-series analysis

In this subsection, different methods for time-series anal-

ysis are discussed.

3.2.1 Hodrick–Prescott filter

The Hodrick–Prescott [31] (HP) filter is a mathematical

tool used to remove the cyclical component of a time series

from raw data. It is used to obtain a smoothed-curve rep-

resentation of a time series, from which the long-term trend

can be better observed compared to short-term variations.

The sensitivity of the trend to short-term variations can

be adjusted by modifying a multiplier k. The greater the

value of k, the closer the trend path will be a straight line.

Given a time series yt ¼ st þ ct þ �t where st is the

trend component, ct is the cyclical component and �t is the

error component, for an adequately chosen k, there exists a
trend component which solves

min
s

XT
t¼1

ðyt � stÞ2 þ k
XT�1

t¼2

½ðstþ1 � stÞ � ðst � st�1Þ�2
 !

ð5Þ

Fig. 1 Taxonomy of methods used in this study for time-series analysis and in statistical and deep learning-based modelling
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3.2.2 Simple moving average

In time-series analysis, simple moving average (SMA) is

an arithmetic method which involves finding out the

unweighted mean of the last n periods of data. Upon cal-

culation of successive values, the oldest sum can be left out

and the resulting new value can be calculated using the

following equation:

pSM ¼ pSM;prev þ
1

n
ðpM � pM�nÞ ð6Þ

where pSM denotes the simple moving average at that

instant while pM denotes the mean over the previous n pe-

riods of time.

3.2.3 Decomposition

Decomposition is the statistical approach of breaking down

time series into its trend, seasonal, cyclical and the irreg-

ular components. A time series following an additive

model can be thought of:

yt ¼ st þ ct þ st þ �t ð7Þ

, whereas a multiplicative model would be expressed in the

following way:

yt ¼ st � ct � st � �t ð8Þ

where st, ct, st and �t are the trend, cyclical, seasonal and

irregular (noise) components, respectively. To find the

trend component st of a time series with frequency f, a

convolution filter with a linear kernel containing of ele-

ments equal to 1/f is applied. By removing the st compo-

nent, the seasonal component is found out by averaging

over smoothed series for each period of the component left

out.

3.2.4 Autocorrelation

The autocorrelation function proposed by Box and Jenkins

[32] can be used to detect non-randomness in the data and

also to identify parameters of appropriate time-series

models.

Given measurements, Y1; Y2; . . .; YN at time

i ¼ 1; 2; . . .;N, respectively, the lag k autocorrelation

function is defined as

rk ¼
PN�k

i¼1 ðYi � �YÞðYiþk � �YÞPN
i¼1ðYi � �YÞ2

ð9Þ

3.2.5 Augmented Dicky Fuller test

An augmented Dicky Fuller (ADF) test [33] uses the null

hypothesis that a unit root is present in a time-series

sample. The Dicky Fuller test is used if a time-series

sample is a random walk or not.

Dyt ¼ yt � yt�1 ¼ aþ bt þ cyt�1 þ et ð10Þ

Stationarity [34] refers to the time-series data being devoid

of any trend or seasonal effects, thereby making the data

easier to model as the summary statistics such as mean and

variance tend to stay the same with respect to time. If c ¼ 0

then we have a random walk process, if not, then the data

are a stationary process. The augmented Dicky Fuller test

is an extension of the Dicky Fuller test, allowing for

higher-order regressive processes of the form Dyt�p where

1� p\t.

Dyt ¼ aþ bt þ cyt�1 þ d1Dyt�1 þ d2Dyt�2 þ . . . ð11Þ

The null hypothesis is that the data are non-stationary. We

intend to reject the null hypothesis for this test, so we want

a p value \0:05.

3.3 Statistical models

In this subsection, different statistical models for time-

series forecasting are discussed.

3.3.1 Holt–Winters

The Holt–Winters [35] method comprises four equations,

namely the forecast equation and three smoothing equa-

tions. The additive component form of the method is shown

in Eqs. (12)–(15):

ŷtþhjt ¼ ‘t þ hbt þ stþh�mðkþ1Þ ð12Þ

‘t ¼ aðyt � st�mÞ þ ð1� aÞð‘t�1 þ bt�1Þ ð13Þ

bt ¼ b�ð‘t � ‘t�1Þ þ ð1� b�Þbt�1 ð14Þ

st ¼ cðyt � ‘t�1 � bt�1Þ þ ð1� cÞst�m ð15Þ

where lt, bt and st stand for level, trend and seasonal

components, respectively, along with the corresponding

smoothing factors a, b� and c. The seasonality is denoted

by m, while k is the integer part of the fraction ðh� 1Þ=m,
which ensures that the estimates of the seasonal indices

used for forecasting come from the last part of the sample.

