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Abstract

Background: The Aldabra giant tortoise (Aldabrachelys gigantea) is one of only two giant tortoise species left in the world. The species
is endemic to Aldabra Atoll in Seychelles and is listed as Vulnerable on the International Union for Conservation of Nature Red List
(v2.3) due to its limited distribution and threats posed by climate change. Genomic resources for A. gigantea are lacking, hampering
conservation efforts for both wild and ex situ populations. A high-quality genome would also open avenues to investigate the genetic
basis of the species’ exceptionally long life span.

Findings: We produced the first chromosome-level de novo genome assembly of A. gigantea using PacBio High-Fidelity sequencing and
high-throughput chromosome conformation capture. We produced a 2.37-Gbp assembly with a scaffold N50 of 148.6 Mbp and a res-
olution into 26 chromosomes. RNA sequencing–assisted gene model prediction identified 23,953 protein-coding genes and 1.1 Gbp of
repetitive sequences. Synteny analyses among turtle genomes revealed high levels of chromosomal collinearity even among distantly
related taxa. To assess the utility of the high-quality assembly for species conservation, we performed a low-coverage resequencing
of 30 individuals from wild populations and two zoo individuals. Our genome-wide population structure analyses detected genetic
population structure in the wild and identified the most likely origin of the zoo-housed individuals. We further identified putatively
deleterious mutations to be monitored.

Conclusions: We establish a high-quality chromosome-level reference genome for A. gigantea and one of the most complete turtle
genomes available. We show that low-coverage whole-genome resequencing, for which alignment to the reference genome is a neces-
sity, is a powerful tool to assess the population structure of the wild population and reveal the geographic origins of ex situ individuals
relevant for genetic diversity management and rewilding efforts.

Keywords: Aldabrachelys gigantea, conservation management, rewilding, genome assembly, HiFi sequencing, Hi-C sequencing, refer-
ence genome

Background
As human activities drive our planet into its sixth mass extinc-
tion [1], genomic technologies are an important tool for conserva-
tion researchers. The establishment of reference-quality genomes
for threatened species makes key contributions to the study of
common genetic health issues. These include elucidating the full
spectrum of genomic diversity; accurately quantifying inbreeding,
mutation load, and introgression; detecting hybridization; and
identifying adaptive variation in the face of rapidly changing en-
vironments [2]. The number of available reference genomes for
nonmodel species has been increasing due to ongoing efforts in
several global genome consortia, such as the Earth Biogenome
Project [3], the Vertebrate Genomes Project [4, 5], and the Global

Invertebrate Genomics Alliance [6]. However, available reference
genomes of nonmodel species are not homogeneously distributed
across the tree of life. Only three reference genomes represent the
Testudinidae family (tortoises, overall 44 species [7]) from two gen-
era, with two genomes being annotated and only one assembled
to chromosome level. Tortoises have been integral components of
global ecosystems for about 220 million years [8], contributing to
seed dispersal, nutrient and mineral cycling, and carbon storage
[9]. Over their long evolutionary history, giant tortoises, in particu-
lar, have evolved a life history characterized by delayed maturity,
extended reproductive lives, and extreme longevity [10].

Currently, there are only two extant giant tortoise taxa, both
of which face extinction threats [7]. Galápagos giant tortoises
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(Chelonoidis niger and subspecies thereof, formerly Chelonoidis niger
species complex) are native to the Galápagos Islands in the East-
ern Pacific Ocean, and taxa of this group are listed as vulnerable,
endangered, or extinct according to the International Union for
Conservation of Nature (IUCN) Red List (v2.3) [11]. Aldabra giant
tortoises (Aldabrachelys gigantea) (Fig. 1A) are endemic to Aldabra
Atoll in the Western Indian Ocean (Fig. 1B). Due to their extremely
limited distribution in the wild and the threats posed by climate
change, the species is listed as vulnerable on the IUCN Red List
v2.3 [12]. Genomes of giant tortoises may harbor clues to their ex-
ceptional life history traits such as long life span [13] and gigan-
tism [14–16]. Assessing genome-wide variation within species, in-
cluding deleterious mutation load, will critically improve conser-
vation management programs [17]. The recently established refer-
ence genome for one of the Galápagos giant tortoises, Chelonoidis
niger abingdonii, revealed insights into potentially aging, disease-
causing, and cancer-related gene functions by analyzing gene con-
tent evolution among tortoises [18]. For Aldabra giant tortoises,
however, only short-read sequencing data are available from the
same study [18].

