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Obesity is known to induce leptin and insulin resistance. Leptin is a peptide hormone
synthesized in adipose tissue that mainly regulates food intake. It has been shown that
insulin stimulates the production of leptin when adipocytes are exposed to glucose to
encourage satiety; while leptin, via a negative feedback, decreases the insulin release
and enhances tissue sensitivity to it, leading to glucose uptake for energy utilization or
storage. Therefore, resistance to insulin is closely related to leptin resistance. Obesity in
middle age has also been related to Alzheimer’s disease (AD). In recent years, the relation
between impaired leptin signaling pathway and the onset of AD has been studied. In
all this context the role of the blood brain barrier (BBB) is crucial. Slow excitotoxicity
happens in AD due to an excess of the neurotransmitter glutamate. Since leptin has
been shown to regulate N-methyl-D-aspartate (NMDA) receptors, we want to review
the link between these pathological pathways, and how they are affected by other AD
triggering factors and its role in the onset of AD.

Keywords: leptin-resistance, dementia, overweight, excitotoxicity, LTP

INTRODUCTION

In the last years obesity has changed from a mere aesthetic problem to become into a serious
health problem worldwide. Nowadays it is considered by medical authorities as a genuine epidemic,
consuming enormous technical, human, and economic resources. Obesity and also overweight
affect near than 300 million people from child to elderly, and it is not related with the development
level of the country (World Health Organization [WHO], 2003). Moreover, research has shown
that obese children are more likely to be overweight or obese as adults (Sahoo et al., 2015).
The growing incidence caused by a change in eating habits, by an increased consumption of fat
and also by a substantial reduction in physical activity. This nutritional disorder implicates a
number of conditions associated with excess weight, such as heart diseases, type 2 diabetes, high
blood pressure, different types of cancer, and even neurodegeneration (Friedemann et al., 2012;
Odegaard and Chawla, 2013; Hotamisligil, 2017). All these chronic pathologies associated with
obesity, englobe the main causes of death and also monopolize 80% of healthcare expense (The
World Health Organization [WHO], 2019).
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The body mass index (BMI) is the most widely used method
to classify a person in relation to his/her weight. In adults a
BMI of 18.5 to 24.9 stands for a healthy, normal weight, while
a value between 25 and 29.9 means is considered overweight.
From values from 30 to 39.9 implies you are obese and from 40
to above means you are severely obese. A BMI lower than 18.5 is
considered underweight and may indicate an eating disorder or
malnutrition. However, BMI is not representative of overweight
in the case of people with high percentage of muscle mass. In
these population a high BMI would not indicate excess of fat.
Perhaps a more accurate method to assess excess fat is waist
circumference, which can be used as an additional measure in
people who are overweight or moderately obese. Usually, men
with a waist circumference of 94 cm (37 in) or more and women
with a waist circumference of 80 cm (31.5 in) or more are in risk
of obesity-related diseases.

In the last 15 years, obesity and dementia risk have been
related (Whitmer et al., 2005). An increase in adipose tissue could
promote a decrease in the blood flow to the brain, leading to
vascular injury. In fact, obesity is related to changes in cerebral
vascularization, because perivascular adipose tissue is not found
around the cerebral arteries (Dorrance et al., 2014). A decrease in
blood flow to the brain causes ischemia in vulnerable brain areas.
The most sensitive areas, specifically vulnerable, are neurons
located in the hippocampal regions CA1, CA3, and CA4, portions
of the caudate nucleus, cerebellum, and layers III, V, VI of the
neocortex (Payabvash et al., 2011). The hippocampal areas, due
to its high baseline metabolic activity, are extremely susceptible
to reduced oxygen and glucose intake and it is believed that it
can be one of the causes of increased memory loss (Kivipelto
et al., 2005). Chronic peripheral inflammation caused by the
release of adipokines as leptin and other cytokines, may spread
to the brain and the neuroinflammation is linked to a decrease in
the brain white matter, leading to impair neuronal connections
(Arnoldussen et al., 2014; Kiliaan et al., 2014). Moreover,
neuroinflammation could be triggered by an imbalance in the
gut microbiota due to the consumption of diets high in fats and
sugars (Solas et al., 2017), which could provoke an alteration in
the “gut-brain axis.”

In this review, we are going to discuss the role of the cytokine
leptin in brain function and specially in the memory decline
associated with Alzheimer’s disease (AD).

