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Hydrogenolysis of glycerol to propylene glycol represents one of the most promising
technologies for biomass conversion to chemicals. However, conventional hydrogenolysis
processes are often carried out under harsh H2 pressures and temperatures, leading to
intensive energy demands, fast catalyst deactivation, and potential safety risks during H2

handling. Catalytic transfer hydrogenolysis (CTH) displays high energy and atom efficiency.
We have studied a series novel solid catalysts for CTH of glycerol. In this work, detailed
studies have been conducted on energy optimization, tech-economic analysis, and
environmental impact for both processes. The key finding is that relatively less energy
demands and capital investment are required for CTH process. CO2 emission per
production of propylene glycol is much lower in the case of transfer hydrogenolysis.
The outcome of this study could provide useful information for process design and
implementation of novel hydrogenolysis technologies for other energy and
environmental applications.

Keywords: hydrogenolysis, biomass, comparative study, assessment, glycerol, propylene glycol

INTRODUCTION

Aqueous phase hydrogenolysis of bio-oxygenates provides a most promising technology for the
production of various megaton chemicals from renewable feedstocks. (Wang et al., 2015a; Jin et al.,
2019a; Park et al., 2021). In this context, hydrogenolysis of polyols to glycols and alcohols could offer
alternative synthetic routes and alleviate the use of hydrocarbons for energy-intensive conversion
processes. In particular, hydrogenolysis of glycerol, a bio-diesel by-product, can produce propylene
glycol (PG), 1,3-propanediol, ethylene glycol (EG), as well as propanols for many downstream
applications such as anti-freezes, polyesters, pharmaceuticals, and solvents. This is one of the most
popular subjects which is under extensive studies in both academia and industry. (Haldar and
Mahajani, 2004; Guo et al., 2009). However, hydrogenolysis of glycerol is often conducted under
elevated temperatures and H2 pressures (>230°C, >4 MPa). Actually, this process is still heavily
dependent on the use of fossil-derived H2, with cost-ineffective investment on H2 compression,
recycling, andmanufacture of process equipment. (Humbird et al., 2017; Freitas et al., 2018). It is true
that renewable H2 (“green H2”) can now be produced from other feedstocks, e.g., electrolysis of
water. But one should note that most hydrogenation plants have to be established adjacent to H2
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source or pipelines, which could unfavorably increase operational
and constructional cost for biorefineries. In addition, potential
safety risk is another important factor hindering industrial
implementation of this technology. Advanced aqueous phase
hydrogenolysis technologies with low-carbon emission are
highly demanded for future development of bio-refineries.

Catalytic transfer hydrogenolysis (CTH), which takes use of
renewable H-donors in liquid medium, is considered as one of the
most economically and environmentally beneficial technique to
substitute conventional hydrogenolysis processes (CHDO,
Figure 1). (Jin et al., 2019b; Zhang et al., 2020a; Yin et al.,
2020; Nie et al., 2021). Muchmilder reaction temperatures, higher
intrinsic hydrogenolysis rates in aqueous medium, and lower
operating pressures in the absence of externally added H2 make
CTH processes more energy and atom efficient compared with
CHDO processes. Extensive research efforts have been devoted to
develop active and selective solid catalyst materials with
bifunctional natures for both H2 generation and
hydrogenolysis reactions. Pt-based (Tike and Mahajani, 2006;
Falcone et al., 2015; Feng et al., 2015; Von Held Soares et al., 2017;
Zhang et al., 2020b; Hu et al., 2020; Xia et al., 2020; Nie et al.,

2021; Song et al., 2021), Cu-based (Nie et al., 2021; Feng et al.,
2015; Wang et al., 2015b; Priya et al., 2016; Feng et al., 2011; Kant
et al., 2017; Vasiliadou and Lemonidou, 2013; A et al., 2017), and
Pd-based (Tike and Mahajani, 2006; Feng et al., 2015; Mauriello
et al., 2015; Sun et al., 2017; Shafaghat et al., 2019; Xia et al., 2020;
Song et al., 2021) catalysts have been proposed and investigated
with respect to structure-performance relations. Those studies
have confirmed that CTH of glycerol can be achieved under
milder temperatures (<200oC) and pressures (inert <2 MPa),
with remarkable atom efficiency for the synthesis of PG as the
main product (Wang et al., 2013; Feng et al., 2015). Experimental
studies have demonstrated the feasibility of CTH technique for
catalytic upgrading of glycerol as well as other bio-oxygenates.

However, to our best knowledge, limited studies on energy,
economic, and environmental assessment (E3A) have been
carried out to evaluate the overall impact of CTH processes
particularly for the production of PG from glycerol (D’Angelo
et al., 2018; Gonzalez-Garay et al., 2017). This study is very
important, as it will provide the overall energy efficiency,
greenhouse gas emission, and economic advantages of CTH
processes. More critically, the hot spot detected in E3A studies

FIGURE 1 | Conventional HDO (CHDO) and catalytic transfer hydrogenolysis (CTH).