A. gigantea (NCBI:txid167804) have been successfully used in
rewilding projects on several Western Indian Ocean Islands,
whose endemic giant tortoise species are now extinct [19]. The
introduced populations act as ecological replacements for the ex-
tinct species and take a central role in shaping and sustaining
large-scale vegetation dynamics as the largest frugi- and herbi-
vore [20–23]. A. gigantea has been introduced to three islands be-
longing to Mauritius, including Ile aux Aigrettes, Round Island,
and Rodrigues [24]. Monitoring the effectiveness of these rewilding
projects will be crucial for catalyzing larger projects in Madagas-
car [25]. A. gigantea rewilding programs require genomic informa-
tion and monitoring to minimize founder effects and maximize
genetic variation in newly introduced populations [26]. Finally, un-
certainties exist about the existence of additional Aldabrachelys
lineages, as well as the number and taxonomic status of ex-
tinct lineages [7] due to weak morphological resolution and low-
resolution genetic marker sets [27, 28].

Here, we present the first high-quality chromosome-level
genome of A. gigantea using PacBio high-fidelity (HiFi) sequenc-
ing and chromosome conformation capture (Hi-C) sequencing for
scaffolding. We assessed the utility of the reference genome by
performing low-coverage whole-genome resequencing for 32 tor-
toises (30 wild and two zoo-housed individuals). We inferred the
genetic structure of the wild population and the likely origin of
zoo-housed individuals.

Data Description
Genome sequencing and assembly
DNA extraction, PacBio library preparation, and sequencing
In December 2020, during routine veterinary blood sampling, a
subsample of approximately 3 mL of whole blood was collected
from a female A. gigantea (named Hermania) living in the Zurich
Zoo since 1955. Because blood was subsampled during a rou-
tine veterinary blood sampling, no additional ethical approval
was required. Whole blood was taken from the animal’s dorsal
tail vein and stored on ice in a heparin-coated blood collection
tube. DNA extraction was carried out at the Genetic Diversity Cen-
ter, ETH, Zurich, according to the manufacturer’s instructions of
the MagAttract® High Molecular Weight DNA (HMW) Kit (Qia-
gen, Hilden, Germany), with a single modification: instead of using
200 μL whole blood as suggested for blood samples with nonnu-

cleated red blood cells, a total of 50 μL whole blood was used.
The purified DNA was eluted in 200 μL molecular-grade water.
Subsequent steps, including genomic DNA (gDNA) quality control,
PacBio HiFi library preparation, and sequencing, were carried out
at the Functional Genomic Center Zurich, ETH.

The input HMW genomic DNA concentration was measured
using a Qubit Fluorometer (Thermo Fisher, Waltham, Mas-
sachusetts, United States), and the DNA integrity was checked
on a Femto Pulse Device (Agilent, Santa Clara, California, United
States). The HiFi library preparation started with 14 μg HMW DNA.
The PacBio HiFi library was produced using the SMRTbell® Ex-
press Template Prep Kit 2.0 (Pacific Biosciences, Menlo Park, Cal-
ifornia, United States), according to the manufacturer’s instruc-
tions. Briefly, the DNA sample was mechanically sheared to an
average size of 20 Kbp using a Megaruptor 3 Device (Diagen-
ode, Liege, Belgium). A Femto Pulse gDNA analysis assay (Agilent)
was used to assess the resulting fragment size distribution. The
sheared DNA sample was DNA damage-repaired and end-repaired
using polishing enzymes. PacBio sequencing adapters were ligated
to the DNA template. A Blue Pippin device (Sage Science, Bev-
erly, Massachusetts, United States) was used to size-select frag-
ments >15 Kbp. The size-selected library was quality inspected
and quantified using a Femto Pulse gDNA analysis assay (Agi-
lent) and a Qubit Fluorometer (Thermo), respectively. The SMRT®
bell-Polymerase Complex was prepared using the Sequel® II Bind-
ing Kit 2.0 and Internal Control 1.0 (Pacific Biosciences) and se-
quenced on a PacBio Sequel II instrument using the Sequel II
Sequencing Kit 2.0 (Pacific Biosciences). In total, two Sequel II
SMRT Cells 8 M (Pacific Biosciences) were run, taking one movie
of 30 hours per cell. This yielded 49.4 Gbp of HiFi reads with
a mean read length of 22.8 Kbp, which corresponds to approxi-
mately 20.8× coverage of the genome (NCBI SRA: SRR18672579)
(Table 1).