LEPTIN AND ITS ROLE IN THE BRAIN

Leptin was discovered in Zhang et al. (1994) by Friedman and co-
workers using modern molecular biology tools such as positional
cloning. After cloning the ob gene in mice and its homolog
in humans, the gene product was purified and called leptin
(Maffei et al., 1995). Leptin is a hormone mainly produced by
adipose tissue which is released to the bloodstream and circulates
throughout the body proportionally to the body fat mass
(Friedman and Halaas, 1998). Moreover, leptin is expressed either
in subcutaneous and visceral adipose tissue (Lieb et al., 2009),
and also in placenta, skeletal muscle, ovaries, mammary epithelial
cells, (Margetic et al., 2002), or even in the gastrointestinal tract

with both endocrine and exocrine actions (Cammisotto et al.,
2005). Leptin can be found into the bloodstream either associated
to binding proteins or in a free, bioactive form (Sinha et al.,
1996). Obese individuals show a higher proportion of the free
circulating leptin form and in contrast, in lean subjects leptin
circulates mainly bound to its soluble receptor (Sinha et al., 1996).
This is in line with the fact that one of the functions attributed
to leptin is to regulate food intake and energy expenditure.
When adipose tissue decreases plasma leptin levels also decrease,
and when adipose tissue increases leptin levels increase and
suppresses appetite (Maffei et al., 1995). But we know today that
the functions of leptin are many others: it is a growth factor, a
permissive factor for puberty, controls metabolism and immune
system and is also implicated in memory (Margetic et al., 2002;
Kelesidis et al., 2010; McGregor and Harvey, 2018a). All these
effects are mediated by binding to specific leptin receptors (LepR)
expressed in the central nervous system (CNS) as well as in
peripheral tissues.

The LepR has six different isoforms: five of them (LepRa,
LepRc, LepRd, LepRf, and LepRb) show transmembrane domain,
whereas LepRe only presents an extracellular domain and acts
as a soluble receptor. LepRb is the long form of the receptor
while the others isoforms are shorter (Chua et al., 1997; Tartaglia,
1997; Cui et al., 2017). LepRs are widely expressed all along the
body, but focusing in the brain, both short and long isoforms
are broadly expressed. LepR is found in the hypothalamus
(specifically, in the arcuate, ventromedial, paraventricular, and
ventral premammillary nuclei) but LepRs are also present in
other areas primarily non-associated with energy balance such as
the neocortex, hippocampus, thalamus, leptomeninges, choroid
plexus (Mercer et al., 1996; Fei et al., 1997; De Matteis and Cinti,
1998), entorhinal cortex, amygdala, and rostral medulla (Savioz
et al., 1997; Burguera et al., 2000).

LEPTIN AND OBESITY

To reach the CNS, leptin crosses the blood-brain barrier (BBB)
through a saturable transport system (Banks et al., 1996). Brain
microvessels express short leptin receptors which bind and
internalize leptin (Karlsson et al., 1997; Bjørbaek et al., 1998).
It has been proposed that leptin enters via cerebrospinal fluid
(CSF) from plasma because the choroid plexus contains many
leptin receptors (Schwartz et al., 1996; Golden et al., 1997). In
the hypothalamus, a very specific type of cell, the tanycyte has a
remarkable role conducting leptin. Tanycytes are ependymal cells
located in the third ventricle and also in the floor of the fourth
ventricle. They have cellular extensions that communicate deep
into the hypothalamus, and thank to these cellular prolongations,
the leptin is conducted to its target areas through transcytosis
(Balland et al., 2014). When leptin binds to its receptor it
activates several signaling cascades such as the Janus tyrosine
kinase 2 (JAK2), the signal transducer activator of transcription
3 (STAT3), the phosphatidylinositol 3-kinase (PI3 kinase), and
the AKT pathways (Flak and Myers, 2016) that culminates
in the modification of neurons releasing three hormone-
derived peptides: neuropeptide Y (NPY), pro-opiomelanocortin
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(POMC), and agouti-related peptide (AgRP). If the amount of
NPY and AgRP, are increased, it leads to increased food intake
but the activation of the POMC triggers factors (mainly the
α-melanocyte–stimulating hormone) that inhibit food intake
(Varela and Horvath, 2012). The administration of leptin
increases POMC mRNA expression, and inhibits NPY and AgRP
mRNAs translation (Elias et al., 1999; Balland and Cowley, 2015).