Graphical Abstract | Table of Content Graph: Process analysis for conventional hydrogenolysis and transfer hydrogenolysis of glycerol reveals the energy,
economic and environmental impact on biomass conversion.
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will also offer insights into process optimization in terms of
energy and capital investment (D’Angelo et al., 2018; Arpia et al.,
2021; Beneroso et al., 2017; Wicker et al., 2021; Xiang et al., 2014;
Zaimes et al., 2015; Zhao et al., 2021) to further reduce the
carbon-footprint and operating cost for facile production of PG.

However, to our best knowledge, no relevant reports have been
published on comparative studies of energy, economy, and
environmental assessment for both CHDO and CTH of
glycerol. Therefore, in this work, we reported a detailed and
comparative study on CHDO and CTH of glycerol to PG.
Specifically, 1) energy consumptions for glycerol pretreatment,
hydrogenolysis reactors, and separation/purification sections
have been compared for both CHDO and CTH. Heat
exchange network has also been optimized. 2) Economic
analysis on how reduction of H2 compression contributes to
overall economic improvement has been conducted. 3)
Environmental analysis has also been carried out to estimate
the CO2 emission and water discharge for both processes,
respectively. Finally, both advantages and disadvantages for

FIGURE 2 | Process scheme for CHDO of glycerol.

FIGURE 3 | Process scheme for CTH of glycerol.

TABLE 1 | Reactions of CTH scheme.

Main products Selectivity (%)

PG 58.7
Acetic acid 13.9
Acetol 11.6
EG 5.1
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CTH of glycerol have been quantitatively discussed for future
design of next-generation bio-refineries.

METHODOLOGY

Thermodynamic Model
In this work, the following chemicals have been incorporated for
process simulation, water, glycerol, ethyl alcohol, propylene
glycol (PG), propanol (PrOH), ethylene glycol (EG), acetol,
cycloheptane, methanol (MeOH), ethanol (EtOH), acetic acid,
CH4, H2, and CO2. Redlich-Kwong and NRTL models were
adopted for simulation. Redlich-Kwong model was used to
determine gas composition, while NRTL method was used to
describe liquid phase (Rocha et al., 2014; Li et al., 2016; Liu et al.,
2018). Since reaction and separation units involve gas-liquid and
liquid-liquid multiphase system in this work, NRTL (non-
random two liquid) model is supposed to be well predictive in
determining the actual composition of various components
(Poozesh et al., 2015; Li et al., 2016; Mirzaei et al., 2016; Xie
et al., 2016; Hernández et al., 2018; Ma et al., 2018; Ma et al., 2019;
Qin et al., 2019; Chen et al., 2020).

Redlich-Kwong and NRTL models are only suitable for polar
and gas-liquid phase systems. Tech-Economic analysis has been
focused on utilities and capital investment. There are many

empirical parameters which may generate large errors.
However, those errors are acceptable for engineering design.

Technical Approach and Process
Simulation
Both CHDO and CTH plant studied in this work consist of three
main units: pretreatment unit, hydrogenolysis unit where glycerol
is converted into PG and other co-products, and separation and
purification unit. In this work, reaction results over Ni/Cu/TiO2

catalyst were used for simulation of CHDO process (Cai et al.,
2018; Jin et al., 2019a; Jin et al., 2019b; Xia et al., 2020; Yin et al.,
2020). Ni/Cu/TiO2 catalyst was selected for CHDO process
because it displays leading performances in conversion and PG
selectivity in literature. It has been a widely accepted catalyst
material for numerous hydrogenation applications. Results
obtained from PtFe-based catalyst, which were reported in
recent work, were selected as the reaction model to simulate
CTH process (Zhang et al., 2020a). Compared with other
investigated catalysts for transfer hydrogenolysis reaction,
PtFe-based catalyst displays much higher activity, although
selectivity towards PG (58.7%) can be still improved in future
studies.

Process scheme for CHDO of glycerol is presented in Figure 2.
It is seen that this scheme consists of three major units,

FIGURE 4 | Product distribution and mass flow rate for (A) CHDO and (B) CTH of glycerol.

FIGURE 5 | Influence of reaction temperature on product flow rate and distribution.
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pretreatment unit and reaction unit, followed by separation and
purification unit. Glycerol, water, and H2 are mixed with a ratio of
1:20:10 (molar) and fed to the reactor (R101 in Figure 2), where
hydrogenolysis reaction is conducted under 230°C and 3.5 MPa
H2 pressure. The main products include PG, PrOH, MeOH, and
acetol, with chemoselectivity being 86.5, 1.5, 10.6, and 1.4%,
respectively. The separation sequence for CHDO includes
primary separation (T101), MeOH/PrOH separation (T102),
acetol purification (T103), azerotropic separation (T104), and
PG purification units (T105). Cycloheptane is used as azerotropic
agent and recovered from T104 and T105 (Dohnal et al., 2014).