The multiplicative component form of Holt–Winters is:

ŷtþhjt ¼ ð‘t þ hbtÞstþh�mðkþ1Þ ð16Þ

‘t ¼ a
yt
st�m

þ ð1� aÞð‘t�1 þ bt�1Þ ð17Þ
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bt ¼ b�ð‘t � ‘t�1Þ þ ð1� b�Þbt�1 ð18Þ

st ¼ c
yt

ð‘t�1 þ bt�1Þ
þ ð1� cÞst�m ð19Þ

Additive methods are used when the magnitude of the

seasonal fluctuations does not vary with the level of the

time series. On the other hand, multiplicative methods are

used when there is variation in the seasonality which

appears to be proportional to the level of the time series.

3.3.2 Auto-regressive (AR)

An auto-regressive model is a model which upon taking

input of the previous observations predicts the values at the

next time step. The model can be described in the form:

Xt ¼ cþ
Xp
i¼1

uiXt�i þ et ð20Þ

where /1;/2; . . .;/p are the parameters of the model, c is

the constant term and �i is the noise term. p is referred to as

the order of the model denoted by AR(p). The coefficients

of the AR model can be solved by ordinary least-squares

(OLS) method or by using Yule–Walker [36] equations.

3.3.3 Seasonal auto-regressive integrated moving average
(SARIMA)

An ARIMA model [32] consists of an auto-regressive

(AR), integrated (I) and a moving average (MA) compo-

nent to better understand a time-series data or to predict

future time-series data. The AR component indicates that

the evolving variable of interest is regressed on its own

lagged values. The I component indicates that the values

have been replaced by the present values and their previous

values. The MA component indicates that the regression

error is a linear combination of error terms that occurred in

the past. The ARIMA model can be formulated as shown in

Eq. 21.

1�
Xp
i¼1

/iL
i

 !
ð1� LÞdXt ¼ dþ 1þ

Xq
i¼1

hiL
i

 !
et

ð21Þ

where p, d and q denote the time lags of the AR compo-

nent, the degree of differencing and the order of the MA

component, respectively.

The seasonal ARIMA model is an extension of the

ARIMA Model, with additional seasonal AR, I and MA

terms as well a periodic term denoted by m.

3.3.4 Prophet

Prophet [37] is a forecasting procedure developed recently

by Facebook. The model focuses on providing fast and

accurate forecasts that can be later tuned manually. It is

based on an additive model where nonlinear trends are fit

with yearly, weekly and daily seasonality, along with

holiday effects. It works best with time series where sea-

sonal effects are profound and the historical data spans

several seasons.

3.4 Deep learning models

Here, different deep learning-based forecasting methods,

namely stacked LSTM, LSTM auto-encoder, bi-directional

LSTM and convolution LSTM are presented.

3.4.1 Stacked LSTM

Long short-term memory (LSTM) [38] networks are a

special kind of recurrent neural networks (RNN) designed

to be used to remember information for longer periods.

They are explicitly designed to counter the vanishing and

exploding gradient problem, unlike RNNs which are very

much affected by it. LSTMs have four interacting layers in

their repeating module compared to one in RNNs.

The layers of an LSTM network can be mathematically

expressed as shown in Eqs. (22)–(27):

ft ¼ rgðWf xt þ Uf ht�1 þ bf Þ ð22Þ

it ¼ rgðWixt þ Uiht�1 þ biÞ ð23Þ

ot ¼ rgðWoxt þ Uoht�1 þ boÞ ð24Þ

~ct ¼ rhðWcxt þ Ucht�1 þ bcÞ ð25Þ

ct ¼ ft � ct�1 þ it � ~ct ð26Þ

ht ¼ ot � rhðctÞ ð27Þ

where ft, it, ot and ~ct are the activation vectors of forget

gate, input gate, output gate and cell input gate, respec-

tively. ct and ht are the cell state and hidden state vectors.

xt is the input state vector. Matrices of the form Wq and Uq,

respectively, contain the weights of the input and recurrent

connections. In activation functions, rh denotes the

hyperbolic tangent function, while rc denotes the sigmoid

function.

