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Due to image quality limitations, online Megavoltage cone beam CT (MV CBCT), which
represents real online patient anatomy, cannot be used to perform adaptive radiotherapy
(ART). In this study, we used a deep learning method, the cycle-consistent adversarial
network (CycleGAN), to improve the MV CBCT image quality and Hounsfield-unit (HU)
accuracy for rectal cancer patients to make the generated synthetic CT (sCT) eligible for
ART. Forty rectal cancer patients treated with the intensity modulated radiotherapy (IMRT)
were involved in this study. The CT and MV CBCT images of 30 patients were used for
model training, and the images of the remaining 10 patients were used for evaluation.
Image quality, autosegmentation capability and dose calculation capability using the
autoplanning technique of the generated sCT were evaluated. The mean absolute error
(MAE) was reduced from 135.84 ± 41.59 HU for the CT and CBCT comparison to 52.99 ±
12.09 HU for the CT and sCT comparison. The structural similarity (SSIM) index for the CT
and sCT comparison was 0.81 ± 0.03, which is a great improvement over the 0.44 ± 0.07
for the CT and CBCT comparison. The autosegmentation model performance on sCT for
femoral heads was accurate and required almost no manual modification. For the CTV
and bladder, although modification was needed for autocontouring, the Dice similarity
coefficient (DSC) indices were high, at 0.93 and 0.94 for the CTV and bladder,
respectively. For dose evaluation, the sCT-based plan has a much smaller dose
deviation from the CT-based plan than that of the CBCT-based plan. The proposed
method solved a key problem for rectal cancer ART realization based on MV CBCT. The
generated sCT enables ART based on the actual patient anatomy at the
treatment position.
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INTRODUCTION

Neoadjuvant chemoradiotherapy, which can improve the local
control rates, is a standard of care for locally advanced rectal
cancer (1, 2). Using the high conformal radiation technique,
intensity modulated radiotherapy (IMRT) or volumetric
modulated radiotherapy (VMAT) can provide target high dose
distribution while better sparing surrounding normal tissues
than 3D conformal radiotherapy (3, 4). Most current treatment
strategies use one treatment plan based on the pretreatment CT
throughout the whole treatment period with or without image
guide radiotherapy (IGRT). However, due to the differences in
bladder and rectal filling status, the shape and position of the
rectum and mesorectum may change during radiation therapy
(5, 6). This could cause the target volume to be missed or a high
dose to be delivered to the surrounding normal tissues during
radiation therapy, resulting in loss of local control or serious side
effects. Zumre et al. conducted a study on rectal cancer patients
treated with neoadjuvant radiotherapy to evaluate mesorectum
movement and its effect on dose distribution. The study revealed
20 mm of mesorectum movement in the lateral and anterior-
posterior direction and 10 mm of movement in the superior-
inferior direction during radiotherapy, which caused a median of
~2% change in dosimetric parameters (7). A larger planning
target volume (PTV) margin can ensure that no target is missed
but will deliver a high dose to normal tissue. A smaller PTV
margin can better protect normal tissues but may result in a
prescription dose that misses the target volume. Adaptive
radiotherapy (ART), which takes into account the anatomy
changes of the patient during treatment, is the best way to
solve this problem. One study introduced plan selection
strategies to account for the anatomy changes during rectal
radiotherapy (8). They created three treatment plans according
to three different PTV margins regarding three different filling
states of the bladder (full, empty and intermediate state). Then,
the best plan for treatment was chosen according to online cone
beam CT (CBCT). Another study compared an online adaptive
radiotherapy strategy for planning the selection with respect to
the dose to the organ at risk for rectal cancer (9), and they found
that the adaptive treatment maintained target coverage and
reduced the doses to the organs at risk (OARs). Both of these
strategies are superior to using one plan throughout the whole
course, but they all have limitations in that the calculation of the
dose distribution was based on the planning CT rather than on
the online patient anatomy; rather, they simply take into account
the delineation on the online CBCT. To fulfill the ART process,
we should directly use the images with actual online anatomy for
dose calculation.

