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By using Krasnoselskii’s fixed point theorem, we study the existence of at least one or two positive solutions to a system of fractional
boundary value problems given by −𝐷]1
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∈ 𝐶([0, 1], 𝑅). Our results are new and

complement previously known results. As an application, we also give an example to demonstrate our result.

1. Introduction

The purpose of this paper is to consider the existence
of multiple positive solutions for the following system of
nonlinear fractional differential equations:
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∈ 𝐶([0, 1], 𝑅).

Fractional differential equations arise in many fields,
such as physics, mechanics, chemistry, economics, and engi-
neering and biological sciences; see [1–11] for example. In
recent years, the study of positive solutions for fractional
differential equation boundary value problems has attracted
considerable attention, and fruits from research into it emerge
continuously. For a small sample of such work, we refer the
reader to [12–20] and the references therein. The situation
of at least one positive solution has been studied in many
excellent monograph; see [12–19, 21] and other references
therein. In [22], by means of Schauder fixed point theorem,
Su investigated the existence of one positive solution to the
following boundary value problem for a coupled system of
nonlinear fractional differential equations:
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𝑦
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where 1 < 𝛼, 𝛽 < 2, 𝜇, ] > 0, 𝛼 − ] ≥ 1, 𝛽 − 𝜇 ≥ 1.
In [21], Goodrich established the existence of one positive

solution to problems (1)-(2) and (1), (3) by using Krasnosel-
skii’s fixed point theorem. Different from the above works
mentioned, in this paper we will present the existence of at
least two positive solutions to problems (1)-(2) and (1), (3) by
using the similar method presented in [21]. Moreover, under
different conditions, we also present the existence of at least
one positive solution to problems (1)-(2) and (1), (3) with
𝜆

1
= 𝜆

2
= 1.

2. Preliminaries

For the convenience of the reader, we present here some
definitions, lemmas, and basic results that will be used in the
proofs of our theorems.

Definition 1 (see [23]). Let ] > 0 with ] ∈ 𝑅. Suppose that
𝑦 : [𝑎, +∞) → 𝑅.Then the ]th Riemann-Liouville fractional
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and ] ∈ 𝑅, we define the ]th Riemann-Liouville fractional
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where 𝑛 ∈ 𝑁 is the unique positive integer satisfying 𝑛 − 1 ≤
] < 𝑛 and 𝑡 > 𝑎.

Lemma 2 (see [24]). Let 𝑔 ∈ 𝐶

𝑛
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is the Green function for this problem.

Lemma 3 (see [24]). Let𝐺(𝑡, 𝑠) be as given in the statement of
Lemma 2. Then one finds that

(i) 𝐺(𝑡, 𝑠) is a continuous function on the unit square
[0, 1] × [0, 1];

(ii) 𝐺(𝑡, 𝑠) ≥ 0 for each (𝑡, 𝑠) ∈ [0, 1] × [0, 1];
(iii)max

𝑡∈[0,1]
𝐺(𝑡, 𝑠) = 𝐺(1, 𝑠), for each 𝑠 ∈ [0, 1].

Lemma 4 (see [24]). Let𝐺(𝑡, 𝑠) be as given in the statement of
Lemma 2. Then there exists a constant 𝛾 ∈ (0, 1) such that
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𝑡∈[(1/2),1]

𝐺 (𝑡, 𝑠) ≥ 𝛾max
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To prove our results, we need the following Krasnoselskii’s fixed
point theorem which can be seen in Guo and Lakshmikantham
[25].

Lemma 5 (see [25]). Let 𝐸 be a Banach space, and let 𝑃 be a
cone. Assume that Ω

1
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1
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3. Main Results

In this section, we apply Lemma 5 to study problems (1)-(2)
and (1), (3), and we obtain some new results on the existence
of multiple positive solutions.

3.1. Problem (1)-(2) in the General Case. In our consider-
ations, let 𝐸 represent the Banach space of 𝐶([0, 1]) when
equipped with the usual supremum norm, ‖ ⋅ ‖. Then put
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We claim that whenever (𝑦
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2
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1
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2
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1
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2
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point of the operator 𝑆 defined in (11) (see [26]).
In the following, we will look for fixed points of the

operator 𝑆, because these fixed points coincide with solutions
of problems (1)-(2). For use in the sequel, let 𝛾

1
and 𝛾
2
be the

constants given by Lemma 4 associated, respectively, with the
Green functions 𝐺

1
and 𝐺

2
, and define 𝛾 by 𝛾 := min{𝛾

1
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and notice that 𝛾 ∈ (0, 1).
For the sake of convenience, we set
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∞
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Now we list some assumptions:

(F1) 𝑓0, 𝑔0 ∈ (0, +∞);
(F2) 𝑓∞, 𝑔∞ ∈ (0, +∞);
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1
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2
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Φ

1
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∞
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Φ
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1
< 𝜆
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1
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2
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} .
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Lemma6 (see [21]). Let 𝑆 be the operator defined by (11).Then
𝑆 : 𝐾 → 𝐾.

Lemma 7. 𝑆 is a completely continuous operator.

Proof. The operator 𝑇
1
: 𝐾 → 𝐸 is continuous in view
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1
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2
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2
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∫
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(𝑠) , 𝑦
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(𝑠)) 𝑑𝑠

≤ 𝜆
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𝐺

1
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1 (
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Hence, 𝑇
1
(Ω) is bounded.

On the other hand, given 𝜀 > 0, setting 𝛿 =

min{(1/2)(Γ(]
1
)𝜀/𝐿Φ

2
)

1/(]
1
−1)
, 𝜀Γ(]
1
)/(]
1
− 1)𝐿Φ
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}, then, for
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1
, 𝑦

2
) ∈ Ω, 𝑡

1
, 𝑡

2
∈ [0, 1], 𝑡

1
< 𝑡

2
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2
− 𝑡

1
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1
, 𝑦

2
)(𝑡

2
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1
(𝑦

1
, 𝑦

2
)(𝑡

1
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𝑇
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∫
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2
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2
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1
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𝑡
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(𝑡
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2
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(1 − 𝑠)

]
1
−𝛼−1

(𝑡

]
1
−1

2
− 𝑡

]
1
−1

1
) 𝑑𝑠

+ ∫

1

𝑡
2

(1 − 𝑠)

]
1
−𝛼−1

(𝑡

]
1
−1

2
− 𝑡

]
1
−1

1
) 𝑑𝑠

+∫

𝑡
2

𝑡
1

(1 − 𝑠)

]
1
−𝛼−1

(𝑡

]
1
−1

2
− 𝑡

]
1
−1

1
) 𝑑𝑠]

=

Φ

2
𝐿

Γ (]
1
)

1

]
1
− 𝛼

(𝑡

]
1
−1

2
− 𝑡

]
1
−1

1
)

≤

Φ

2
𝐿

Γ (]
1
)

(𝑡

]
1
−1

2
− 𝑡

]
1
−1

1
) .