Nuclear genome assembly, contamination scan, and evalu-
ation
The consensus circular sequences per each Sequel II SMRT Cell
(Pacific Biosciences) were filtered for adapter contamination with
HiFiAdapterFilt v2.0.0 [29, 30] (-l 44, -m 97). Overall, 0.008% of the
HiFi reads were filtered out. Genome size and heterozygosity rate
were estimated based on the 17-mer frequency of the cleaned
HiFi reads with GCE v1.0.2 (GCE, RRID:SCR_017332) [31, 32]. Our
results indicate that A. gigantea has an estimated genome size
of 2.37 Gbp (Supplementary Material S1) and low heterozygos-
ity of 0.072% (corresponding to 0.72 single-nucleotide polymor-
phisms [SNPs] per 1 Kbp). This heterozygosity is consistent with
recent estimates based on Illumina, San Diego, California, United
States resequencing (0.78 SNPs per 1 Kbp [18]). The heterozygosity
is also in the range of other endangered taxa, such as the Amur
tiger (Panthera tigris altaica) (0.49 SNPs per 1 Kbp [33]), mountain
gorilla (Gorilla beringei beringei) (0.65 SNPs per 1 Kbp [34]), or gi-
ant panda (Ailuropoda melanoleuca) (1.35 SNPs per 1 Kbp [35]), but
higher than in some endangered turtle species such as the Pinta
Island tortoise (Chelonoidis niger abingdonii) (0.13 SNPs per 1 Kbp
[18]) and Reeves’ Turtle (Mauremys reevesii) (0.60 SNPs per 1 Kbp
[36]).

The reads were then assembled with the default parameters of
HiCanu v2.1.1 (Canu, RRID:SCR_015880) [37, 38], Improved Phased
Assembler v1.3.2 (IPA HiFi Genome Assembler, RRID:SCR_021966)
[39], and Hifiasm v0.15.5 (Hifiasm, RRID:SCR_021069) [40, 41]. Ad-
ditionally, an option for assembling inbred/homozygous genomes
(-l 0) within Hifiasm [40, 41] was also tested. Main contiguity statis-
tics were calculated with QUAST v5.0.2 (QUAST, RRID:SCR_00122

https://scicrunch.org/resolver/RRID:SCR_017332
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https://scicrunch.org/resolver/RRID:SCR_001228
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Figure 1: (A) A female Aldabrachelys gigantea resting at La Vanille Nature Park, Mauritius. (B) World map showing the location of Aldabra Atoll. (C) Hi-C
contact map of the chromosome-level assembled A. gigantea reference genome. Blue boxes represent assembled pseudo-chromosomes and green
boxes represent assembled scaffolds that constitute pseudo-chromosomes. (D) BUSCO completeness scores for the Sauropsida dataset and (E)
assembly metrics (including length of the longest scaffold N50 and N90) and sequence composition (GC content) of the chromosome-level A. gigantea
genome.
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Table 1: Summary of the genomic data produced in this study.