Online CBCT represents the actual patient anatomy at the
treatment positions that are mostly used for image-guided
radiotherapy. Due to its image quality limitation, CBCT cannot
be used for dose calculation directly. Several traditional methods
are used to improve CBCT image quality to make it suitable for
dose calculation, such as using the deformed CT as previously
described for scatter correction of the CBCT projection (10).
Some others use an anti-scatter grid or different scatter kernel
algorithms for deconvolving scatter from projections (11, 12). In
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recent years, deep learning methods have been widely used for
medical image modality transformation to generate synthetic CT
(sCT) images (13–16). Cycle-consistent adversarial network
(CycleGAN) is one of the most commonly used methods for
image transformation, as it does not require paired information
of the training data (17). In a real clinical situation, it is almost
impossible to obtain paired images. Thus, CycleGAN is a perfect
tool for the CBCT to sCT transformation. Several groups have
successfully used this method for MR to CT transformation and
CBCT to CT transformation (18–24). It is proved that the
CycleGAN performed better than other supervised learning
methods, such as deep convolutional generative networks
(DCGAN), progressive growing of GANs (PGGAN) and U-
Net (18, 21). In these studies, most of them chose head and
neck tumor sites for research, which has a relatively stable
anatomy. Fewer studies have evaluated the usage of CycleGAN
in the abdominal and pelvic regions, where the organs usually
have larger positional deviation and shape changes. Moreover,
no studies have evaluated the image transformation from
Megavoltage (MV) CBCT to CT, and no studies have
evaluated the use of CycleGAN for rectum tumor sites.

In this study, we aim to use the CycleGAN model to transform
MV CBCT images into sCT images of rectal cancer patients and to
evaluate whether the synthetic image is sufficient for ART through
image quality evaluation, autosegmentation capacity and dose
calculation capacity evaluation.
MATERIALS AND METHODS

Image Acquisition and Processing
In this study, a newly designed CT-linac uRT-linac 506c was used
for CT and CBCT data acquisition. The CT-linac is a new product
of United Imaging Healthcare (UIH) Co., Ltd, which integrated a
diagnostic-quality 16–slice helical CT and a C-arm linac together.
The helical CT can be used for simulation or IGRT. The linac also
has an electronic portal imaging detector (EPID) system for 2D
portal image and 3D MV CBCT acquisition.

There were 40 rectal cancer patients involved in this study. The
patients’ age range from 38 to 70 with a median age of 58. For each
patient, the IMRT technique incorporated with image guidance was
used for treatment. Image guidance was performed every day in the
first 3 fractions and then once a week. In the image guide process,
FBCT was acquired for position correction, and then theMVCBCT
was acquired for position verification. Thus, we were able to acquire
online CT and CBCT image pairs with almost the same position
and the same anatomy. One hundred image pairs of 30 patients
were used for model training, and 10 image pairs of the remaining
10 patients were used for evaluation.

The CBCT and CT images were preprocessed before the
model training, which can eliminate the impact of the non-
anatomical structure. All the images were resampled to the same
resolution of 0.8789 mm by 0.8789 mm and a slice thickness of
3 mm, and all of them were cropped to the size of 512 * 512. Each
patient’s CBCT and CT images were aligned with each other, and
the image slices that existed in both CBCT and CT were selected
May 2021 | Volume 11 | Article 655325
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as training and validation data. Binary masks were generated
using an Otsu autothresholding method to separate the inside
and outside body regions, and for the outside body area, each
voxel value was assigned as -1000. To speed up the training
convergence, we scaled the CBCT and CT image values to the
range of (-1, 1) according to the formula Is = 2 ∗ (Iorig+1000)

4095 − 1,
where Iorig indicates the original CBCT and CT images, whose
value range is (-1000, 3095).