Nevertheless, we have a hormone that is central in the
regulation of food intake and glucose levels control, and of
course, we are referring to insulin. An increase in the level
of circulating insulin produced by its prandial release from
endogenous stores is associated with the state of satiety. Given
this fact, the relation of leptin and insulin is a point to discuss. As,
Kahn and Flier (2000) propose, leptin has an insulin-sensitizing
effect after both an acute or a chronic administration. This could
happen because LepRs are present in pancreatic β-cells (Pallett
et al., 1997; Amitani et al., 2013) and when leptin binds to them, it
is able to inhibit insulin synthesis and release to the bloodstream.
On the contrary, insulin stimulates leptin secretion from adipose
tissue closing the feedback loop. In this line, Kulkarni et al. (1997)
show that leptin administration lowers insulin secretion in vivo
not only in mice but also in isolated human islets. Making tissues
more sensitive to insulin, leptin causes glucose uptake for energy
utilization, or storage.

Given that insulin resistance happens in obesity, the role
of leptin in obesity etiology and pathophysiology is worth to
discuss. In obese subjects, levels of leptin increase in plasma
compared to lean subjects. This is, probably, a physiological
response to reduce food intake, and also aims to use all the
energy derived from the lipid metabolism (Myers et al., 2010).
However, what actually happens is that obese subjects show
resistance to leptin actions over time. In this line, leptin resistance
is associated with both increased circulating levels of leptin and
also with inability of exogenous leptin to decrease body fat
or food intake (Myers, 2015). Actually, augmented circulating
levels of leptin in obesity caused hypothalamic leptin resistance,
reducing the anorexigenic and energy expenditure signals and
aggravating obesity (Waterson and Horvath, 2015). The cause
of leptin resistance is not well elucidated, but it seems to have
its origin in a defect in the transport of leptin across the BBB,
maybe in deficits involving intracellular signaling mechanisms
downstream of leptin receptor or even in development alterations
(Banks, 2004; Myers et al., 2008; Farr et al., 2015).

OBESITY AND RISK OF ALZHEIMER’S
DISEASE

Alzheimer’s disease (AD) is the most common form of
dementia. It is characterized by two main lesions in the
brain: senile plaques, predominantly formed by amyloid-beta
(Aβ) peptide and neurofibrillary tangles, mainly compound by
hyperphosphorylated tau protein (p-tau). Aβ is product of the
processed of the amyloid precursor protein (APP) by β- and
γ-secretase enzymes (Mattson, 2004; Patterson et al., 2008).
The first symptom of the disease is episodic memory loss
associated with hippocampal affectation. But some pathological

modifications related to obesity, such as neuroinflammation,
insulin resistance, or mitochondrial dysfunction, also occur in
AD pathological progression (O’Brien et al., 2017).

The number of studies relating an increase in fat body mass
and the risk of suffer AD has increased in the last years. However,
the results are controversial and many times inconclusive. It
seems that it is important to differentiate between mid-life and
late-life overweight (Xu et al., 2011). Specifically, obesity in
midlife and a weight loss in the preclinical phase characterizes
dementia (Singh-Manoux et al., 2018). In fact, in a recent
meta-analysis of 21 studies, the authors conclude that obesity
below the age of 65 years (midlife obesity) correlates with the
incident of dementia, but not the late-life obesity (over 65 years)
(Pedditizi et al., 2016). Very recently, Kivimäki et al. (2018)
analyzed 1,349,857 people from 39 different cohorts with BMI
data assessed at baseline. The authors find that 20 years before
dementia diagnosis, higher BMI is associated with increased
dementia risk in mid-life. Moreover, they describe that this risk
is reversed in late-life and a higher BMI could even be protective
(Kivimäki et al., 2018).

Furthermore, a meta-analysis of 15 prospective studies
including more than 72000 participants used BMI measures and
the authors found that both underweight and obese are related
to an increase risk of AD but only in mid-life; high BMI in
late-life was not associated with any dementia (Anstey et al.,
2011). Moreover, the authors conclude that underweight could
be a useful marker for identifying mild cognitive impairment
(MCI) subjects at increased risk to convert to AD (Joo et al.,
2018). Another very large retrospective cohort study with two
million people analyzed, concludes that underweight in both
middle and old age increases the risk of dementia over two
decades (Qizilbash et al., 2015), although this study is not focused
specifically in AD. In spite of these publications, the hypothesis
that being overweight in mid-life is linked to dementia in late-life
seems to be widely accepted by scientific community. A recent
analysis explains that the duration of the preclinical weight loss
phase could be a negative confounding parameter and a plausible
explanation of this paradox (Pegueroles et al., 2018).