Figure 3 presents the process scheme for CTH of glycerol,
which also consists of pretreatment unit, reaction unit, and
purification unit. Glycerol is fed with EtOH (H-donor) as the
feedstock into the reactor. Glycerol/EtOH/H2O (69.7/24.8/0.5 M
ratio), together with recycling water, is pumped into reactor
(R201 in Figure 3). The reaction effluent is first flashed in a
Gas/Liquid Separation Column (T201) in this scheme to separate
gas components such as trace amounts of H2 and CO2 from
reaction mixture. EtOH and water are recycled into the reactor in
Alcohol + Water Recycle Column (T202), in which the raw
material could be saved. After being separated in Acetol +
acetic acid/PG + EG Separation Column (T203), Acetol is
purified in Acetol Purification Column (T204), while PG is
purified in azeotropic distillation system including Azeotropic
Distillation Column (T205) and PG Purification Column (T206).

Reaction Scheme for CTH Process
Reaction parameters such as temperatures, pressures, and catalyst
loading have been studied experimentally in our laboratory, as
already reported previously (Jin et al., 2019a; Jin et al., 2019b;
Zhang et al., 2020a; Zhang et al., 2020b; Yin et al., 2020).
Conversion and selectivity data obtained from those reports
were used as input for determination of configuration of
reactor unit in simulation (Von Held Soares et al., 2017;
Zhang et al., 2020a; Yin et al., 2020). As shown in Table 1,

the reactions considered for this work include 1)
dehydrogenation of EtOH, 2) dehydration of glycerol, and
(3–4) hydrogenolysis of glycerol. More details of reactor
design are presented in supporting information Reactor Design.

Models
Rstoic model was applied for the hydrogenolysis reactor. In
separation and purification section, the main unit operations
are fractionation and azeotropic distillation; thus, the RadFrac
model was used. This model could be used for accurate
calculation of each column (Humbird et al., 2017; Pla-Franco
et al., 2019). Properties for major components were
summarized in Supplementary Table S1, S2 for setting up
separation sequences and further optimization. Aspen
Energy Analyzer was used to carry out optimization of
heat exchange network (refer to Supplementary Figure S5
for more details).

Economic Analysis
In this part, calculation of investment, capital cost, and revenue
was conducted for CHDO and CTH process. The capital cost for
manufacturing and facilities is defined as the total direct capital
cost (TDC) (Xiang et al., 2014; Zhou et al., 2019; Saavedra del Oso
et al., 2020) which is estimated by the production capacity index
approach, and it is defined as:

TDC � ∑ m
i�1 CE,i � ∑ m

i�1 Cbasic( Q

Qbasic
)

α

f (1)

where m is the total unit in process design, CE,i is the capital cost
of each process corresponding to actual capacity Q, Cbasic

indicates the capital cost with the base case capacity, α is the
cost scale factor, and f is a comprehensive adjustment factor
(Zhou et al., 2019; Cormos, 2021; Marchese et al., 2021). Q/Qbasic

is 1/1 for both CHDO and CTH processes, the ratio of which was
determined based on previous literature (Zhou et al., 2019;
Cormos, 2021; Marchese et al., 2021). Details about equipment
costs are presented in Supplementary Table S8, S9 of supporting
information. Therefore, the indirect plant expense (IPE) is
estimated as 30% of TDC, which consists of the capital costs
for engineering and supervision, start-up capital, spares costs,
construction expenses, contractor fees, and other contingency
cost. TDC and IPE are combined to estimate the total plant
capital cost (TPC) of CHDO and CTH scheme, which is
defined as:

TPC � TDC + IPE (2)

The capital cost summary of CHDO and CTH scheme is
shown in Table 5. More details are talked in results and
discussion.

Environmental Analysis
In this part, environment analysis is mainly focused on evaluating
and comparing the environmental impacts of producing PG from
CHDO and CTH processes. The environment analysis includes
direct and indirect emission of CO2, the effluent discharge, the
organic compounds, and equivalent greenhouse gas emissions in

FIGURE 6 | Influence of glycerol concentration in aqueous feed on
product flow and distribution.
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TABLE 2 | Energy consumption of main equipment in CTH process at different concentration of glycerol.

Three different concentration
of glycerol

20wt% 30wt% 40wt%

Equipment

R201 430.4 352.3 300.8

Catalytic transfer
Hydrogenolysis Reactor

T201 14,631.3 12,310.3 11,241.5

Gas/Liquid Separation
Column

T202 21,308.9 10,510.7 9,718.4

Alcohol + Water
Recycle Column

T203 614.7 609.4 605.4

Acetol + acetic acid/PG + EG
Separation Column

T204 261.2 255.4 252.5

Acetol Purification
Column

T205 5,501.5 5,560.5 5,669.5

Azeotropic Distillation
Column

T206 173.9 168.3 175.9

PG Purification
Column

Total Heat Demand (kW) 42,821.9 29,766.9 27,964.1
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TABLE 3 | Energy consumption of main equipment in CTH process at different concentration of glycerol.