(16)
In the following, we divide the proof into two cases.
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Case 1. If 𝛿 ≤ 𝑡

1
< 𝑡

2
< 1, then we have









𝑇

1
(𝑦

1
, 𝑦

2
) (𝑡

2
) − 𝑇

1
(𝑦

1
, 𝑦

2
) (𝑡

1
)









≤

Φ

2
𝐿

Γ (]
1
)

(𝑡

]
1
−1

2
− 𝑡

]
1
−1

1
)

=

Φ

2
𝐿

Γ (]
1
)

(]
1
− 1) (𝑡

2
− 𝑡

1
) 𝑡

]
1
−2

𝜉

<

Φ

2
𝐿

Γ (]
1
)

(]
1
− 1) 𝛿 ≤ 𝜀,

(17)

where 𝑡
𝜉
∈ (𝑡

1
, 𝑡

2
).

Case 2. If 0 ≤ 𝑡

1
< 𝛿, 𝑡

2
< 2𝛿, then we have









𝑇

1
(𝑦

1
, 𝑦

2
) (𝑡

2
) − 𝑇

1
(𝑦

1
, 𝑦

2
) (𝑡

1
)









≤

Φ

2
𝐿

Γ (]
1
)

(𝑡

]
1
−1

2
− 𝑡

]
1
−1

1
)

≤

Φ

2
𝐿

Γ (]
1
)

𝑡

]
1
−1

2
<

Φ

2
𝐿

Γ (]
1
)

(2𝛿)

]
1
−1
≤ 𝜀.

(18)

By the means of the Arzela-Ascoli theorem, we have that
𝑇

1
is completely continuous. Similarly, 𝑇

2
is completely

continuous. Consequently, 𝑆 : 𝐾 → 𝐾 is a completely
continuous operator. This completes the proof.

In [21], Goodrich established the following result.

Theorem 8 (see Theorem 3.3 in [21]). Suppose that (𝐹
1
)–(𝐹
3
)

are satisfied. Then problem (1)-(2) has at least one positive
solution.

From Theorem 8, the following problem is natural:
whether we can obtain some conclusions or not, if𝑓

0
= 𝑓

∞
=

𝑔

0
= 𝑔

∞
= 0 or 𝑓

0
= 𝑓

∞
= 𝑔

0
= 𝑔

∞
= ∞? In the rest of this

paper, we give some answers to this problem.
For the sake of convenience, we make some assumptions:

(𝐻

1
) there exist constants 𝜌

1
, 𝐴

1
> 0, such that

𝑓 (𝑦

1
, 𝑦

2
) , 𝑔 (𝑦

1
, 𝑦

2
) < 𝐴

−1

1
𝜌

1
for 0 ≤ 







(𝑦

1
, 𝑦

2
)









≤ 𝜌

1
;

(19)

(𝐻

2
) there exist constants 𝜌

2
, 𝐴

2
> 0, such that

𝑓 (𝑦

1
, 𝑦

2
) , 𝑔 (𝑦

1
, 𝑦

2
) ≥ 𝐴

−1

2
𝜌

2
for 𝛾𝜌

2
≤









(𝑦

1
, 𝑦

2
)









≤ 𝜌

2
;

(20)

(𝑃

1
) there are numbers Λ

1
, Λ

2
, where

Λ

1
:= max{1

2

[∫

1

1/2

𝛾𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑑𝑠]

−1

,

1

2

[∫

1

1/2

𝛾𝐺

2
(1, 𝑠) 𝑎

2
(𝑠) 𝑑𝑠]

−1

} ,

Λ

2
:= min{𝐴1

2

[∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑑𝑠]

−1

,

𝐴

1

2

[∫

1

0

𝐺

2
(1, 𝑠) 𝑎

2
(𝑠) 𝑑𝑠]

−1

} ,

(21)

such that Λ
1
< 𝜆

1
, 𝜆

2
< Λ

2
;

(𝑃

2
) there are numbers Λ

3
, Λ

4
, where

Λ

3
:= max{𝐴2

2

[∫

1

1/2

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠) 𝑑𝑠]

−1

,

𝐴

2

2

[∫

1

1/2

𝐺

2
(1, 𝑠) 𝑎

2
(𝑠) 𝑑𝑠]

−1

} ,

Λ

4
:= min{1

2

[∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑑𝑠]

−1

,

1

2

[∫

1

0

𝐺

2
(1, 𝑠) 𝑎

2
(𝑠) 𝑑𝑠]

−1

} ,

(22)

such that Λ
3
< 𝜆

1
, 𝜆

2
< Λ

4
.

Theorem 9. Suppose that 𝑓
0
= 𝑓

∞
= 𝑔

0
= 𝑔

∞
= ∞ and

(𝐻

1
), (𝑃

1
) are satisfied. Then problem (1)-(2) has at least two

positive solutions (𝑦0
1
, 𝑦

0

2
), (𝑦
1
, 𝑦

2
), such that 0 < ‖(𝑦

0

1
, 𝑦

0

2
)‖ <

𝜌

1
< ‖(𝑦

1
, 𝑦

2
)‖.

Proof. From Lemma 7, 𝑆 is a completely continuous operator.
At first, in view of 𝑓

0
= 𝑔

0
= ∞, we have 𝑓(𝑦

1
, 𝑦

2
) ≥ 𝑀(𝑦

1
+

𝑦

2
), for 0 < ‖(𝑦

1
, 𝑦

2
)‖ < 𝑟

∗

1
< 𝜌

1
; 𝑔(𝑦
1
, 𝑦

2
) ≥ 𝑀(𝑦

1
+ 𝑦

2
),

for 0 < ‖(𝑦

1
, 𝑦

2
)‖ < 𝑟

∗

2
< 𝜌

1
, where 𝑀 satisfies 𝑀 ≥ 1. Set

𝜌

0
:= min{𝑟∗

1
, 𝑟

∗

2
}. So we define Ω

𝜌
0

by Ω
𝜌
0

:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 :

‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

0
}. Then for each (𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
0

, we find
that

𝑇

1
(𝑦

1
, 𝑦

2
) (1) = 𝜆

1
∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≥ 𝜆

1
∫

1

1/2

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠) 𝑓 (𝑦1 (
𝑠) , 𝑦2 (

𝑠)) 𝑑𝑠
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≥ 𝜆

1
∫

1

1/2

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠)𝑀 (𝑦

1 (
𝑠) + 𝑦2 (

𝑠)) 𝑑𝑠

≥ 𝜆

1
∫

1

1/2

𝛾𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠)𝑀









(𝑦

1
, 𝑦

2
)









𝑑𝑠

≥

𝑀

2









(𝑦

1
, 𝑦

2
)









≥

1

2









(𝑦

1
, 𝑦

2
)









.