Stacked LSTM is an extension of a vanilla LSTM net-

work in which the LSTM layers are stacked on top of each

other. This helps to increase model complexity. If the input

is already the result from an LSTM layer then the current

LSTM layer can create a more complex feature represen-

tation of the current input.

Neural Computing and Applications (2021) 33:12551–12570 12557

123



3.4.2 LSTM auto-encoder

An auto-encoder [39] is a type of artificial neural network

which is used to learn the features of input data in an

unsupervised manner. An auto-encoder aims to learn the

encoding for a set of data, by training the model to ignore

noise. After the reduction is completed, reconstruction is

undertaken in which the model learns to generate an output

as close as possible to the original input from the encoding

done by the reduction side.

It consists of an encoder and decoder which can be

expressed mathematically as shown in Eqs. (28)–(30):

/ : X ! F ð28Þ

w : F ! X ð29Þ

/;w ¼ arg min
/;w

kX � ðw � /ÞXk2 ð30Þ

where / and w denote the encoder and decoder compo-

nents, respectively. X is the input, and F denotes the feature

space generated by the mapping.

LSTM auto-encoder is a type of neural network in which

an LSTM architecture is used in the encoder and decoder

components to work on data arranged in sequences.

3.4.3 Bi-directional LSTM

Bi-directional LSTM is an extension of the Vanilla LSTM

network and is the LSTM implementation of bi-directional

recurrent neural networks [40] in which the two hidden

layers of opposite directions are connected to the same

output. Due to the added connection, the output layer can

benefit from both the past (backward) and future (forward)

states simultaneously.

In a bi-directional layer, the neurons are split into the

positive and negative direction which corresponds to the

forward and backward states, respectively. However, it

must be noted that the output of the two states is not

connected to the input of the opposite direction’s state.

3.4.4 Convolution LSTM

Convolution neural networks (CNN) [41] are a type of

neural networks where the layers employ a special kind of

mathematical operation called convolution unlike matrix

multiplication in other cases. Mainly used for analysing

visual imagery, CNNs have a wide application in the time-

series analysis.

Unlike, multi-layer perceptrons (MLP) [42] which are

prone to overfitting due to the presence of fully connected

layers, CNNs are regularized by taking advantage of the

hierarchical pattern in data and hence assemble more

complex patterns using smaller and simpler patterns.

As a convolution layer serves well for capturing spatial

features, LSTM layers are used to detect correlations over

time. However, by stacking these kinds of layers, the cor-

relation between space and time features may not be cap-

tured properly. Shi et al. [43] proposed a network structure

able to capture spatio-temporal correlations. In the con-

volution LSTM approach, convolutions are directly used as

part of reading input into the LSTM units.

4 Proposed approach

It is to be noted that the air quality data (in our case, PM2.5

and PM10) in different locations vary depending on the

degree of industrialization, population density, traffic

density, topographical characteristics, etc. [44, 45, 46], and

all these factors play an important role in the performance

of any time-series forecasting method. The existing liter-

ature [46–49] confirms that there is no best single method

that can perform well for any given forecasting situation.

Hence, a model which is built based on the historical

PM2.5 or PM10 data for a particular location may not

provide similar accuracy for other locations. Due to this

reason, selection of a single forecasting method as a pro-

posed approach may not be realistic; thus, a set of methods

instead of one has to be considered so that the best method

could be selected based on their performance on location

specific data.

The general overview of the approach undertaken in this

study is shown in Fig. 2. Missing value imputation is done

on the raw data to prepare it for further processing. Time-

series analysis is then performed on the imputed data to

understand and extract the underlying patterns of the data.

The data are then modelled using various statistical and

deep learning methods as mentioned in Fig. 1. In order to

apply the statistical and deep learning models for long-term

forecasting of PM2.5 and PM10 values of Kolkata, instead

of directly following any existing implementation, a

problem specific version of those models is developed. The

models created thus are then used to train on the entire

dataset to produce the next two-year forecast, which is then

made the basis for the subsequent discussion presented in

the latter part of this paper.