Three different reaction
of temperature

180°C 200°C 220°C

Equipment

R201 95.9 352.3 870.5

Catalytic transfer

Hydrogenolysis Reactor

T201 10.511.4 12,310.3 11,794.3

Gas/Liquid Separation
Column

T202 11,010.5 10,510.7 12.028.2

Alcohol + Water

Recycle Column

T203 756.1 609.4 707.4

Acetol + acetic acid/PG + EG
Separation Column

T204 364.3 255.4 359.9

Acetol Purification
Column

T205 5,214.2 5,560.5 5,331.9

Azeotropic Distillation

Column

T206 163.5 168.3 166.4

PG Purification
Column

Total Heat Demand (kW) 28,115.8 29,766.9 31,258.5
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CHDO and CTH process. The quantitative analysis is reported
according to million $ production (Saavedra del Oso et al., 2020).

As the main greenhouse gas (GHG), CO2 emissions can be
calculated by the sum of direct emissions and indirect emissions.
The direct emissions are mainly from reactions such as
“C3H8O3+3H2O � 3CO2+7H2” and the process emissions,
while the indirect emissions are caused by process energy
production such as steam for heating and electricity for
driving equipment.

RESULTS AND DISCUSSION

General Information on CHDO Process
Prior to detailed comparative studies for both CHDO and CTH
processes, it is important to set up the reference operating
conditions for systematic investigation. Despite extensive
studies on CHDO processes, there is lack of experimental

kinetic data for the leading Ni/Cu/TiO2 catalyst in literature.
As a result, the operating conditions for Ni/Cu/TiO2 catalyst in
CHDO of glycerol cannot be optimized in this work. Such
optimization would not be reliable without kinetic data under
different temperatures and pressures from experimental studies.
Therefore, the operating conditions Ni/Cu/TiO2 catalyst.

Process Schemes
It is important to mention that H2 is recycled and compressed in
this scheme (V101). To simplify the scheme, we have reduced the
purification part for H2 recycling for the convenience of further
cost estimation. It is also critical that, for CHDO process, we
already found that recycling water is not economically viable as
the cost for H2 purification. Those preliminary calculations
showed that H2O recirculation and H2 purification are not
expedient from the technological point of view, and therefore,
they are excluded from the technological schemes.

Different from CHDO process, CTH of glycerol is composed
of relatively simpler scheme. H2 compression unit is not
required, as there is no external H2 added in CTH of
glycerol. However, glycerol should be fed with EtOH
(H-donor) as feedstock into the reactor. Glycerol/EtOH/H2O
(69.7/24.8/0.5 M ratio) is pumped into reactor (R201 in
Figure 3) for CTH reactions. This ratio is pre-determined
based on our previous report for experimental studies. The
reaction effluent is first flashed in a gas/liquid separation
column (T201), then gas components such as trace amounts
of H2 and CO2 from reaction mixture are separated. Light
components including CH4, H2, CO2, and trace MeOH were
sent to furnace for combustion. Another difference for CTH of
glycerol, compared with CHDO process, is the separation unit.
In CTH of glycerol, the main products, as described in previous
sections, include PG, EG, acetol, acetic acid, and MeOH, leading
to distinct separation scheme for the proposed process. In
particular, alcohol + water mixture (EtOH/MeOH/H2O: 29/
4.6/66.4 M ratio) is recycled back with fresh feedstock with
Glycerol/EtOH/H2O stream. The remaining unreacted alcohols
can be used as H-donor for fresh feedstocks. For CTH process,
dehydration of glycerol leads to the formation of acetol, while
dehydrogenation of EtOH eventually generates acetic acid as the

FIGURE 7 | Power consumption of CHDO and CTH scheme.

TABLE 4 | Energy summary of CHDO and CTH scheme.