(23)

So ‖𝑇
1
(𝑦

1
, 𝑦

2
)‖ ≥ (1/2)‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
0

.
Similarly, we find that ‖𝑇

2
(𝑦

1
, 𝑦

2
)‖ ≥ (1/2)‖(𝑦

1
, 𝑦

2
)‖ for

(𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
0

. Consequently,









𝑆 (𝑦

1
, 𝑦

2
)









=









(𝑇

1
(𝑦

1
, 𝑦

2
) , 𝑇

2
(𝑦

1
, 𝑦

2
))









=









𝑇

1
(𝑦

1
, 𝑦

2
)









+









𝑇

2
(𝑦

1
, 𝑦

2
)









≥









(𝑦

1
, 𝑦

2
)









,

(24)

whenever (𝑦
1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
0

. Thus, 𝑆 is cone expansion on
𝐾⋂𝜕Ω

𝜌
0

.
Next, since 𝑓

∞
= 𝑔

∞
= ∞, we have 𝑓(𝑦

1
, 𝑦

2
) ≥ 𝑀

1
(𝑦

1
+

𝑦

2
) for 𝑦

1
+ 𝑦

2
≥ 𝑟

∗∗

1
> 𝜌

1
; 𝑔(𝑦
1
, 𝑦

2
) ≥ 𝑀

1
(𝑦

1
+ 𝑦

2
)

for 𝑦
1
+ 𝑦

2
≥ 𝑟

∗∗

2
> 𝜌

1
, where 𝑀

1
satisfies 𝑀

1
≥ 1. Set

𝜌

10
:= max{𝑟∗∗

1
, 𝑟

∗∗

2
}. Let 𝜌∗

0
= max{2𝜌

1
, (𝜌

10
/𝛾)} and Ω

𝜌
∗

0

:=

{(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

∗

0
}. Then (𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
∗

0

implies

𝑦

1
(𝑡) + 𝑦

2
(𝑡) ≥ min
𝑡∈[(1/2),1]

[𝑦

1
(𝑡) + 𝑦

2
(𝑡)]

≥ 𝛾









(𝑦

1
, 𝑦

2
)









= 𝛾𝜌

∗

0
≥ 𝜌

10
.

(25)

So we obtain

𝑇

1
(𝑦

1
, 𝑦

2
) (1) = 𝜆

1
∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≥ 𝜆

1
∫

1

1/2

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≥ 𝜆

1
∫

1

1/2

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠)𝑀

1
(𝑦

1
(𝑠) + 𝑦

2
(𝑠)) 𝑑𝑠

≥ 𝜆

1
∫

1

1/2

𝛾𝐺

1
(1, 𝑠) 𝑎

1
(𝑠)𝑀

1









(𝑦

1
, 𝑦

2
)









𝑑𝑠

≥

𝑀

1

2









(𝑦

1
, 𝑦

2
)









≥

1

2









(𝑦

1
, 𝑦

2
)









.

(26)

So ‖𝑇
1
(𝑦

1
, 𝑦

2
)‖ ≥ (1/2)‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
∗

0

.
Similarly, we find that ‖𝑇

2
(𝑦

1
, 𝑦

2
)‖ ≥ (1/2)‖(𝑦

1
, 𝑦

2
)‖ for

(𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
∗

0

.
Consequently, ‖𝑆

2
(𝑦

1
, 𝑦

2
)‖ ≥ ‖(𝑦

1
, 𝑦

2
)‖, whenever

(𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
∗

0

. Thus, S is cone expansion on𝐾⋂𝜕Ω

𝜌
∗

0

.

Finally, let Ω
𝜌
1

:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

1
}. For

(𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
1

, from (𝐻

1
), (𝑃

1
), we have









𝑇

1
(𝑦

1
, 𝑦

2
)









= 𝜆

1
∫

1

0

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠) 𝑓 (𝑦1 (
𝑠) , 𝑦2 (

𝑠)) 𝑑𝑠

≤

𝐴

1

2

[∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑑𝑠]

−1

× ∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑑𝑠𝐴

−1

1
𝜌

1

=

𝜌

1

2

=

1

2









(𝑦

1
, 𝑦

2
)









.

(27)

Similarly, we find that ‖𝑇
2
(𝑦

1
, 𝑦

2
)‖ ≤ (1/2)‖(𝑦

1
, 𝑦

2
)‖ for

(𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
1

.
Consequently, ‖𝑆(𝑦

1
, 𝑦

2
)‖ ≤ ‖(𝑦

1
, 𝑦

2
)‖, whenever (𝑦

1
,

𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
1

. Thus, 𝑆 is cone compression on𝐾⋂𝜕Ω

𝜌
1

.
So, from Lemma 5, 𝑆 has a fixed point (𝑦

0

1
, 𝑦

0

2
) ∈

𝐾⋂(Ω

𝜌
1

\ Ω

𝜌
0

) and a fixed point (𝑦
1
, 𝑦

2
) ∈ 𝐾⋂(Ω

𝜌
∗

0

\ Ω

𝜌
1

).
Both are positive solutions of BVP (1)-(2) with

0 <











(𝑦

0

1
, 𝑦

0

2
)











< 𝜌

1
<









(𝑦

1
, 𝑦

2
)









. (28)

The proof is complete.

Theorem 10. Suppose that 𝑓
0
= 𝑓

∞
= 𝑔

0
= 𝑔

∞
= 0 and

(𝐻

2
), (𝑃

2
) are satisfied. Then problem (1)-(2) has at least two

positive solutions (𝑦0
1
, 𝑦

0

2
), (𝑦
1
, 𝑦

2
), such that 0 < ‖(𝑦

0

1
, 𝑦

0

2
)‖ <

𝜌

2
< ‖(𝑦

1
, 𝑦

2
)‖.

Proof. At first, in view of 𝑓
0
= 𝑔

0
= 0, we have 𝑓(𝑦

1
, 𝑦

2
) <

𝜀(𝑦

1
+ 𝑦

2
), 𝑔(𝑦

1
, 𝑦

2
) < 𝜀(𝑦

1
+ 𝑦

2
), for 0 < ‖(𝑦

1
, 𝑦

2
)‖ ≤ 𝜌 < 𝜌

2
,

where 𝜀 satisfies 𝜀 ≤ 1. Let Ω
𝜌
:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ <

𝜌}.
Then for each (𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
, we find that









𝑇

1
(𝑦

1
, 𝑦

2
)









= 𝜆

1
∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≤ 𝜆

1
∫

1

0

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠) 𝜀 (𝑦1 (
𝑠) + 𝑦2 (

𝑠)) 𝑑𝑠

≤ 𝜆

1
∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝜀









(𝑦

1
, 𝑦

2
)









𝑑𝑠

≤

𝜀

2









(𝑦

1
, 𝑦

2
)









≤

1

2









(𝑦

1
, 𝑦

2
)









.

(29)

Like Theorem 9, we get ‖𝑆(𝑦
1
, 𝑦

2
)‖ ≤ ‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
, 𝑦

2
) ∈

𝐾⋂𝜕Ω

𝜌
.
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Next, in viewof𝑓
∞
= 𝑔

∞
= 0, we have𝑓(𝑦

1
, 𝑦

2
) < 𝜀

1
(𝑦

1
+

𝑦

2
), 𝑔(𝑦

1
, 𝑦

2
) < 𝜀

1
(𝑦

1
+ 𝑦

2
), for 𝑦

1
+ 𝑦

2
≥ 𝜌


> 𝜌

2
, where 𝜀

1

satisfies 𝜀
1
≤ 1. We consider two cases.