The PM10 data after extraction of PM2.5, temperature

and relative humidity are found to contain missing values

which are to be imputed internally using multivariate

imputation and mean before after methods. In contrast to

the existing methods [44, 50, 51] where univariate impu-

tations are popularly used for missing value imputation in

univariate time-series forecasting, in this work, a combi-

nation of univariate and multivariate approach is utilized to

improve the missing value imputation ability. Pearson

correlation is used to measure the amount of change caused

12558 Neural Computing and Applications (2021) 33:12551–12570

123



by the imputation. The formula used for calculating the

Pearson correlation coefficient q is shown in Eq. (31).

qðX; YÞ ¼
Pn

i¼1ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � xÞ2ðyi � yÞ2

q ð31Þ

where xi, yi refers to the i th sample in time series X and Y

while x and y refer to the mean of all the samples in X and

Y.

On completion of missing value imputation, time-series

analysis is performed on the data to understand the

underlying patterns present. HP Filter [31] is applied to the

daily data to bring out the long-term trends. Although

different multiplier values (k) of HP filter corresponding to

different frequencies have been suggested by Ravn and

Uhlig [52], due to inadequate data in case of annual

resample and the controversy regarding the k value for

monthly resample [52, 53], in this work data are resampled

into quarterly and the suggested value of k ¼ 1600 is used

as the multiplier value.

Next, the simple moving averages are plotted for win-

dows spanning 1 week and 1 month. The daily data are

then resampled into monthly and time-series decomposi-

tion is performed, to get a better understanding of the trend

and the seasonal components present in the data.

ADF test is performed to determine the stationarity of

the time-series data. Many important statistical models

require the data to be stationary for complexity reduction

and effective analysis [54]. In this study, both PM2.5 and

PM10 time series are non-stationary in nature as they show

both trend and seasonal patterns; hence in order to model

effectively, the times series need to be made stationary. By

using repeated ADF tests, the number of lags or difference

components is found out based on the p value score, which

is then used to turn a non-stationary time series into sta-

tionary for further modelling and analysis.

The autocorrelation [32] values are found out on the

time-series data and plotted to mathematically determine

the seasonality based on statistically significant spikes

present.

The monthly data are then trained using four statistical

methods and four deep learning methods. In the statistical

approach, we use AR, Holt–Winters [35], SARIMA [32]

and Prophet [37] to carry out the model fitting and the

Fig. 2 General overview of the proposed approach
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subsequent forecasting, while in the case of deep learning,

we use four different variations of LSTM, namely stacked

LSTM, LSTM auto-encoder, bi-directional LSTM and

convolution LSTM [43] models.

Figure 3 describes the model architecture diagrams

created using all four variations of LSTM. In case of LSTM

auto-encoder-based model architecture as described in

Fig. 3a, two LSTM layers l1 and l2 consisting of 100 and

50 units, respectively, serve as the encoder, while layers l3
and l4 consisting of 50 and 100 units, respectively, serve as

the decoder with a repeat vector layer in between. A dense

layer d1 consisting of 1 unit is attached to the encoder–

decoder architecture to produce the desired output. As

shown in Fig. 3b, the bi-directional LSTM-based model

architecture consists of two bi-directional LSTM layers b1
and b2 consisting of 200 units followed by a 100 unit

LSTM layer l1 and a dense layer d1 to model the time

series. For the convolution LSTM [43]-based model

architecture as described in Fig. 3c, a 1� 10� 64

ConvLSTM2D layer is used whose output is flattened and

fed to an LSTM layer l1 consisting of 100 units. The output

of the LSTM layer is then provided as input to a 1 unit

dense layer d1 to get the final prediction value as the

required output. In case of the stacked LSTM-based model

architecture as shown in Fig. 3d, a 1 unit dense layer d1
following n ¼ 8 number of LSTM and dropout regular-

ization layer pairs ldi81� i� n, consisting of 50 units and

0.5 dropout rate, respectively, is utilized for modelling

purposes.

Since the data used to perform the study do not possess a

spatial component, the input shape is adjusted accordingly

when the data is passed to the convolution LSTM model

for training. All deep learning-based models are made to

undergo 50 runs, to get a better understanding of the

variance introduced due to random initialization of weights

in the training process.