CycleGAN-Based CBCT to sCT Generation
The architecture of CycleGAN is shown in Figure 1. The main
structure of the CycleGAN contains 4 parts: 2 generators,
Gcbct!ct, which can convert a CBCT image into a synthesized
CT, and Gct!cbct, which can synthesize a CBCT image from a CT;
2 discriminators, Dcbct, which distinguishes synthesized CBCT
images from real CBCT images, and Dct, which identifies the
synthesized CT images from real CT images. The architectures of
the generator and discriminator are both borrowed from Kida’s
research (22) with a few changes. In the generator, we used U-net
structure instead of the encoder-decoder because the U-net can
better maintain the anatomy of the CBCT images according to
our experience. By using the encoder-decoder structure, some air
pockets near the femoral heads and caudal vertebra in the sCT
images would be generated that did not exist in the
CBCT images.

Both generators share the same U-net network, the details are
showed as Figure 2. CBCT (or CT) images are the inputs of the
model, and the synthetic CT (or synthetic CBCT) images are
outputs. The U-net network contains one convolution layer with
a 7 * 7 kernel with stride 1; three down convolution layers with a
3 * 3 kernel with stride 2 and channels 32, 64 and 128; 9 residual
blocks with a 3 * 3 kernel with stride 1; three up-sampling layers
each consisting of an unpooling with stride 2; a residual block
with a 3 * 3 kernel with stride 1 and a convolution layer with a 7 *
7 kernel with stride 1.
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Both discriminators use the same architecture as shown in
Figure 3. CBCT (or CT) images are set as input data. The
discriminator includes 3 down convolution layers with a 4 * 4
kernel with stride 2 and channels 32, 64 and 128; a convolution
layer with a 4 * 4 kernel with stride 1 and channel 256; and a
convolution layer with a 4 * 4 kernel with stride 1 and channel 1.
The last layer will be compared with a same shape of array filled
with 0 or 1 to determine whether the input image is fake or real.

The loss functions were also adapted from Kida’s research
(22). There are two loss functions, LossD and LossG, for the
discriminator and generator models, respectively. LossD istrying
to distinguish the real CT and CBCT images from synthesized
ones, while LossG is trying to minimizing the error between the
synthesized image and the real image. LossG consists of several
items as follows:

LossG =   lcycleLosscycle + lidemLossidem + ladvLossadv

+ lgradLossgrad

Losscycle ensures that the synthesized cycle images is closed to
the original images. Lossidem makes sure the generator G and G2

are idempotent and helps to increase the stability during training.
Lossadv encourages the generator to generate a synthesized image
that is as close to a real image as possible. Lossgrad encourages
structural preservation before and after conversion by trying to
keep the edges in the image.

The Adam optimizer was used to train the model with a batch
size of 1. The hyperparameters lcycle, lidem, ladv and lgrad were
set to 20, 1, 1 and 1, respectively. For the training from scratch,
the learning rate was set as 10-4. All the implementations used
Python 3.6 with a chainer. All experiments were performed on a
Linux workstation with one NVIDIA GEFORCE RTX 2080TI.
The training required approximately 6 days for 100 epochs, and
the prediction (including preprocessing) required approximately
10 s for one set of CBCT images.
FIGURE 1 | Architecture of the CycleGAN network for image synthesis.
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One should pay attention to the overfitting problem caused by
small training data size in the model training. Usually, the
dropout method and data augmentation can be used to avoid
overfitting. In this study, although we have about 9000 images in
each training data set, we added noise to the input data during
training to avoid overfitting.

Synthetic CT Image Quality Evaluation
In this study, CBCT and CT images of 10 patients were used
for the model performance evaluation. For the generated
synthetic image quality evaluation, we used mean absolute
error (MAE), peak signal-to-noise ratio (PSNR), normalized
cross-correlation (NCC), and structural similarity (SSIM) as
evaluation indices (18).

MAE(I1, I2) =
1

ninjnk
oninjnk

x,y,z I1(x, y, z) − I2(x, y, z)j j (1)

PSNR(I1, I2) = 10

�   log10
MAX2

oninjnk
x,y,z I1(x, y, z) − I2(x, y, z)j j2=ninjnk

 !