THE ROLE OF LEPTIN IN AD

Since obesity and dementia were related, many studies tried to
find a link between brain leptin activity and AD development.
In this line, Bonda et al. (2014) show that leptin is increased in
the CSF and also in the hippocampus of AD patients, but leptin
receptor mRNA is decreased within degenerating neurons and
this could suggest a novel neuronal leptin resistance in AD. On
the other hand, Maioli et al. (2015) show no changes in leptin
concentration in CSF, but LepR also diminishes in post-mortem
brains of AD patients, confirming that leptin resistance occurs.
LepR decreased expression related to age, is also shown in an
animal model of AD (King et al., 2018).

Brain leptin resistance is proposed as part of the
neurodegenerative process. Leptin has both neurotrophic
and neuroprotective properties therefore, leptin signaling deficits
may lead to susceptibility to AD-related neurotoxic conditions.
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In fact, leptin is able to modify the levels of Aβ peptide by
limiting its production in neurons via reducing β-secretase
activity (Fewlass et al., 2004; Marwarha et al., 2010). Likewise,
leptin protects hippocampal neurons in primary cell culture
from Aβ derived insults such as oxidative stress (Martins
et al., 2013). Moreover, leptin enhances the removal of Aβ by
promoting its clearance and degradation and activating the
insulin degrading enzyme (Patterson et al., 2008). Furthermore,
in neurons treated with Aβ, leptin prevents glycogen synthase
kinase 3β (GSK3β) activation (Greco et al., 2009; Marwarha
et al., 2010; Martins et al., 2013). This is very significant for AD
pathogenesis since GSK3β is a kinase of tau and is implicated in
the formation of neurofibrillary tangles. Besides, development
of leptin resistance is linked with higher tau pathology in
transgenic mouse models of AD suggesting that a defect in

LepR-mediated signaling cascade could increase p-tau levels
(Platt et al., 2016).

An important target of leptin action is the hippocampus,
where it has a role in synaptic plasticity process, in memory
preservation, and has pro-cognitive effects (Harvey, 2007, 2013).
All these effects seem to be mediated by modulating glutamate
receptors: the ionotropic α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate
(NMDA). These receptors are involved in long-term potentiation
(LTP) and in long-term depression (LTD). Leptin enhances LTP
and decreases LTD, increasing the efficacy of excitatory synaptic
transmission (Shanley et al., 2001; Wayner et al., 2004; Moult
and Harvey, 2011; McGregor and Harvey, 2018b; McGregor
et al., 2018). Moreover, leptin resistance is determinant for
hippocampal dysfunction (Mainardi et al., 2017). In AD models,

FIGURE 1 | Schematic overview of the relationship between leptin and increased risk of Alzheimer’s Disease. Leptin is neuroprotective in AD by inhibiting LTD,
GSK3β, oxidative stress, and β-secretase activity and by inducing LTP and Aβ degradation. When a leptin-resistance takes place due to middle-age obesity, AD risk
is increased.

FIGURE 2 | Relationship between middle-age obesity, glutamate excitotoxicity and increased risk of Alzheimer’s disease. In normal conditions, NMDA signaling and
leptin receptor signal merge, exerting neuroprotective effects on cells. On the other hand, leptin resistance impairs this pathway. Moreover, Aβ causes an increase of
glutamate levels and this leads to a dysfunction in extrasynaptic NMDAR, a decrease in LTP and mitochondrial alterations.
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leptin prevents the anomalous effects of Aβ on hippocampal
LTP and LTD, restoring normal hippocampal synaptic function
(Doherty et al., 2013), and also increasing the synaptic density
and rescuing memory deficits (Perez-Gonzalez et al., 2014).

Taken together, the studies described above indicate that
brain leptin resistance could be central in AD pathophysiology,
including the regulation of glutamatergic connections
involved in hippocampal LTP and LTD. A schematic view is
shown in Figure 1.