Case 1. Suppose that 𝑓 is unbounded; there exists 𝜌∗ > 𝜌



such that
𝑓 (𝑦

1
, 𝑦

2
) ≤ 𝑓 (𝑦

∗

1
, 𝑦

∗

2
) for 0 ≤ 







(𝑦

1
, 𝑦

2
)









≤ 𝜌

∗
,









(𝑦

∗

1
, 𝑦

∗

2
)









= 𝜌

∗
.

(30)

Since 𝜌∗ > 𝜌

, one has𝑓(𝑦
1
, 𝑦

2
) ≤ 𝑓(𝑦

∗

1
, 𝑦

∗

2
) < 𝜀

1
(𝑦

∗

1
+𝑦

∗

2
) for

0 ≤ ‖(𝑦

1
, 𝑦

2
)‖ ≤ 𝜌

∗. Then, for (𝑦
1
, 𝑦

2
) ∈ 𝐾 and ‖(𝑦

1
, 𝑦

2
)‖ =

𝜌

∗, we obtain









𝑇

1
(𝑦

1
, 𝑦

2
)









= 𝜆

1
∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≤ 𝜆

1
∫

1

0

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠) 𝜀1
(𝑦

1 (
𝑠) + 𝑦2 (

𝑠)) 𝑑𝑠

≤ 𝜆

1
∫

1

0

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠) 𝜀1









(𝑦

1
, 𝑦

2
)









𝑑𝑠

≤

𝜀

1

2









(𝑦

1
, 𝑦

2
)









≤

1

2









(𝑦

1
, 𝑦

2
)









.

(31)

Case 2. Suppose that 𝑓 is bounded; there exists 𝐿
1
such that

𝑓(𝑦

1
, 𝑦

2
) ≤ 𝐿

1
for all (𝑦

1
, 𝑦

2
) ∈ 𝐾. Taking 𝜌∗ ≥ max{2𝜌

2
, 𝐿

1
},

for (𝑦
1
, 𝑦

2
) ∈ 𝐾 and ‖(𝑦

1
, 𝑦

2
)‖ = 𝜌

∗, we obtain









𝑇

1
(𝑦

1
, 𝑦

2
)









= 𝜆

1
∫

1

0

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠) 𝑓 (𝑦1 (
𝑠) , 𝑦2 (

𝑠)) 𝑑𝑠

≤ 𝜆

1
∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝐿

1
𝑑𝑠

≤

𝐿

1

2

≤

𝜌

∗

2

=

1

2









(𝑦

1
, 𝑦

2
)









.

(32)

Hence, in either case, we always may set Ω
𝜌
∗ := {(𝑦

1
, 𝑦

2
) ∈

𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

∗
} such that ‖𝑇

1
(𝑦

1
, 𝑦

2
)‖ ≤ (1/2)‖(𝑦

1
, 𝑦

2
)‖

for (𝑦
1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
∗ . LikeTheorem 9, we get ‖𝑆(𝑦

1
, 𝑦

2
)‖ ≤

‖(𝑦

1
, 𝑦

2
)‖, for (𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
∗ .

Finally, set Ω
𝜌
2

:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

2
}. Then

(𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
2

implies

𝑦

1
(𝑡) + 𝑦

2
(𝑡) ≥ min
𝑡∈[(1/2),1]

[𝑦

1
(𝑡) + 𝑦

2
(𝑡)]

≥ 𝛾









(𝑦

1
, 𝑦

2
)









= 𝛾𝜌

2
.

(33)

Hence we have

𝑇

1
(𝑦

1
, 𝑦

2
) (1) = 𝜆

1
∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≥ 𝜆

1
∫

1

1/2

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝐴

−1

2
𝜌

2
𝑑𝑠

≥

𝐴

2

2

𝐴

−1

2
𝜌

2
=

𝜌

2

2

=

1

2









(𝑦

1
, 𝑦

2
)









.

(34)

Consequently, ‖𝑇
1
(𝑦

1
, 𝑦

2
)‖ ≥ (1/2)‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
, 𝑦

2
) ∈

𝐾⋂𝜕Ω

𝜌
2

. LikeTheorem 9, we get ‖𝑆(𝑦
1
, 𝑦

2
)‖ ≥ ‖(𝑦

1
, 𝑦

2
)‖ for

(𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
2

.
So, from Lemma 5, 𝑆 has a fixed point (𝑦

0

1
, 𝑦

0

2
) ∈

𝐾⋂(Ω

𝜌
2

\ Ω

𝜌
) and a fixed point (𝑦

1
, 𝑦

2
) ∈ 𝐾⋂(Ω

𝜌
∗ \ Ω
𝜌
2

).
Both are positive solutions of BVP (1)-(2) with

0 <











(𝑦

0

1
, 𝑦

0

2
)











< 𝜌

2
<









(𝑦

1
, 𝑦

2
)









, (35)

which complete the proof.

3.2. Problem (1)–(3) in Case 𝜆
1
= 𝜆

2
= 1. In the following, for

the sake of convenience, set

𝐵

1
:= max{2∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑑𝑠, 2 ∫

1

0

𝐺

2
(1, 𝑠) 𝑎

2
(𝑠) 𝑑𝑠} ,

𝐵

2
:= min{2∫

1

1/2

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑑𝑠, 2 ∫

1

1/2

𝐺

2
(1, 𝑠) 𝑎

2
(𝑠) 𝑑𝑠} .

(36)
Assume that there exist two positive constants 𝜌

1
̸= 𝜌

2
such

that
(𝐻

3
) 𝑓(𝑦

1
, 𝑦

2
), 𝑔(𝑦

1
, 𝑦

2
) ≤ 𝐵

−1

1
𝜌

1
, for 0 ≤ ‖(𝑦

1
, 𝑦

2
)‖ ≤ 𝜌

1
;

(𝐻

4
) 𝑓(𝑦

1
, 𝑦

2
), 𝑔(𝑦

1
, 𝑦

2
) ≥ 𝐵

−1

2
𝜌

2
, for 𝛾𝜌

2
≤ ‖(𝑦

1
, 𝑦

2
)‖ ≤ 𝜌

2
.

Theorem 11. Suppose that (𝐻
3
) and (𝐻

4
) are satisfied. Then

problem (1)-(2), in the case where 𝜆
1
= 𝜆

2
= 1, has at least one

positive solution (𝑦0
1
, 𝑦

0

2
) such that ‖(𝑦0

1
, 𝑦

0

2
)‖ between 𝜌

1
and

𝜌

2
.

Proof. With loss of generality, we may assume that 𝜌
1
< 𝜌

2
.

Let Ω
𝜌
1

:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

1
}. For (𝑦

1
, 𝑦

2
) ∈

𝐾⋂𝜕Ω

𝜌
1

, one has









𝑇

1
(𝑦

1
, 𝑦

2
)









= 𝜆

1
∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≤

𝐵

1

2

𝐵

−1

1
𝜌

1
=

𝜌

1

2

=

1

2









(𝑦

1
, 𝑦

2
)









.

(37)
Like Theorem 9, we get ‖𝑆(𝑦

1
, 𝑦

2
)‖ ≤ ‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
, 𝑦

2
) ∈

𝐾⋂𝜕Ω

𝜌
1

.
Now, set Ω

𝜌
2

:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

2
}. Then for

(𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
2

, one has

𝑦

1
(𝑡) + 𝑦

2
(𝑡) ≥ min
𝑡∈[(1/2),1]

[𝑦

1
(𝑡) + 𝑦

2
(𝑡)]

≥ 𝛾









(𝑦

1
, 𝑦

2
)









= 𝛾𝜌

2
.