The process of training the monthly data in these dif-

ferent models is the same except for the use of min–max

scaling in order to normalize the data before passing it into

any deep learning-based model. Train/test split is per-

formed in which the last year is made the test set ð	 25%Þ
and the remaining part is made the training set ð	 75%Þ.

Hyperparameter optimization is an important part of

model building. As finding the set of optimal parameters is

a tedious process, manually trying random combinations

take a lot of time. To counter this, a parameter sweep (aka

Grid-Search) can be done parallely on different sets of

optimal parameters thus reducing the time required in

comparison with simple manual searching. Not only is this

process faster, but also it is more accurate as all sets of

parameters tested compared to few random sets that would

have been done if it was performed manually. However, it

must be noted that in each of the parallel runs corre-

sponding to a parameter set chosen out of the entire search

space, all of the required processes are done sequentially.

Fig. 3 Model architecture diagrams using a LSTM auto-encoder, b bi-directional LSTM, c convolution LSTM and d stacked LSTM
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In this study, a detailed search space specific to the

model is taken and Grid-Search is performed on it. In case

of statistical models different combinations of lags, p, d,

q (wherever applicable) are taken into consideration,

whereas in case of neural networks, various combinations

of the number of epochs, batch size, learning rate and

optimizers are taken into consideration. The hyper-pa-

rameters are assessed based on a validation set which is

created out of the training set. The best combination so

found out, are finally evaluated on the test set made earlier.

After the evaluation is completed, the entire monthly data

are used to train the model, so as to perform the forecast of

pollution levels for the next two years.

Walk forward approach (WFA) [55, 56] is used in both

evaluation and forecasting. In WFA, first a window span-

ning a particular time period at the beginning is taken and

is used to train and optimize the model. Another segment

consisting of the data present right after the end of the

window is used to validate the model. After this, the

window is rolled over and the process is again repeated till

the end of the training data is reached. The model is con-

stantly trained as new data become available, unlike other

common approaches which involve model training to

happen only with historical data already present. As the

real-world performance of the model is one of the key

points of this study, WFA turns out to produce a more

realistic outcome, especially for time-series data, where

information is constantly added with time. In this study, a

period of 12 month is taken as the window length for WFA.

As the window is rolled over, the immediate next sample is

added while the oldest sample is dropped off. The rolling

over is continued till the end is reached. The performance

on the test set periods denotes the out-of-sample perfor-

mance of the models and is discussed in detail in the results

section of this paper.

5 Results

In this section, the findings of this comparative study

involving PM2.5 and PM10 is presented, along with a brief

discussion about future trends as projected by the models.

The test bench used to carry out the study involves a 6C/

12T Ryzen 5 3600 CPU clocked at 3.6 GHz coupled with

16 GB 3000 Mhz DDR4 RAM and a 1TB NVMe SSD for

carrying out the mathematical computations. For deep

learning purposes, an Nvidia RTX 2070 Super GPU is also

used as a hardware accelerator to speed up matrix-related

calculations.

The developmental code for this study was based on

python [57], due to the presence of good high-end libraries

like numpy [58], tensorflow [59], statsmodels [60] and sci-

kit learn [61] to help in decreasing the overall complexity

of the code without compromising in efficiency and

performance.

5.1 Missing value imputation

From the Pearson correlation heatmaps as shown in

Fig. 4a, PM10 shows very strong correlation value of 0.82

with PM2.5, compared to temperature and relative

humidity. This allowed the imputation of PM10 to be based

upon PM2.5 when using the multivariate imputation

method as mentioned before.

As observed in Fig. 4, the change in correlation values

of PM2.5 and PM10, between the two heatmaps is found to

be within a range of 0.1, thus indicating that the underlying

patters of the data were kept intact and preserved. Few

missing values which remained in the data were imputed

using mean before after method.

5.2 Time-series analysis

From the descriptive statistics presented in Table 2 and the

daily time-series plot in Fig. 5a, it can be seen that PM2.5

values are higher in the winter months of December, Jan-

uary and February compared to monsoon months of June

and July. It can also be inspected visually in the simple

moving average as well as in the monthly plots presented in

Figs. 6b, c, respectively, that the peak levels of PM2.5 are

on a decreasing trend. This is mathematically confirmed

from the dotted line in Hodrick–Prescott [31] plot in

Fig. 6a and the decomposition trend plot of monthly data in

Fig. 7a. Just like PM2.5, the PM10 values are higher in the

winter months compared to the monsoon months. This is

clearly evident in the descriptive statistics presented in

Table 2 as well in the daily time series, simple moving

average and the monthly plots in Figs. 5b–f, respectively.