(2)
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NCC(I1, I2) =
1

ninjnk
oninjnk

x,y,z
I1 x, y, zð Þ − mI1

� �
I2 x, y, zð Þ − mI2

� �
sI1sI2

(3)

SSIM(I1, I2) =
2mI1mI2 + c1
� �

2sI1,I2 + c2
� �

m2
I1
+ m2

I2
+ c1

� �
s 2
I1
+ s 2

I2
+ c2

� � (4)

I1 and I2 represent two different images. I (x, y, z) means the
HU value of pixels (x, y, z) in image I. ninjnk is the total number
of pixels in image I. MAX is the maximum HU value in the
selected image. μ and s represent the mean and the standard
deviation of the HU value in an image. Online fan beam CT was
the ground truth image for comparison. sCT and CBCT images
were compared with fan beam CT.

Autosegmentation and Dosimetric
Evaluation of Synthetic CT
Autosegmentation capability, which can improve the
segmentation efficiency, is crucial for the ART process. In our
clinical situation, the autosegmentation model trained using CT
images in UIH TPS was regularly for rectal cancer patients’ target
and organ delineation. To evaluate the performance of the
autosegmentation model on sCT can indirectly evaluate the
FIGURE 3 | Architecture of the discriminator.
FIGURE 2 | Architecture of the generator.
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similarity between CT and sCT and check whether this
autosegmentation model is suitable for sCT to improve the
efficiency of ART process. So the segmentation model was
used to delineate target and organ at risk on sCT. Then, the
contours were reviewed and modified by an experienced
physician on the sCT. The autocontours and manually
modified contours were compared using dice similarity
coefficients (DSC) to evaluate the autosegmentation accuracy
on sCT.

In order to evaluate the performance difference of the
autosegmentation model on sCT and CT. The segmentation
model was used to delineate target and organ at risk on CT. Then
these contours were transformed to the corresponding sCT. DSC
index was used to evaluate the similarity between the
autocontours from sCT and CT. The following formula was
used to calculate DSC, in which V1 and V2 represents the volume
of the two contours for comparison respectively.

DSC =  
2 V1   ∩ V2ð Þ

V1V2
(5)

Dose calculation capability is also very important of sCT for
the ART accuracy. So the autoplanning function in UIH
TPS was used to generate IMRT treatment plan on sCT to
check whether clinical acceptable plans can be generated.
The manually modified contours on sCT were used for
planning. Then the plan and contours were transferred to the
corresponding CT. The dose volume histogram was used to
evaluate the dose distribution difference between sCT and CT
based plans. V95%, V100% (volume of the target receiving at
least 95% and 100% of the prescribed dose), D99, D5, D95
(doses to 99%, 5% and 95% of the volume) and Dmean (mean
dose of the volume) were investigated for PTV (25). For OARs,
volumes receiving different dose levels were evaluated. The dose
volume statistics of V30, V40 and V50 for bladder and V30 and
V40 for femoral heads were investigated (Vx means the
percentage of volume receiving xGy dose). As comparison,
the plan and structure were also transferred to CBCT and
these dosimetric differences were also compared between
CBCT-based and CT-based plans.
RESULTS

Visual comparisons of CBCT and sCT with CT images are
shown in Figure 4. The HU difference between two image sets,
the HU histogram comparisons and one line profile comparisons
for CT, CBCT and sCT images are also shown in Figure 4. We
can see that the sCT image quality was greatly improved over
that of CBCT images and was very close to the quality of the CT
images. The sCT images reduced the scatter artifacts while
retaining the anatomical accuracy and sharpening the
boundaries of the soft tissue structures. The HU histogram and
the line profile of the three different image modalities shown in
Figure 4 reveal great improvement of the HU value from CBCT
to sCT. Additionally, the HU histogram of sCT is in good
agreement with that of CT.
Frontiers in Oncology | www.frontiersin.org 5
For image quality analysis, CBCT and sCT images were
compared with CT images using MAE, PSNR, NCC and SSIM.
The results are listed Table 1. From the results, we can see that
the image quality of sCT images generated by the CycleGAN
model was noticeably improved, and the images were more
similar to real CT images.