(38)

Thus, we get

𝑇

1
(𝑦

1
, 𝑦

2
) (1) = 𝜆

1
∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≥ 𝜆

1
∫

1

1/2

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝐵

−1

2
𝜌

2
𝑑𝑠

≥

𝐵

2

2

𝐵

−1

2
𝜌

2
=

𝜌

2

2

=

1

2









(𝑦

1
, 𝑦

2
)









.

(39)
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Like Theorem 9, we get ‖𝑆(𝑦
1
, 𝑦

2
)‖ ≥ ‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
, 𝑦

2
) ∈

𝐾⋂𝜕Ω

𝜌
2

. Hence, fromLemma 5, we complete the proof.

Remark 12. In [21], problem (1)-(2) with 𝜆
1
= 𝜆

2
= 1 is not

considered.

3.3. Problem (1), (3) in the General Case. Consider the
following.

Lemma 13 (see [21]). A pair of functions (𝑦
1
, 𝑦

2
) ∈ 𝑋 is a

solution of (1), (3) if and only if (𝑦
1
, 𝑦

2
) is a fixed point of the

operator 𝑈 : 𝑋 → 𝑋 defined by

𝑈(𝑦

1
, 𝑦

2
) (𝑡)

:= (𝑈

1
(𝑦

1
, 𝑦

2
) (𝑡) , 𝑈

2
(𝑦

1
, 𝑦

2
) (𝑡))

= (𝛽

1 (
𝑡) 𝜙1

(𝑦

1
) + 𝜆

1
∫

1

0

𝐺

1 (
𝑡, 𝑠) 𝑎1 (

𝑠) 𝑓

× (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠,

𝛽

2
(𝑡) 𝜙

2
(𝑦

2
) + 𝜆

2
∫

1

0

𝐺

2
(𝑡, 𝑠) 𝑎

2
(𝑠) 𝑔

× (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠) ,

(40)

where 𝛽
1
, 𝛽

2
: [0, 1] → [0, 1] are defined by

𝛽

1 (
𝑡) :=

Γ (]
1
− 𝛼)

Γ (]
1
)

𝑡

]
1
−1
,

𝛽

2
(𝑡) :=

Γ (]
2
− 𝛼)

Γ (]
2
)

𝑡

]
2
−1
.

(41)

Lemma 14 (see [21]). Each of 𝛽
1
(𝑡) and 𝛽

2
(𝑡) is strictly

increasing in t and satisfies 𝛽
1
(0) = 𝛽

2
(0) = 0 and 𝛽

1
(1),

𝛽

2
(1) ∈ (0, 1). Moreover, there exist constants 𝑀

𝛽
1

and 𝑀
𝛽
2

satisfying 𝑀
𝛽
1

,𝑀

𝛽
2

∈ (0, 1) such that min
𝑡∈[(1/2),1]

𝛽

1
(𝑡) ≥

𝑀

𝛽
1

‖𝛽

1
‖ andmin

𝑡∈[(1/2),1]
𝛽

2
(𝑡) ≥ 𝑀

𝛽
2

‖𝛽

2
‖.

Let one define a new cone 𝐾
1
by

𝐾

1
:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : 𝑦

1
, 𝑦

2
≥ 0,

min
𝑡∈[(1/2),1]

[𝑦

1
(𝑡) + 𝑦

2
(𝑡)] ≥ 𝛾

0









(𝑦

1
, 𝑦

2
)









} ,

(42)

where 𝛾
0
:= min{𝛾,𝑀

𝛽
1

,𝑀

𝛽
2

}. It is obvious that 𝛾
0
∈ (0, 1).

Lemma 15 (see [21]). 𝑈 : 𝐾

1
→ 𝐾

1
is a completely con-

tinuous operator.
Now, one assumes

(𝐷

1
) 𝜙

1
(𝑦

1
) ≤ ‖𝑦

1
‖/4, 𝜙

2
(𝑦

2
) ≤ ‖𝑦

2
‖/4 for each (𝑦

1
, 𝑦

2
) ∈

𝐾

1
;

(𝑃

3
) There are numbers Λ

5
, Λ

6
, where

Λ

5
:= max{1

2

[∫

1

1/2

𝛾

0
𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑑s]

−1

,

1

2

[∫

1

1/2

𝛾

0
𝐺

2 (
1, 𝑠) 𝑎2 (

𝑠) 𝑑𝑠]

−1

} ,

Λ

6
:= min{𝐴1

4

[∫

1

0

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑑𝑠]

−1

,

𝐴

1

4

[∫

1

0

𝐺

2
(1, 𝑠) 𝑎

2
(𝑠) 𝑑𝑠]

−1

} ,

(43)

such that Λ
5
< 𝜆

1
, 𝜆

2
< Λ

6
.

(𝑃

4
) There are numbers Λ

7
, Λ

8
, where

Λ

7
:= max{𝐴2

2

[∫

1

1/2

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑑𝑠]

−1

,

𝐴

2

2

[∫

1

1/2

𝐺

2
(1, 𝑠) 𝑎

2
(𝑠) 𝑑𝑠]

−1

} ,

Λ

8
:= min{1

4

[∫

1

0

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠) 𝑑𝑠]

−1

,

1

4

[∫

1

0

𝐺

2
(1, 𝑠) 𝑎

2
(𝑠) 𝑑𝑠]

−1

} ,

(44)

such that Λ
7
< 𝜆

1
, 𝜆

2
< Λ

8
.

Theorem 16. Suppose that 𝑓
0
= 𝑓

∞
= 𝑔

0
= 𝑔

∞
= ∞ and

(𝐻

1
), (𝐷

1
), (𝑃

3
) are satisfied.Then problem (1), (3) has at least

two positive solutions (𝑦0
1
, 𝑦

0

2
), (𝑦
1
, 𝑦

2
), such that

0 <











(𝑦

0

1
, 𝑦

0

2
)











< 𝜌

1
<









(𝑦

1
, 𝑦

2
)









. (45)

Proof. At first, in view of 𝑓
0
= 𝑔

0
= ∞, we have 𝑓(𝑦

1
, 𝑦

2
) ≥

𝑀(𝑦

1
+ 𝑦

2
), 𝑔(𝑦
1
, 𝑦

2
) ≥ 𝑀(𝑦

1
+ 𝑦

2
), for 0 < ‖(𝑦

1
, 𝑦

2
)‖ ≤ 𝜌

0
<

𝜌

1
, where𝑀 satisfies𝑀 ≥ 1.
Let Ω

𝜌
0

:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

0
}. Then for each

(𝑦

1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
0

, we find that

𝑈

1
(𝑦

1
, 𝑦

2
) (1) ≥ 𝜆

1
∫

1

1/2

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≥ 𝜆

1
∫

1

1/2

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠)𝑀 (𝑦

1
(𝑠) + 𝑦

2
(𝑠)) 𝑑𝑠

≥ 𝜆

1
∫

1

1/2

𝛾

0
𝐺

1
(1, 𝑠) 𝑎

1
(𝑠)𝑀









(𝑦

1
, 𝑦

2
)









𝑑𝑠

≥

𝑀

2









(𝑦

1
, 𝑦

2
)









≥

1

2









(𝑦

1
, 𝑦

2
)









.