Process CHDO (kW) CTH (kW)

Energy consumption

1 Pretreatment Section 175.1 kW 149.5 kW
2 Reaction Section 2,247.4 kW 430.4 kW
3 Separating and Purification Section T101a 39,398.0 kW T201# 14,631.3 kW

T102a 1,742.6 kW T202# 21,308.9 kW
T103a 332.5 kW T203# 614.7 kW
T104a 7,019.5 kW T204# 261.2 kW
T105a 1,024.5 kW T205# 5,501.5 kW
V101a 80.3 kW T206# 173.9 kW
Sum 49,597.4 kW Sum 42,491.5 kW

4 Total Consumption 52,019.9 kW 43,071.4 kW

aT101, Column *T102 MeOH/PrOH column; *T103, Acetol Column *T104 Azeotropic Separation Column; *T105, PG purification column; *T201, Gas/Liquid Separation Column; *T202,
Alcohol +Water Recycle Column; *T203, Acetol + acetic acid/PG + EG separation column; *T204, Acetol Purification Column; *T205, Azeotropic Distillation Column; *T206, PG purification
column.
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final product. Acetol and acetic acid are separated from PG and
EG in T203, while acetol could be further obtained in T204 with
99.95% purity. Similar to CHDO scheme, PG and EG are
separated using azeotropic distillation sequence (T205-T206,
refer to supporting information for more details).

Based on description presented above, it is clear that, for CTH
of glycerol, H2 cycling and product separation units are
completely different from the conventional one. Therefore, we
were motivated to further study the advantages and possible
disadvantages of CTH technology for glycerol conversion in the
following sections.

Detailed Studies on Process Parameters for
Both Processes
Prior to detailed investigation on the influence of process
parameters on productivity and energy/capital costs, we first
compared the product flow rate and composition for CHDO
and CTH processes. The mass flow rates for PG, EG, acetol, and
PrOH are 893.4 kg/h, 89.3 kg/h, 14.1 kg/h, and 12.3 kg/h,
respectively, while CTH of glycerol leads to 606.3 kg/h,
42. kg/h, and 116.6 kg/h for those products. The product
distribution (carbon-based selectivity, 58.7%) (Zhang et al.,
2020a; Yin et al., 2020) for the two processes has also been
presented in inset of Figure 4. It is found that, for CHDO
process, the main products include PG (86.5%) and EG (10.6%),
with trace amounts of acetol and PrOH as co-products.
Interestingly, for CTH of glycerol using EtOH as H-donor,
the main products are PG (58.7%), acetic acid (13.9%), and
acetol (11.6%). Clearly, the product distribution from the two
processes is distinct from each other. This is because that for
CTH process, H2 generation from EtOH as H-donor leads to the
formation of acetic acid in the reaction medium, while
conversion of glycerol undergoes dehydration and
hydrogenolysis steps, forming acetol and PG as intermediate
and final products, respectively.

The influence of temperature on product distribution and
product mass flow rate is presented in Figure 5. It is observed that
increasing reaction temperature from 180°C to 200°C leads to

improved selectivity to PG from 45.5 to 58.7%, with decreasing
selectivity for acetol from 33.9 to 11.6%. However, further
increasing temperature to 220°C causes significant degradation
reactions with CH4 and CO2 as by-products. As a result, the
overall product mass flow rates for PG and acetol are much lower
than that at 200°C.

We also studied the influence of glycerol concentration on
the amount of total recycled water for CTH scheme. It is found
from Figure 6 that increasing glycerol concentration from
20wt% to 40wt% in the feedstock leads to significant
changes of water consumption. In particular, the CTH
process with 20wt% glycerol concentration in the feedstock
demands 2014.2 kg/h and 1735.8 kg/h of recycling water and
additional water input, respectively. As glycerol concentration
enhanced to 30wt%, we confirmed that the water demands for
CTH process have been decreased dramatically, down to
1,238.9 kg/h and 19.2 kg/h, respectively, for recycling water
and additional water input.

In this part of work, simulation of glycerol concentration effect
on CHDO process could not be conducted due to lack of kinetic
data in literature. It would be very useful to compare the
concentration effect for both schemes, providing more critical
insights into the sustainability of CHDO and CTH processes.
Therefore, 20wt% glycerol concentration was still used for further
comparison of two schemes to ensure consistency in processing
capability of the two technologies.

It is also important to mention that the water generated in
both CHDO and CTH meets the environment regulation for
discharge. Therefore, CTH processes with much lower water
demand is more favorable for lowering the overall cost of
water treatment.

FIGURE 8 | Equipment investment for CHDO and CTH processes (A). Detailed capital cost for different unit operations in CTH process (B).

TABLE 5 | Capital cost of CHDO and CTH scheme.

Items [10 (Jin et al., 2019a) $] CHDO CTH

Total Direct Cost (TDC) 1,234.6 1,155.4
Indirect Plant Expenses (IPE) 370.4 346.6
Total Plant Capital Cost (TPC) 1,605 1,502
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Based on the comparison shown above, it is clear that CTH
process displays the following advantages:

1) Higher atom efficiency for value-added PG and acetol
products. Considering the use of external pressurized H2

with high H2/glycerol ratio (10), for CHDO processes,
utilization of stoichiometric liquid H-donors exhibits much
better overall atom economics.

2) Lower water input. Based on Figure 6, the water demands for
recycling and additional input are approximately 74.8%
compared with CHDO process with 20wt% glycerol
concentration in the feedstock.