For the autosegmentation capability evaluation of sCT
images, the DSC index was used to compare the similarity
between contours. The results are shown in Table 2. From the
comparison between autocontours and manual-modified
contours on sCT, we can see that the auto-segmentation model
performance for femoral heads was very accurate and needed
almost no manual modification for the auto-contours. For the
CTV and bladder, we can see that although modification is
needed for the auto-contour, the DSC indices were high, at 0.93
and 0.94 for the CTV and bladder. These findings indicate that
the autosegmentation is accurate enough for clinical use to
improve segment efficiency while retaining accuracy on sCT.
From the comparison between autocontours on sCT and CT, it
can be seen that they have high DSC index. On the contrary, the
autosegmentation model is almost not capable of segmenting the
CTV and bladder on CBCT. Even the autosegmentation of
femoral head on CBCT has large error. An example of
autosegmentation on CT, CBCT and sCT and their difference
with manual-modified contour delineated on sCT is shown in
Figure 5. It visually revealed the capability of autosegmentation
on sCT and CT. And we can see that the CTV cannot be
delineated by autosegmentation and the bladder is delineated
totally wrong on CBCT. The delineation of the left femoral head
on CBCT is also with big error.

According to our experiment, the autoplanning function of
UIH TPS is capable of generating clinical acceptable plans for
rectal cancer radiotherapy on sCT. The results of the dose
calculation accuracy evaluation of sCT are shown in Figure 6.
The first row of Figure 6 shows the dose distribution of the same
plan on CBCT, CT and sCT for individual patient. The second
and third row of Figure 6 shows the difference of CBCT- and
sCT- based plan compared with CT-based plan in terms of dose
distribution and dose volume histogram (DVH) respectively.
From Figure 6, we can see that the DVH values of CT- and sCT-
based plans have small differences, and the DVH lines almost
overlap, while the DVH comparison reveals a larger dose
difference of the PTV and bladder between CT- and CBCT-
based plans. The second row shows the dose distribution
differences on one axial slice. The dose difference between CT-
and CBCT-based plans can be up to 4% in PTV, while the
difference between CT- and sCT-based plans was reduced to
within 1% in PTV. For both of these comparisons, we can see
larger dose differences at the boundary of the body. This is
caused by the image boundary difference between CT and CBCT,
which can also be seen in Figure 4 with a large HU difference at
the body boundary. The respiratory motion during the long
scanning time of CBCT resulted in anterior and lateral boundary
differences between CBCT and CT images. The posterior
boundary difference may caused by the outer boundary
delineation inaccuracy due to couch scattering on CBCT
during preprocessing.
May 2021 | Volume 11 | Article 655325
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Except for the direct view of DVH and dose distribution
comparisons, we systematically compared some critical dose
Frontiers in Oncology | www.frontiersin.org 6
statistical differences in sCT- and CBCT-based plans with CT-
based plans for PTV, bladder and the femoral head. The results
are shown in Figure 7. We can see that for PTV dose statistics,
the differences in Dmean, D99, D5 and D95 between the CT- and
sCT-based plans are mostly less than 50 cGy, which are smaller
than the differences between CT- and CBCT-based plans. The
dose difference between CT- and CBCT-based plans could be
high as 350 cGy. For the comparison of PTV volume receiving
95% and 100% of the prescribed dose, it is also obvious that the
differences between CT- and sCT-based plans are smaller than
those between CT- and CBCT-based plans. Especially for V95%,
there are almost no differences between CT- and sCT-based
TABLE 1 | Numerical comparisons of CBCT and sCT with CT images.