(46)

So ‖𝑈
1
(𝑦

1
, 𝑦

2
)‖ ≥ (1/2)‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
0

.
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Similarly, we find that ‖𝑈
2
(𝑦

1
, 𝑦

2
)‖ ≥ (1/2)‖(𝑦

1
, 𝑦

2
)‖ for

(𝑦

1
, 𝑦

2
) ∈ 𝐾

1
⋂ 𝜕Ω

𝜌
0

. Consequently,









𝑈 (𝑦

1
, 𝑦

2
)









=









(𝑈

1
(𝑦

1
, 𝑦

2
) , 𝑈

2
(𝑦

1
, 𝑦

2
))









=









𝑈

1
(𝑦

1
, 𝑦

2
)









+









𝑈

2
(𝑦

1
, 𝑦

2
)









≥









(𝑦

1
, 𝑦

2
)









,

(47)

whenever (𝑦
1
, 𝑦

2
) ∈ 𝐾

1
⋂ 𝜕Ω

𝜌
0

. Thus, 𝑈 is cone expansion
on𝐾
1
⋂ 𝜕Ω

𝜌
0

.
Next, since 𝑓

∞
= 𝑔

∞
= ∞, we get 𝑓(𝑦

1
, 𝑦

2
) ≥ 𝑀

1
(𝑦

1
+

𝑦

2
), 𝑔(𝑦

1
, 𝑦

2
) ≥ 𝑀

1
(𝑦

1
+ 𝑦

2
), for 𝑦

1
+ 𝑦

2
≥ 𝜌

10
> 𝜌

1
, where

𝑀

1
satisfies𝑀

1
≥ 1. Let 𝜌∗

0
= max{2𝜌

1
, (𝜌

10
/𝛾

0
)} and Ω

𝜌
∗

0

:=

{(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

∗

0
}; then, (𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
∗

0

implies

𝑦

1
(𝑡) + 𝑦

2
(𝑡) ≥ min
𝑡∈[(1/2),1]

[𝑦

1
(𝑡) + 𝑦

2
(𝑡)]

≥ 𝛾

0









(𝑦

1
, 𝑦

2
)









= 𝛾

0
𝜌

∗

0
≥ 𝜌

10
.

(48)

So for (𝑦
1
, 𝑦

2
) ∈ 𝐾

1
⋂ 𝜕Ω

𝜌
∗

0

, we obtain

𝑈

1
(𝑦

1
, 𝑦

2
) (1) ≥ 𝜆

1
∫

1

1/2

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠) 𝑓 (𝑦1 (
𝑠) , 𝑦2 (

𝑠)) 𝑑𝑠

≥ 𝜆

1
∫

1

1/2

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠)𝑀1
(𝑦

1 (
𝑠) + 𝑦2 (

𝑠)) 𝑑𝑠

≥ 𝜆

1
∫

1

1/2

𝛾

0
𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠)𝑀1









(𝑦

1
, 𝑦

2
)









𝑑𝑠

≥

𝑀

1

2









(𝑦

1
, 𝑦

2
)









≥

1

2









(𝑦

1
, 𝑦

2
)









.

(49)

That is, ‖𝑈
1
(𝑦

1
, 𝑦

2
)‖ ≥ (1/2)‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
, 𝑦

2
) ∈

𝐾

1
⋂ 𝜕Ω

𝜌
∗

0

.
Similarly, we find that ‖𝑈

2
(𝑦

1
, 𝑦

2
)‖ ≥ (1/2)‖(𝑦

1
, 𝑦

2
)‖

for (𝑦

1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
∗

0

. Consequently, ‖𝑈(𝑦
1
, 𝑦

2
)‖ ≥

‖(𝑦

1
, 𝑦

2
)‖, whenever (𝑦

1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
∗

0

. Thus, 𝑈 is cone
expansion on 𝐾

1
⋂𝜕Ω

𝜌
∗

0

.
Finally, let Ω

𝜌
1

:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

1
}. For

(𝑦

1
, 𝑦

2
) ∈ 𝐾⋂𝜕Ω

𝜌
1

, from (𝐻

1
), (𝐷

1
), and (𝑃

3
), we have









𝑈

1
(𝑦

1
, 𝑦

2
)









≤ 𝜙

1
(𝑦

1
) + 𝜆

1
∫

1

0

𝐺

1 (
𝑡, 𝑠) 𝑎1 (

𝑠)

× 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≤









𝑦

1









4

+

𝐴

1

4

𝐴

−1

1
𝜌

1

≤

𝜌

1

2

=

1

2









(𝑦

1
, 𝑦

2
)









.

(50)

Similarly, we find that ‖𝑈
2
(𝑦

1
, 𝑦

2
)‖ ≤ (1/2)‖(𝑦

1
, 𝑦

2
)‖ for

(𝑦

1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
1

. Consequently, ‖𝑈(𝑦
1
, 𝑦

2
)‖ ≤ ‖(𝑦

1
, 𝑦

2
)‖,

whenever (𝑦
1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
1

. Thus, 𝑈 is cone compression
on𝐾
1
⋂𝜕Ω

𝜌
1

.

So, from Lemma 5, 𝑈 has a fixed point (𝑦

0

1
, 𝑦

0

2
) ∈

𝐾

1
⋂(Ω

𝜌
1

\Ω

𝜌
0

) and a fixed point (𝑦
1
, 𝑦

2
) ∈ 𝐾

1
⋂(Ω

𝜌
∗

0

\Ω

𝜌
1

).
Both are positive solutions of BVP (1), (3) with

0 <











(𝑦

0

1
, 𝑦

0

2
)











< 𝜌

1
<









(𝑦

1
, 𝑦

2
)









. (51)

The proof is complete.

Theorem 17. Suppose that 𝑓
0
= 𝑓

∞
= 𝑔

0
= 𝑔

∞
= 0 and

(𝐻

2
), (𝐷

1
), (𝑃

4
) are satisfied. Then problem (1), (3) has at least

two positive solutions (𝑦0
1
, 𝑦

0

2
), (𝑦
1
, 𝑦

2
), such that

0 <











(𝑦

0

1
, 𝑦

0

2
)











< 𝜌

2
<









(𝑦

1
, 𝑦

2
)









. (52)

Proof. At first, in view of 𝑓
0
= 𝑔

0
= 0, we have 𝑓(𝑦

1
, 𝑦

2
) <

𝜀(𝑦

1
+𝑦

2
),𝑔(𝑦
1
, 𝑦

2
) < 𝜀(𝑦

1
+𝑦

2
) for ‖(𝑦

1
, 𝑦

2
)‖ ≤ 𝜌 < 𝜌

2
, where

𝜀 satisfies 𝜀 ≤ 1. Let Ω
𝜌
:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌}.