The interesting results in Figure 6 provide further insights into
nature of reaction network for both processes. For CHDO
process, water is solvent and a by-product, while water is both
reactant and product for CTH scheme. This is the reason that
CHDO process needs additional water to provide reaction
medium.

In the following sections, we will further discuss the energy
demands for CHDO and CTH processes, which provide
important evaluation for the economics and profit analysis.

Influence of Glycerol Concentration and
Temperature for CTH Process
Glycerol concentration will influence the reaction kinetics as well
as separation cost. This is because glycerol concentration will
influence the amount of recirculating water as well as the heat
duty for each of the downstream separation column. In this
section, energy requirement for CHDO and CTH under identical
glycerol concentration will be compared prior to detailed
investigation on how glycerol concentration in the feed affect
energy cost for CTH scheme. The amount of water (solvent) used
in this system under different glycerol concentration varies
significantly from 20wt% to 40wt%, as already seen in
Figure 6. In particular, altering glycerol concentration from
20wt% to 40wt% not only modifies the intrinsic conversion
rate of glycerol in the presence of PtFe/Y catalysts but also
changes the conversion rate of H-donor (EtOH) in aqueous
medium. Increasing glycerol concentration undoubtedly
decreases the overall water consumption in CTH process, thus
further leading to lowered energy input. As found in Table 2, the
energy requirement for R201, T201-206 is 430.4 kW, 14,631.3,
21308.9, 614.7, 261.2 kW, 5,501.5 kW, and 173.9 kW,
respectively, contributing to a total of 42,822 kW under this
scenario. Significantly, when glycerol concentration enhanced

up to 40wt%, the energy duty for R201, T201, and T202 has
been lowered by almost 30, 23, and 54%. This is because higher
glycerol concentration actually lowers the energy input for
heating up the feedstock, as well as the separating cost of
water from reaction mixture. This is one of the key findings in
the work.

The effect of reaction temperature on the energy input for
pretreatment and reaction sections, as well as separating and
purification sections was also studied in the following sections. It
is found in Table 3 that, increasing reaction temperature from
180 to 220°C, energy input for R201 has been enhanced by almost
9-fold. Interestingly, the energy cost for T201-T206 does not vary

TABLE 6 | Sale revenue for CHDO and CTH process.

Scheme CHDO CTH

Product PG PG Acetol EG Acetic acid

Annual Output (ton/a) 7,141.2 4,850.3 927.2 343.7 2,316.6
Purity (wt%) 99.9 99.9 99.1 99.9 99.5
Sales Revenue (10 Jin et al. (2019a) $) 14,830 10,080 43,400 186 1,070

Sales Total (10 Jin et al. (2019a) $) 14,830 54,736

FIGURE 9 | The system boundaries for (A) CHDO and (B) CTH
processes.
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FIGURE 10 | The direct and indirect emission of CO2 in CTH and CHDO (A). Equivalent greenhouse gas emissions of CHDO and CTH (B).

FIGURE 11 | The composition of the organic compounds of CHDO and CTH (A). The effluent discharge of CHDO and CTH (B).

FIGURE 12 | The advantages of CTH compared with CHDO.
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significantly as expected. However, it is important to mention that
changing temperature obviously modifies the reaction rate for
both glycerol and EtOH, as well as product distribution.
Therefore, the product composition in R201 is significantly
different in all three cases in Table 3 (180°C, 200°C, and
220oC). Detailed information on product composition has
already been shown in Figure 5. Overall, increasing reaction
temperature results in a slight enhancement in energy
consumption from 28,116 kW to 31,259 kW. The power
consumption for both CTH and CHDO has been shown in
Figure 7.

Energy Analysis for Both Schemes
We have selected 20wt% glycerol concentration and 200°C as the
reference condition for further process analysis. Energy analysis
was conducted to reveal the energy consumption for each unit
operation in both CHDO and CTH processes. Specifically,
Table 4 presents the energy summary for material
pretreatment, hydrogenolysis, and separation sections in both
schemes. It is clear that material pretreatment for CTH process
displays slightly lower energy consumption compared with
conventional unit (entry#1). Most importantly, reaction unit
for CTH shows significantly lower energy requirement
(430.4 kW), compared with CHDO (2,247.4 kW). This is
because operation temperatures and pressures for CTH
process are 200°C and 3 MPa, respectively, which are milder
than CHDO scheme (230°C, 3.5 MPa).

For separating and purification sections, we have found that
energy requirements for CHDO and CTH schemes are again
different from each other. In CHDO process, water, MeOH, and
PrOH were obtained from the overhead of T101 column, while
the mixture from the bottom of this column contained PG, EG,
acetol, and small amounts of water (4wt%). Water has been
obtained from the bottom of T102 and recycled back to the mixer
in the pretreatment and reaction section, with MeOH/PrOH
obtained from overhead of T102. Acetol of 92wt% purity can
be produced from T103 as one of the co-products from CHDO
process. PG and EG are separated in T104 with cycloheptane as
azeotropic agent. EG of 99.97wt% purity can be obtained from
T104, while PG of 99.92wt% can be produced from T105. Clearly,
the heat duty for T101 is the highest compared with other
columns in CHDO scheme. The azeotropic unit consisting of
T104 and T105 demands a total energy input of 8,044 kW.