CBCT vs CT sCT vs CT

MAE (HU) 135.84 ± 41.59 52.99 ± 12.09
PSNR(dB) 21.76 ± 1.95 26.99 ± 1.48
NCC 0.96 ± 0.01 0.98 ± 0.01
SSIM 0.44 ± 0.07 0.81 ± 0.03
MAE, mean absolute error; PSNR, peak signal-to-noise ratio; NCC, normalized cross-
correlation; SSIM, structural similarity; sCT, synthetic CT.
FIGURE 4 | Visual comparison of CT, CBCT and sCT images of one patient. The HU difference between two image sets, HU histogram comparisons and line profile
comparisons for CT, CBCT and sCT images.
May 2021 | Volume 11 | Article 655325
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plans. For bladder and femoral heads, although the statistical
differences between CT vs sCT and CT vs CBCT for dose are not
as large as that for PTV, we can see that the dosimetric
differences of sCT-based plans are smaller than those for
CBCT-based plans, when compared to CT-based plans.
DISCUSSION

This work used a CycleGAN method to convert MV CBCT to
sCT images for rectal cancer patients. The CT images at the
treatment position were used as ground truth to evaluate the
image quality, segmentation capacity and dose calculation
capacity of sCT generated from CBCT acquired at the same
position. Figure 4 and Table 1 revealed substantial image quality
improvements. In the sCT images, the scattering artifacts were
greatly diminished, and the organ boundaries were much clear
than in the original CBCT images. This will not only helpful in
the IGRT process for visual quality but also make contouring and
dose calculation possible. The MAE was reduced from 135.84 ±
Frontiers in Oncology | www.frontiersin.org 7
41.59 HU for the CT and CBCT comparison to 52.99 ± 12.09 HU
for the CT and sCT comparison, which is a great improvement.
The results are comparable to Harms et al.’s study, Liu et al.’s
study and Lei et al.’s study for pelvic and abdominal regions (18,
20, 26). The MAEs for pelvic and abdominal regions were larger
than that for brain of approximately 25 HU in Harms et al’ study
and Lei’s study (20, 26). This is mainly because pelvic and
abdominal regions are easily affected by respiratory motion,
organ movement and organ filling status. In our study,
although the CT and CBCT were acquired sequentially within
a short time interval with the patient at the same position on the
treatment couch. When the couch moves from the CBCT
position to the CT position, the patient may move a small
amount. In addition, respiratory motion may result in organ
shape and position differences and differences in the patient’s
outer boundary. The outer boundary difference can be seen in
Figure 4. The SSIM index for CT and sCT comparison was 0.81 ±
0.03,which ismuch larger than the result of 0.71±0.03 inLiu et al.’s
study for abdominal images. The results indicate that our model
greatly preserved the anatomy when improving the image
intensity. Similar results can be found in Liang et al.’s study with
FIGURE 5 | Comparison of auto contour on different image set with the manual contour delineated on sCT. The manual contour was delineated on sCT and then
copied to CT and CBCT. Contour name with “_A” suffix represents auto contour. Contour name with “_M_sCT” suffix represents contour manually delineated on
sCT. L_FH and R_FH means left femoral head and right femoral head.
TABLE 2 | Comparison of the similarity between contours.

CTV bladder L_FH R_FH

DSC (auto vs manual) 0.93 ± 0.04 0.94 ± 0.08 0.99 ± 0.01 0.99 ± 0.02
DSC (sCT vs CT) 0.95 ± 0.03 0.89 ± 0.03 0.93 ± 0.04 0.95 ± 0.02
May 2021 | Volume 11 | Ar
DSC (auto vs manual), DSC index between autocontours and manual-modified contours on sCT; DSC (sCT vs CT), DSC index between autocontous on sCT and CT; L_FH, left femoral
head; R_FH, right femoral head.
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an SSIM index of 0.85 for head and neck patients’ images where
the structures are stable (21).