Then for each (𝑦
1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
, we find that









𝑈

1
(𝑦

1
, 𝑦

2
)









≤ 𝜙

1
(𝑦

1
) + 𝜆

1
∫

1

0

𝐺

1 (
𝑡, 𝑠) 𝑎1 (

𝑠) 𝑓 (𝑦1 (
𝑠) , 𝑦2 (

𝑠)) 𝑑𝑠

≤









𝑦

1









4

+

𝜀

4









(𝑦

1
, 𝑦

2
)









≤

1

2









(𝑦

1
, 𝑦

2
)









.

(53)

LikeTheorem 16,we get ‖𝑈(𝑦
1
, 𝑦

2
)‖ ≤ ‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
, 𝑦

2
) ∈

𝐾

1
⋂𝜕Ω

𝜌
.

Next, in viewof𝑓
∞
= 𝑔

∞
= 0, we have𝑓(𝑦

1
, 𝑦

2
) < 𝜀

1
(𝑦

1
+

𝑦

2
), 𝑔(𝑦

1
, 𝑦

2
) < 𝜀

1
(𝑦

1
+ 𝑦

2
), for 𝑦

1
+ 𝑦

2
≥ 𝜌


> 𝜌

2
, where 𝜀

1

satisfies 𝜀
1
≤ 1. We consider two cases.

Case 1. Suppose that 𝑓 is unbounded and there exists 𝜌∗ > 𝜌



such that

𝑓 (𝑦

1
, 𝑦

2
) ≤ 𝑓 (𝑦

∗

1
, 𝑦

∗

2
) for 0 ≤ 







(𝑦

1
, 𝑦

2
)









≤ 𝜌

∗
,









(𝑦

∗

1
, 𝑦

∗

2
)









= 𝜌

∗
.

(54)

Since 𝜌∗ > 𝜌

, one has 𝑓(𝑦
1
, 𝑦

2
) ≤ 𝑓(𝑦

∗

1
, 𝑦

∗

2
) < 𝜀

1
(𝑦

∗

1
+ 𝑦

∗

2
)

for 0 ≤ ‖(𝑦

1
, 𝑦

2
)‖ ≤ 𝜌

∗.
Then, for (𝑦

1
, 𝑦

2
) ∈ 𝐾

1
and ‖(𝑦

1
, 𝑦

2
)‖ = 𝜌

∗, we obtain









𝑈

1
(𝑦

1
, 𝑦

2
)









≤ 𝜙

1
(𝑦

1
) + 𝜆

1
∫

1

0

𝐺

1
(𝑡, 𝑠) 𝑎

1
(𝑠) 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≤









𝑦

1









4

+

𝜀

1

4









(𝑦

1
, 𝑦

2
)









≤

1

2









(𝑦

1
, 𝑦

2
)









.

(55)
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Case 2. Suppose that 𝑓 is bounded; there, exists 𝐿
1
such

that 𝑓(𝑦
1
, 𝑦

2
) ≤ 𝐿

1
for all (𝑦

1
, 𝑦

2
) ∈ 𝐾

1
. Taking 𝜌

∗
≥

max{2𝜌
2
, 𝐿

1
}, for (𝑦

1
, 𝑦

2
) ∈ 𝐾

1
and ‖(𝑦

1
, 𝑦

2
)‖ = 𝜌

∗, we obtain








𝑈

1
(𝑦

1
, 𝑦

2
)









≤ 𝜙

1
(𝑦

1
) + 𝜆

1
∫

1

0

𝐺

1
(𝑡, 𝑠) 𝑎

1
(𝑠) 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≤ 𝜙

1
(𝑦

1
) + 𝜆

1
∫

1

0

𝐺

1 (
𝑡, 𝑠) 𝑎1 (

𝑠) 𝐿1
𝑑𝑠

≤









𝑦

1









4

+

𝐿

1

4

≤

𝜌

∗

2

=

1

2









(𝑦

1
, 𝑦

2
)









.

(56)

Hence, in either case, we always may set Ω
𝜌
∗ := {(𝑦

1
, 𝑦

2
) ∈

𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

∗
} such that ‖𝑈

1
(𝑦

1
, 𝑦

2
)‖ ≤ (1/2)‖(𝑦

1
, 𝑦

2
)‖

for (𝑦
1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
∗ .

Like Theorem 16, we get ‖𝑈(𝑦
1
, 𝑦

2
)‖ ≤ ‖(𝑦

1
, 𝑦

2
)‖, for

(𝑦

1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
∗ .

Finally, set Ω
𝜌
2

:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

2
}. Then

(𝑦

1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
2

implies

𝑦

1
(𝑡) + 𝑦

2
(𝑡) ≥ min
𝑡∈[(1/2),1]

[𝑦

1
(𝑡) + 𝑦

2
(𝑡)]

≥ 𝛾

0









(𝑦

1
, 𝑦

2
)









= 𝛾

0
𝜌

2
.

(57)

Hence we have

𝑈

1
(𝑦

1
, 𝑦

2
) (1) ≥ 𝜆

1
∫

1

1/2

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝐴

−1

2
𝜌

2
𝑑𝑠

≥

𝐴

2

2

𝐴

−1

2
𝜌

2
=

𝜌

2

2

=

1

2









(𝑦

1
, 𝑦

2
)









.

(58)

So, ‖𝑈
1
(𝑦

1
, 𝑦

2
)‖ ≥ (1/2)‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
2

.
Like Theorem 16, we get ‖𝑈(𝑦

1
, 𝑦

2
)‖ ≥ ‖(𝑦

1
, 𝑦

2
)‖ for

(𝑦

1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
2

. So, from Lemma 5, 𝑈 has a fixed point
(𝑦

0

1
, 𝑦

0

2
) ∈ 𝐾

1
⋂(Ω

𝜌
2

\ Ω

𝜌
) and a fixed point (𝑦

1
, 𝑦

2
) ∈

𝐾

1
⋂(Ω

𝜌
∗ \ Ω
𝜌
2

). Both are positive solutions of BVP (1), (3)
with 0 < ‖(𝑦

0

1
, 𝑦

0

2
)‖ < 𝜌

2
< ‖(𝑦

1
, 𝑦

2
)‖, which complete the

proof.

3.4. Problem (1), (3) in Case 𝜆
1
=𝜆

2
= 1. In [21], the author

obtained that problem (1), (3) with 𝜆

1
= 𝜆

2
= 1 having at

least one positive solution. In the following, we also establish
the existence of one positive solution to problem (1), (3) with
𝜆

1
= 𝜆

2
= 1 under different conditions.

For the sake of convenience, set

𝐵

3
:= max{4∫

1

0

𝐺

1 (
1, 𝑠) 𝑎1 (

𝑠) 𝑑𝑠, 4 ∫

1

0

𝐺

2 (
1, 𝑠) 𝑎2 (

𝑠) 𝑑𝑠} .