However, unlike PM2.5, PM10 values show an increasing

overall trend as can be found out from the HP Filter [31]

plot in Fig. 6d and the decomposition trend plot in Fig. 7b.

In Figs. 7a, b, the direction of the trend line after 2019 is

decreasing in nature, indicating that the pollution levels of

both PM2.5 and PM10 declined in the year 2019 compared

to previous years. One interesting observation that can be

noted from Figs. 6a, d and 4 is that the trends of PM2.5 and

PM10 are opposite in nature even though the Pearson

correlation coefficient q ¼ 0:88 is highly positive.

Although the results of both the trend and correlation plots

seem to contradict each other, there is an actual miscon-

ception [62] among many regarding the interpretation of

correlation and trends. More specifically, high positive

correlation can be possible between two time series even

though their trends [calculated using Eq. (5)] are opposite

in nature [62]. In Fig. 8, a step-by-step calculation of the

Pearson correlation between PM2.5 and PM10 time series
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is provided, using the same data of Fig. 6a, d to validate the

claim that there is indeed a strong positive correlation

between PM2.5 and PM10 even though their trends are

opposite.

Fig. 4 Pearson correlation heatmaps a before imputation and b after imputation of PM10

Fig. 5 Daily time-series plots for a PM2.5 and b PM10

Fig. 6 HP Filter, simple moving average and monthly plots for a–c PM2.5 and d–f PM10
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Augmented Dicky Fuller test [33] when performed on

the monthly data gave us a p value = 0.995 and 0.647 for

PM2.5 and PM10, respectively. As a p value greater than

0.05 is considered to be statistically significant, the null

hypothesis cannot be rejected and the data are considered

to be non-stationary in nature and possess a unit root. The

results of the ADF test performed on the non-stationary

time-series data differenced by one period gave a p value

lesser than 0.05 thereby rejecting the null hypothesis and

making it clear that a difference component needs to be

present in the statistical models trained on the data.

The seasonal plots using monthly data of both PM2.5

and PM10 in Fig. 7c, d, respectively, indicate a seasonality

of 12 time periods as it can be observed that the underlying

pattern of the line plots repeats over every 1 year

(12 months). It can also be confirmed from the lag having

the highest positive correlation (i.e. lag 12) in the set of

positive lags after the first set of negative correlation lags in

Fig. 9. The autocorrelation plots also show a gradual

decrease to zero in contrast to a sharp decline, thus visually

confirming that the time-series data is non-stationary. It is

to be also noted, that seasonality of 12 months is not

unusual in Kolkata [63, 64]. For instance, in every year, the

concentration of particulate matter during winter (Nov–

Feb) is higher compared to other seasons because of the

longer residence time of particulate matter in the atmo-

sphere during winter due to low winds and low mixing

height [64].

5.3 Parameter setting and evaluation Metrics

5.3.1 Parameter setting

The hyper-parameters are obtained using Grid-Search on a

search space defined based on the time-series analysis as

performed before. Lags ¼ 2 and 9 are produced to give the

Fig. 7 a–b Trend and c–d seasonal plots for monthly PM2.5 and PM10
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least RMSE for AR in case of PM2.5 and PM10, respec-

tively. SARIMA (1, 0, 0)(1, 0, 1, 12) for PM2.5 and

SARIMA (1, 0, 0)(0, 1, 1, 12) for PM10 are found out to

show the best performance in terms of RMSE out of all

SARIMA models. Multiplicative trend with seasonality of

12 is used for Holt–Winters, whereas default parameters

are taken into consideration for Prophet in case of both

PM2.5 and PM10. In case of deep learning models, all

models are trained on a minimum of 100 epochs with batch

sizes ranging from 1 to 64, based on the hyper-parameters

found out by Grid-Search using a constant seed for

reproducibility.