GLUTAMATE, OBESITY AND AD ARE
LINKED VIA LEPTIN-RESISTANCE

Mild cognitive impairment and AD patients show an increase
in plasma glutamate and glutamine (Miulli et al., 1993;
Trushina et al., 2013). This increment is also reflected in
brain, since some studies identify an increase in glutamate
and glutamine levels in CSF from AD (Pomara et al.,
1992; Jimenez-Jimenez et al., 1998; Kaiser et al., 2010;
Madeira et al., 2018) and from MCI patients (D’Aniello
et al., 2005). If this increase comes directly from the arise
in the peripheral levels of glutamate and glutamine or if
it is an indirect phenomenon is not yet known in AD.
Curiously, glutamine levels increase in hippocampus from
mice fed with a high-fat diet during 6 months (Lizarbe
et al., 2019). Moreover, the BBB is disrupted in early phases
of the disease and the consequences of this disruption in
the amino acid transport are not yet studied in depth
(Montagne et al., 2017). In any case, a slow excitotoxicity
is shown in AD and this consist of an overexcitation of
NMDA receptors by glutamate (Beal, 1992; Ong et al.,
2013). Glutamate overexcite the NMDA receptors in a tonic
manner and a good evidence of this, is that memantine,
an uncompetitive NMDA receptor antagonist, is a well-
established treatment of AD (Parsons et al., 2007). In fact,
Aβ causes the increase of glutamate (Fuchsberger et al., 2016)
and the intraneuronal Ca2+ levels (Kuchibhotla et al., 2008).
A pathological signaling cascade is triggered, involving an
increase of Cdk5-p35 levels, a decrease of Cdh1 and finally
glutaminase increase, causing a positive feedback loop of
excitotoxicity (Fuchsberger et al., 2016). Interestingly, Cdk5-
p35 also modulates signaling induced by leptin (He et al.,
2009). Cdk5-p35 causes SOCS3 activation, a negative feedback
regulator which inhibits leptin-induced signal transduction and
causes leptin resistance (He et al., 2009). So, the excess of
glutamate levels can cause a cascade of events that also induce
leptin-resistance.

Interestingly, in AD the aforementioned overactivation is
produced in extrasynaptic NMDA receptors rather than in
synaptic NMDA receptors (Zhang et al., 2016). Overstimulation
of synaptic NMDA receptors is considered neuroprotective
and in contrast, the overstimulation of extrasynaptic NMDA

receptors induces tau hyperphosphorylation (Sun et al., 2016)
and cell death (Hardingham and Bading, 2010). In fact,
memantine blocks preferentially extrasynaptic over synaptic
NMDA receptors (Xia et al., 2010) as part of its action as
AD treatment. NR2-A is a subunit mainly present in synaptic
NMDA receptors and it has shown that leptin mediates
neuroprotection activating them (O’Malley et al., 2007), and
this is critical for the induction of LTP and LTD (Muller
et al., 2009). When leptin binds to its receptor, activates
JAK2, which in turn promotes the activation of STAT3, and
then, PI3K-Akt signaling pathways are induced. Activation
of synaptic NR2A-containing NMDARs by glutamate also
induces the PI3K-dependent pathway (Lee et al., 2002), so
both common signals are highly potentiated. The signal
cascade will induce AMPA exocytosis and LTP (Moult et al.,
2010) but also neuronal survival by promoting expression
of mitochondrial antioxidant enzymes and anti-apoptotic
proteins such as Bcl-xl (Guo et al., 2008), and by inhibiting
Foxo (Al-Mubarak et al., 2009) and GSK3β (Greco et al.,
2009). In contrast, in AD extrasynaptic NMDA receptors are
overstimulated and this leads to neuronal death. Extrasynaptic
NMDAR induces the pro-apoptotic transcription factor Foxo
(Dick and Bading, 2010) and also mitotoxicity. The consequences
are mitochondrial calcium sustained increase, compromised
ATP production and mitochondrial dysregulation finally
inducing cell death (Bading, 2017). A global scheme is
shown in Figure 2.

CONCLUSION

Leptin is a hormone secreted by adipose tissue that matters for
the correct functioning of the brain, including the memory, and
learning processes in the hippocampus. Leptin is neuroprotective
and increase LTP, potentiating the activity of synaptic NMDA
receptors of glutamate. We discussed how in AD both leptin
resistance, LTP dysfunction, and also an increase in glutamate
happen. For all this, obesity in middle-age could be considered
as a risk factor to develop AD in the elderly.
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