Since the product distribution for CTH is different from that
of CHDO, the separating and purification scheme for CTH varies
significantly. In particular, T201 separates light gases such as H2

(7wt%), CH4 (9wt%), CO2 (79.8wt%), and MeOH (3wt%) from
the product mixture. Alcohol and water mixture was produced
from the top of T202 and recycled back to the mixer in
hydrogenolysis unit.

Acetol and acetic acid were separated from PG and EG in T203,
while purified acetol of 99.9wt% as the highly valuable co-product
can be obtained from bottom of T204. Acetic acid of 97wt% purity
(containing 0.2wt% acetol and ∼2.8wt% water as impurities) was
produced from the top of T204. Similar to CHDO process, PG and
EG were also separated via azeotorpic distillation, in T205 and
T206 columns. It can be seen that alcohol and water recycle unit

(T202) demands significantly high energy input in CTH scheme,
while for CHDO process, separating water/MeOH/PrOH from
product mixture needs remarkably high energy input (T201). The
overall energy requirement for purification of acetol, PG, and EG is
relatively lower in CTH process compared with CHDO scheme. As
a result, the energy requirement for purification unit is 49,597 kW
and 42,491 kW for CHDO and CTH, respectively. Considering the
advantages of milder operation temperatures and pressures in
CTH process, the total energy for the proposed process is 17%
lower than CHDO scheme.

Capital Cost and Revenue
Based on the detailed analysis shown above, we further conducted
techno-economic analysis for CHDO and the proposed CTH
process, with regard to energy consumption and product
distribution. The total number of equipment is summarized in
Supplementary Table S4. It is found that the overall number of
equipment is similar in both schemes, except for flash tank and
compressor. This is because CTH process does not require H2

compressor at all, while in CHDO scheme, H2 compressor is a
critical unit to recycle excess H2 back to the reaction unit.

Detailed capital investment for CHDO and CTH processes is
compared in Figure 8A. It is found that the investment for tanks
and pumps is similar for both processes. However, due to
relatively lower operating pressure in CTH process, the cost
for reactor and heat exchangers is lower than that of CHDO.
Another important point is that CTH process requires relatively
higher investment for separation scheme. This is because several
reactions are involved in CTH scheme; thus, additional co-
products such as acetic acid and acetol are produced. As a
result, the cost for column is slightly more expensive. The
overall equipment investment for CTH is more cost-effective
than CHDO process. The capital cost of CHDO and CTH
schemes is summarized in Table 5.

It is important to point out that, since CTH process does not
involve use of pressurized H2, the maintenance and safety cost
will also be much lower compared with CHDO process. This is
because that, in CTH scheme, reactor is conducted under much
milder temperature and pressure. As a result, H2 compressor is
not needed, with reduced operation cost.

In addition, CTH process produces other co-products including
acetol, acetic acid, and EG; therefore, three additional storage tanks
are needed. However, the overall cost for the three tanks is
obviously lower than H2 tank and compressor.

Detailed cost assignment for different unit operations in CTH
process is presented in Figure 8B. The key finding in this part is
that separation is the main cost contributor in this scheme, where
investment for both heat exchangers and columns accounts for as
high as 81.6% in CTH process.

According to our detailed simulation on CHDO and CTH
processes, the sale revenue for both processes is listed in Table 6.
We further compared the revenue for various different products
including EG, acetic acid, PG, and acetol. Due to the relatively
lower product flow rates in CTH scheme, the sales revenue is
slightly lower than that of CHDO. However, the lost revenue is
trade off by the remarkable price for acetol product. Therefore, the
overall revenue is approximately 3-fold higher in CTH scheme.
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Environmental Assessment
The novelty of transfer technologies has been demonstrated in
numerous previous work (Sawadjoon et al., 2013). However,
quantitative assessment for environmental impact of
conventional and the proposed new process has not been
investigated comprehensively in current literature. Therefore,
in this section, detailed analysis for CHDO and CTH will be
conducted and the results will be discussed systematically.