5.3.2 Evaluation metrics

Measurement of model performance is based on root mean

squared error (RMSE) and mean average error (MAE) in

comparison with the test set mean. The effect of each error

on RMSE is proportional to the size of the squared error;

thus, larger errors have a disproportionately larger effect on

the RMSE.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1ðŷt � ytÞ2

T

s
; MAE ¼

PT
t¼1 ŷt � yij j

T

ð32Þ

Fig. 8 Flow diagram demonstrating the calculation of the Pearson

correlation coefficient. PM2.5 and PM10 data are shown in blue and

in green, respectively. The trends (blue and green dotted lines for

PM2.5 and PM10, respectively) are opposite in nature. The deviations

in PM2.5 and PM10 from their respective mean (i.e. 75.65 and

106.08) are shown in violet and red colour, respectively (Color

figure online)
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where ŷt is the prediction made by the model and yt is the

actual value at instant t. Here, T denotes the count of the

number of time-series samples.

Due to comparatively longer training time for deep

learning models, two epochs were used to retrain the

models during each WFA cycle in both evaluation as well

as in forecasting.

5.4 Forecasting

As can be seen in Tables 3 and 4, out of the four statistical

models and four deep learning models used to fit the data,

Holt–Winters gave the overall best RMSE and MAE score

combination, while in case of deep learning convolution

LSTM [43] and stacked LSTM gave the best results in

terms of RMSE and MAE with respect to a test set mean of

54.36 and 101.41 for both PM2.5 and PM10, respectively.

The actual vs predicted correlation plots in Figs. 10 and 11

show that Holt–Winters (in Fig. 10b, f) has the best model

performance compared to others. One interesting obser-

vation from Fig. 11 is that the values predicted by deep

learning models are relatively scattered more in compar-

ison with their statistical counterparts in Fig. 10, which is

further reflected in their RMSE and MAE values.

Now, the forecast plots of PM2.5 and PM10 are shown

in Figs. 12 and 13, respectively, for different statistical and

deep learning models where the shaded portion represent-

ing the forecast region. On analysing the nature of the

forecasts produced by different models as shown in

Figs. 12 and 13, AR, stacked LSTM, bi-directional LSTM

and LSTM auto-encoder (in Fig. 12a, c–g) showed a ten-

dency of converging to the mean in the long-term for

PM2.5. Although Prophet (as shown in Fig. 12d) was able

to pick up the trend and the seasonal components clearly,

the forecast produced became negative in the period

between 2021 and 2022. The decrease in PM2.5 levels over

the years as forecasted by SARIMA (in Fig. 12c) was

relatively lower compared to Holt–Winters and convolu-

tion LSTM models as can be seen in Fig. 12b, h.

The behaviour, however, was a little different for PM10

where none of the models showed any explicit tendency of

converging to the mean. Like PM2.5, Holt–Winters,

SARIMA and convolution LSTM models, as evident from

Fig. 13b, c and h accurately were able to extract the trend

Fig. 9 Autocorrelation plots for monthly PM2.5 and PM10. The blue arrow marks show the lag having the highest positive correlation (i.e. lag

12) in the set of positive lags after the first set of negative correlation lags

Table 3 Performance metrics of statistical models for PM2.5and

PM10

Pollutant Model RMSE MAE

PM2.5 AR 15.68 13.08

SARIMA 12.19 10.12

Holt–Winters 10.06 7.72

Prophet 31.87 24.27

PM10 AR 21.98 19.48

SARIMA 20.53 16.07

Holt–Winters 15.45 11.33

Prophet 39.57 35.58

Bold values indicate the best performing models with the respect to

the metrics mentioned
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Table 4 Performance metrics of

deep learning models
Pollutant Model RMSE MAE Train time (in s)

PM2.5 Stacked LSTM 22.32 
 1.76 16.62 
 1.10 33.06 
 1.51

LSTM auto-encoder 18.88 
 0.19 15.88 
 0.19 9.50 
 1.13

Bi-directional LSTM 19.27 
 0.98 16.57 
 0.56 11.01 
 0.86

Convolution LSTM 16.98 
 1.18 12.16 
 0.97 4.39 
 0.78

PM10 Stacked LSTM 29.33 
 3.41 21.59 
 2.01 19.81 
 1.44

LSTM auto-encoder 33.35 
 6.40 26.58 
 3.58 5.19 
 0.46

Bi-directional LSTM 29.92 
 5.64 23.78 
 2.96 13.36 
 0.84

Convolution LSTM 29.92 
 4.35 22.73 
 4.40 3.94 
 0.49

Bold values indicate the best performing models with the respect to the metrics mentioned

Fig. 10 Actual vs predicted scatter plots of statistical models for (a-d) PM2.5 and (e-h) PM10

Fig. 11 Actual vs predicted scatter plots of deep learning models for a–d PM2.5 and e–h PM10
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and the seasonal components and produce a practical

forecast. However, all models did not show a similar trend.