(59)

Assume that there exist two positive constants 𝜌
1

̸= 𝜌

2
such

that

(𝐻

5
) 𝑓(𝑦

1
, 𝑦

2
), 𝑔(𝑦

1
, 𝑦

2
) ≤ 𝐵

−1

3
𝜌

1
for 0 ≤ ‖(𝑦

1
, 𝑦

2
)‖ ≤ 𝜌

1
;

(𝐻

6
) 𝑓(𝑦

1
, 𝑦

2
), 𝑔(𝑦

1
, 𝑦

2
) ≥ 𝐵

−1

2
𝜌

2
for 𝛾
0
𝜌

2
≤ ‖(𝑦

1
, 𝑦

2
)‖ ≤

𝜌

2
.

Theorem 18. Suppose that (𝐻
5
), (𝐻
6
), and (𝐷

1
) are satisfied.

Then problem (1), (3), in the case where 𝜆
1
= 𝜆

2
= 1, has at

least one positive solution (𝑦0
1
, 𝑦

0

2
) such that ‖(𝑦

1
, 𝑦

2
)‖ between

𝜌

1
and 𝜌
2
.

Proof. With loss of generality, we may assume that 𝜌
1
< 𝜌

2
.

Let Ω
𝜌
1

:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

1
}. For (𝑦

1
, 𝑦

2
) ∈

𝐾

1
⋂𝜕Ω

𝜌
1

, from (𝐻

7
), (𝐷

1
), one has









𝑈

1
(𝑦

1
, 𝑦

2
)









≤ 𝜙

1
(𝑦

1
) + ∫

1

0

𝐺

1
(𝑡, 𝑠) 𝑎

1
(𝑠)

× 𝑓 (𝑦

1
(𝑠) , 𝑦

2
(𝑠)) 𝑑𝑠

≤

𝜌

1

4

+

𝐵

3

4

𝐵

−1

3
𝜌

1
=

𝜌

1

2

=

1

2









(𝑦

1
, 𝑦

2
)









.

(60)

LikeTheorem 16,we get ‖𝑈(𝑦
1
, 𝑦

2
)‖ ≤ ‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
, 𝑦

2
) ∈

𝐾

1
⋂𝜕Ω

𝜌
1

.
Now, set Ω

𝜌
2

:= {(𝑦

1
, 𝑦

2
) ∈ 𝑋 : ‖(𝑦

1
, 𝑦

2
)‖ < 𝜌

2
}. For

(𝑦

1
, 𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
2

, one has

𝑦

1 (
𝑡) + 𝑦2 (

𝑡) ≥ min
𝑡∈[(1/2),1]

[𝑦

1 (
𝑡) + 𝑦2 (

𝑡)]

≥ 𝛾

0









(𝑦

1
, 𝑦

2
)









= 𝛾

0
𝜌

2
.

(61)

Thus, from (𝐻

8
), we get

𝑈

1
(𝑦

1
, 𝑦

2
) (1) ≥ 𝜆

1
∫

1

1/2

𝐺

1
(1, 𝑠) 𝑎

1
(𝑠) 𝐵

−1

2
𝜌

2
𝑑𝑠

≥

𝐵

2

2

𝐵

−1

2
𝜌

2
=

𝜌

2

2

=

1

2









(𝑦

1
, 𝑦

2
)









.

(62)

Like Theorem 16, we get ‖𝑈(𝑦
1
, 𝑦

2
)‖ ≥ ‖(𝑦

1
, 𝑦

2
)‖ for (𝑦

1
,

𝑦

2
) ∈ 𝐾

1
⋂𝜕Ω

𝜌
2

. Hence, from Lemma 5, we complete the
proof.

4. An Example

To illustrate how our main results can be used in practice, we
present one example.

Example 19. Consider the following BVP, for 𝑡 ∈ (0, 1):

− 𝐷

5.2

0
+ 𝑦1

(𝑡) = 164500𝑒

−2𝑡
[(𝑦

1
(𝑡) + 𝑦

2
(𝑡))

1/2

+ (𝑦

1
(𝑡) + 𝑦

2
(𝑡))

2
] ,

− 𝐷

5.95

0
+ 𝑦

2 (
𝑡) = 164000𝑒

−3𝑡
[(𝑦

1 (
𝑡) + 𝑦2 (

𝑡))

1/3

+ (𝑦

1
(𝑡) + 𝑦

2
(𝑡))

3
] ,

(63)

subject to the boundary conditions

𝑦

(𝑖)

1
(0) = 𝑦

(𝑖)

2
(0) = 0, 0 ≤ 𝑖 ≤ 4,

(64)

𝐷

1.5

0+
[𝑦

1
(𝑡)]

𝑡=1
= 𝐷

1.5

0+
[𝑦

2
(𝑡)]

𝑡=1
= 0.

(65)
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Obviously, problem (63)–(65) fits the framework of problem
(1)-(2) with

]
1
:= 5.2, ]

2
:= 5.95, 𝛼 = 1.5,

𝜆

1
= 164500, 𝜆

2
= 164000, 𝑛 = 6.

(66)

In addition, we have set

𝑓 (𝑦

1
, 𝑦

2
) := (𝑦

1
+ 𝑦

2
)

1/2
+ (𝑦

1
+ 𝑦

2
)

2
,

𝑔 (𝑦

1
, 𝑦

2
) := (𝑦

1
+ 𝑦

2
)

1/3
+ (𝑦

1
+ 𝑦

2
)

3
,

𝑎

1
(𝑡) := 𝑒

−2𝑡
, 𝑎

2
(𝑡) := 𝑒

−3𝑡
.

(67)

We can see that 𝑓, 𝑔 : [0, +∞) × [0, +∞) → [0, +∞) and
are continuous. The functions 𝑎

1
(𝑡) and 𝑎

2
(𝑡) are obviously

nonnegative.
Now, observe that 𝑓

0
= 𝑓

∞
= 𝑔

0
= 𝑔

∞
= ∞ holds. Again

set 𝐴
1
= 1/850, because 𝑓(𝑦

1
, 𝑦

2
), 𝑔(𝑦

1
, 𝑦

2
) is monotone

increasing function for (𝑦
1
, 𝑦

2
) ≥ 0, taking 𝜌

1
= 4; then, when

‖(𝑦

1
, 𝑦

2
)‖ ∈ [0, 𝜌

1
], we get

𝑓 (𝑦

1
, 𝑦

2
) ≤









(𝑦

1
, 𝑦

2
)









1/2
+









(𝑦

1
, 𝑦

2
)









2

≤ 2 + 16 = 18 < 4 × 850 = 𝐴

−1

1
𝜌

1

𝑔 (𝑦

1
, 𝑦

2
) ≤









(𝑦

1
, 𝑦

2
)









1/3
+









(𝑦

1
, 𝑦

2
)









3

≤ 4

1/3
+ 64 < 4 × 850 = 𝐴

−1

1
𝜌

1
,

(68)

which implies that (𝐻
1
) holds.

On the other hand, to calculate the admissible range of
the eigenvalues 𝜆

1
, 𝜆

2
, as given by condition (𝑃

1
), observe by

numerical approximation, we find that

Λ

1
≈ 163530, Λ

2
≈ 164547.25. (69)

Thus, for any 𝜆
1
, 𝜆

2
satisfying 163530 < 𝜆

1
, 𝜆
2
< 164547.25,

condition (𝑃
1
) will be satisfied.

Consequently, by Theorem 9, problem (63)–(65) has at
least two positive solutions.
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