Boundaries
The boundaries for environmental analysis for both processes are
presented in Figure 9. For CHDO process (Figure 9A), the inlet
materials include glycerol and H2. Actually, H2 is industrially
derived from fossil fuels using coal or natural gas as the starting
material. Therefore, the environmental impact from fossil-H2

generation is also included in this assessment. The leaving
materials are mainly consisting of the oxygenate products and
waste gases, such as PG, PrOH, EG, acetol, MeOH, and CO2.
Differently, the entering materials for CTH process (Figure 9B)
are mainly glycerol and EtOH, the latter of which can be also
derived from bio-substrates. It is important to mention that CTH
scheme does not require input of fossil-H2. Due to the complexity
of reaction network in CTH process, the by-products are yet
different fromCHDO. For example, CH4 and acetic acid are main
by-products (co-products). The leaving materials in CTH scheme
also include PG, acetol, and EG, similar to CHDO process
(Garcia-Herrero et al., 2016; Sternberg et al., 2017).

CO2 Emission per PG Production
Based on process simulation, it is clear that productivity of PG in
CTH process is relatively lower compared with CHDO process,
due to the co-production of highly valuable acetol. To quantify
the CO2 emission, it is important to normalize based on PG
production for comparative studies of CHDO and CTH
processes.

Emission of CO2 and effluent discharge will be assessed in this
section for both processes (Sternberg et al., 2017). The results are
presented in Figure 10. It can be seen from Figure 10A that the
sum of indirect and direct CO2 emission for CHDO is almost 5-
fold higher than CTH process. Direct CO2 emission is defined as
formation of this product from hydrogenation unit and post-
treatment of CO as by-product. Therefore, it is not surprising that
the direct CO2 emission from CHDO is much higher than that of
CTH. Indirect CO2 emission include the CO2 output from
process utilities. It is clear that both CHDO and CTH only
discharge small amounts of indirect CO2.

Effluent discharge is also compared in this work. Again, the
discharge is approximately 73 kg/h for CHDO, which is almost 5-
fold higher than CTH scheme. This is because that, in CHDO
process, water is the product rather than reactants. Therefore,
significant amounts of wastewater are generated under this
condition. In CTH process, water is one of the important
reactants for H2 generation; as a result, the utilization
efficiency is very high. Thus, wastewater discharge is
minimized under this circumstance.

The discharge for other organic compounds has also been
compared (Figure 11). Due to the formation of various other co-

products such as CH4, acetic acid, and MeOH, the discharge of
organic products is higher in CTH process. This is because we
have not considered the purification part for the two chemicals,
which can be further improved in future work.

The CO2 emission per million value was eventually compared
for CHDO and CTH. It is very critical to mention that acetol is
not the hydrogenation product, although the value of which
contributes significantly to the final sales revenue. CO2

emission per million value should be evaluated only for
hydrogenation product (Xiang et al., 2014; Zhou et al., 2019).
In this work, PG is actually the target product for both CHDO
and CTH processes. The data presented in Figure 10 only reflect
the CO2 footprint for PG formation. According to the analysis,
CO2 output is dramatically higher in CHDO scheme, while that in
CTH scheme has been reduced by 71%. Further detailed analysis
revealed that, actually contribution of CO2 output from
purification and pretreatment section is similar for CHDO and
CTH. However, CHDO will release significant amounts of CO2

owing to the harsh operating temperature and H2 pressure.
According to the environmental impact analysis, it is clear
that our proposed transfer hydrogenolysis technology imposes
less carbon footprints in comparison with CHDO process, thus
displaying great potentials for large scale implementation in bio-
refineries.

CONCLUSION

In this work, we have conducted detailed analysis for both
conventional hydrogenolysis (CHDO) and catalytic transfer
hydrogenolysis (CTH) of glycerol processes. Process scheme
for both processes has been discussed with respect to energy
consumption, productivity, and product distribution. The key
finding in this part is that total energy input for CTH of glycerol is
approximately 83% of CHDO process. Detailed economic
analysis has demonstrated a total reduction of 7% for total
investment in CTH scheme, owing to simplification of H2

handling equipment. Furthermore, influence of two critical
parameters, glycerol concentration and reactor temperature on
energy consumption, recycling water, and productivity for each
key product, has been further discussed in detail. As one of the
key findings, catalytic transfer hydrogenolysis process demand
less energy input compared with conventional processes. More
importantly, economic analysis confirmed the advantage of
transfer hydrogenolysis due to the reduction of H2 recycling
and compression units. Owing to the elimination of natural gas-
derived H2 source, the overall CO2 emission in transfer
hydrogenolysis has been reduced by more than 71%. Further
analysis confirms that a remarkable improvement for CTH over
CHDO with a total of 64% reduction in CO2 emission (per $ per
production of propylene glycol) has been achieved.

This work has clearly demonstrated the advantages of transfer
hydrogenolysis of glycerol to propylene glycol over PtFe-based
catalysts. This work will be useful for future process development
and implementation of transfer hydrogenolysis technologies in
next-generation bio-refineries. The advantages of CTH compared
with CHDO are shown in Figure 12.
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SUPPORTING INFORMATION

Additional information on process schemes, equipment design,
economic analysis, and heat transfer optimization are available in
supporting information.
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