In case of AR, Holt–Winters, bi-directional and auto-en-

coder LSTM (as shown in Fig. 13a, b, f–g), a decreasing

trend could be seen in the future years. SARIMA (in

Fig. 13c) showed a constant forecast while Prophet and

stacked LSTM (in Fig. 13d, e) produced a forecast fol-

lowing an increasing overall trend. Out of all deep learning

models that were a part of the study, except convolution

LSTM, all models showed a forecast which was decreasing

in nature. Convolution LSTM as can be seen in Fig. 13h

produced a forecast having an increasing trend just like

Prophet.

From the performance metrics in Tables 3 and 4, sta-

tistical methods performed better compared to deep

learning. This performance difference can be attributed to

the quantity of data available. As monthly data are

considered in this approach, the quantity of data will be

limited in all practical situations; hence, statistical methods

will be found to give better results.

5.5 Discussion

The decrease in PM2.5 pollution levels and the concave

downward trend in PM10 levels as indicated by the fore-

casts can be a good indication of the recent measures taken

by the Government of West Bengal and the Central

Government to bring down pollution levels in Kolkata.

However, some forecasts showing a positive upward

trend are still cause for alarm, as the present quality of

PM10 levels is already significantly higher than the safe

limit of 20l/m3 prescribed by the WHO [65]. Even PM2.5

levels are significantly higher compared to the global safe

limit of 10l/m3.

Fig. 12 PM2.5 forecast plots for statistical and deep learning models with the shaded portion representing the forecast region

Fig. 13 PM10 forecast plots for statistical and deep learning models with the shaded portion representing the forecast region
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The government should continue adopting strict policies

regarding environmental pollution, especially focussing on

large scale industries that are the main causes of PM10

levels. A complete ban of dumping sand, stone chips and

other construction raw materials openly on roadsides

should also be a part of their action plan to curb pollution.

Measures such as promoting the usage of electric vehicles

or vehicles based on CNG or LPG, a complete ban on the

incineration of garbage in public places can be a part of an

action plan set up by the government to curb PM2.5 levels

in the city.

6 Conclusion

This study undertook a quantitative approach to understand

the future trends of PM2.5 and PM10 based on historical

pollution data extracted from various sources. The most

widely used time-series modelling methods were put to the

test to carry our long-term forecasts, and their efficiency

was compared with each other. Based on the limited data

available, statistical methods especially Holt–Winters were

able to outperform deep learning methods. If the quantity

of data available would have been higher, or if the pro-

posed approach is used to forecast the next few months by

using weekly resampled data, deep learning models could

be expected to perform relatively better.

However, a certain shortcoming of this study is the

absence of the use of exogenous variables. Although

methods like Holt–Winters and AR can be used to model

time-series data efficiently, those methods do not have the

flexibility to account for exogenous variables. If exogenous

variables were made a part of this study, models like

SARIMAX and LSTMs could be expected to give more

accurate results.

Even though the city taken in this study was Kolkata, the

approach used in this study can be applied to any major city

in the world. Based on the forecasts, concerned policy-

making organizations can implement new measures and

regulations to curb the pollution levels in their cities and

make the environment healthier for the city’s inhabitants.

Curbing pollution levels also will have a major positive

impact on the environment. PM particles adversely affect

ecosystems including plants, soil, water, etc. Water quality

gets degraded and plant growth and yield also get largely

affected. It is hoped that this study will help the policy

makers to judge the gravity of the pollution scenario in

their cities and aid them to implement better pollution

measures.

This study was performed on data before the COVID-19

pandemic-related lockdown was enforced in Kolkata. Due

to a huge reduction in socio-economic activity, the pollu-

tion forecasts performed may change drastically from the

actual values. Based on the changes in the nature of the

pollution data during and after the lockdown, a study

analysing those changes can be presented in the future.
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