We are aiming to use sCT for online adaptive radiotherapy, in
which the auto-segmentation and dose calculation capabilities are
both important. In this study, we applied the autosegmentation
model trained by using CT images to the sCT images and used the
DSC index to evaluate the model performance on sCT images.
From the DSC index between auto and manual-modified contours
shown in Table 2, we can see that the autosegmentation model
performance for femoral heads was very accurate. Although small
modifications need to be made to the autosegmentation of the CTV
and bladder, it is accurate enough comparing to most of the model
performance. It is very helpful for improving contouring efficiency
in ART process. For the CTV, the modifications were mostly made
at the anterior boundary and boundary at foot direction. The scatter
artifact was much larger in the middle part of the body for MV
CBCT, which can affect the image quality of sCT generated based on
MV CBCT and the autosegmentation performance of models
trained on CT images. From the DSC index between
autocontours on sCT and CT shown in Table 2, we can also see
that the aotucontours between sCT and CT have some differences.
May be directly use sCT images as a training dataset can obtain a
better contouring model which worthy of further investigation.

To evaluate whether the sCT is capable of accurate dose
calculation, sCT-based plans were compared to corresponding
CT-based plans, and for comparison, CBCT-based plans were
Frontiers in Oncology | www.frontiersin.org 8
also compared to CT-based plans. The results show that no large
dosimetric differences were found between sCT- and CT-based
plans, while large differences were found between CBCT- and
CT-based plans, especially for PTV. The dosimetric differences
between sCT- and CT-based plans may be caused by the body
size difference and larger motion artifacts of CBCT due to the
longer acquisition time. To minimize motion artifacts, a motion
management method can be used during CBCT acquisition, such
as the surface guide light system, which has no direct contact
with the patient’s body and will not make the patient
uncomfortable. This topic requires further investigation.

In this study, we used a CycleGAN method to generate sCT
based on CBCT to make sCT capable of adaptive radiotherapy.
The model was trained using rectal cancer patients’ images. So
the model can only be used for rectal cancer patients, which is an
limitation of the cycleGAN method. It strictly depends on the
training dataset. In order to improve the generalization of the
cycleGAN model, we should include more images of different
tumor sites in the training data. In Maspero et al.’s study, they
have realized image transformation from kV CBCT to CT for
HN, breast and lung cancer patients using a single model (27).
To train a universal model for MV CBCT to CT transformation
is our future research direction.

The generated sCT images were evaluated from three key
aspects: image quality, segmentation capability and dose
calculation capability based on autoplanning technique of UIH
FIGURE 6 | Dosimetric comparison of the same plan calculated on CBCT, sCT and CT. The first row shows the dose distribution on CBCT, CT and sCT. The
second row shows the dose distribution differences. The third row shows the DVH differences. L_FH and R_FH means left femoral head and right femoral head.
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TPS. All of the results show that the sCT images are comparable to
CT images, ensuring that the use of sCT for ART is possible. Using
MV CBCT-based sCT for ART has several advantages. First, it
represents the actual patient position and anatomy at the treatment
couch. Second, no deformable registration is needed during the
ART process, which ensures that no registration error is introduced.
Third, accurate autosegmentation can improve the efficiency of the
ART process. All of these advantages make the sCT-based ART
theoretically superior to the plan selection method and the method
based on deformable registration. Although for the CT-linac in our
department, we can directly use online CT for adaptive
radiotherapy. For other linacs with only MV CBCT, the method
introduced in this study can make ART a reality.

CONCLUSION

In this work, a CycleGANmethod was used to improve MV CBCT
image quality to make it eligible for ART. This method relies on
unpaired CT and CBCT images, making it easier to apply them in
clinical situations. The image quality, auto-segmentation capability
and dose calculation capability were evaluated. The results show
that the sCT images were comparable to CT images. The generated
high-quality sCT images can make IGRT easier and more accurate.
The accurate dose calculation capability of sCT can make DGRT
and ART possible based on the actual patient anatomy at the
treatment position. The proposedmethods solved a key problem for
rectal cancer ART realization based on MV CBCT.
Frontiers in Oncology | www.frontiersin.org 9
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