Aldabrachelys gigantea reference genome sequencing, assembly, and validation
NCBI BioProject PRJNA822095
Draft genome sequencing
PacBio SMRT II HiFi data (Gb) 192
HiFi reads NCBI SRA Accession SRR18672579
Hi-C scaffolding
Illumina NovaSeq 6000 data (Gb) 196
Hi-C reads SRA Accession SRR18673000
Chromosome-level genome assembly (AldGig_1.0)
Assembled genome size (Gb) 2.37
Scaffold N50 (Mb) 148.6
No. of scaffolds 719
Contig N50 (Mb) 61.5
No. of contigs 422
BUSCO completeness (sauropsida_odb10) 97.3% complete, 0.4% fragmented, 2.3% missing
Mitochondrial genome assembly
Assembled genome size (bp) 16,467
Genome annotation
PacBio SMRT IsoSeq data (Gb) 1.1
IsoSeq reads NCBI SRA Accession SRR18674283
No. of predicted protein-coding genes 23,953
No. of functionally annotated genes 22,554
Mean gene length (bp) 39,458
BUSCO completeness (sauropsida_odb10) 91.9% complete, 2.3% fragmented, 5.8% missing
DOI for annotations doi.org/10.5281/zenodo.6528994
Low coverage whole-genome resequencing
Illumina NovaSeq 6000 data (Gb) 202
NCBI SRA Accessions SRR14611971-SRR18674101

8) [42, 43]. The subsequent analyses were performed with the draft
assembly obtained via Hifiasm [40, 41] with default parameters (-
k 51, -a 4, -l 3, -s 0.75) because it provided the most contiguous
and complete assembly with 483 contigs and an N50 of 61.5 Mbp
(Supplementary Material S2).

Scanning for contaminant contigs in the draft assembly was
performed by following three approaches. First, the draft assem-
bly was split into 5-Kbp segments using SeqKit v0.16.1 (SeqKit,
RRID:SCR_018926) [44, 45]. Each segment was searched against
the full NCBI nonredundant protein database by running dia-
mond v2.0.9 (DIAMOND, RRID:SCR_016071) [46, 47], a tool that per-
forms protein alignments against reference databases, with the
blastx (BLASTX, RRID:SCR_001653) option. We considered a seg-
ment to be a likely contaminant based on the blast bitscore (>30),
e-value (>0.0001), and the segment’s GC content (>70%). None
of the blastx hits passed any of these cutoffs, and hence none
of them was considered a significant match and potential con-
taminant. Second, we assessed k-mer profiles of the most proba-
ble sources of contamination: the human genome (NCBI RefSeq:
GCF_000001405.39) and the A. gigantea mitochondrial genome
(NCBI RefSeq: NC_028438.1). The average k-mer frequency of each
contig in the draft assembly was compared with the potential con-
tamination source using the tool sect in the software KAT v2.4.1
(KAT, RRID:SCR_016741) [48, 49]). Less than 0.01% of all contigs
in the draft assembly showed k-mer statistics indicative of po-
tential contamination (a validated k-mer coverage >1) by either
source. Third, the previously published A. gigantea whole-genome
resequencing dataset (NCBI SRA: SRX4741543) [18] was mapped
against our assembly with BWA-MEM v0.7.17 [50]. The read cover-
age profile was examined with Qualimap v2.2.1 (QualiMap, RRID:
SCR_001209) [51, 52]. The resequencing dataset had 27× coverage;
therefore, we discarded contigs from the assembly with less than
10× or more than 100× aligned read depth. With all contaminant

filtering steps combined, 62 contigs were removed from the as-
sembly, resulting in a final set of 422 contigs and an N50 of 61.5
Mbp (Supplementary Material S2).

We assessed the completeness of the assembly based on
a BUSCO analysis of single-copy orthologs v5.1.2 (BUSCO,
RRID:SCR_015008) [53, 54] with default parameters and
the sauropsid dataset (sauropsida_odb10) in the genome
mode.

Hi-C sequencing and genome scaffolding
The Hi-C library was constructed with a 250-μL whole-blood sam-
ple that was first fixed with 1% formaldehyde for 15 minutes at
room temperature. Then, solid glycine powder was added to ob-
tain a final concentration of 125 mM and incubated for 15 minutes
at room temperature with periodic mixing. After centrifugation,
the pellet was resuspended in phosphate-buffered saline (PBS)
+ 1% Triton-X solution and incubated at room temperature for
15 minutes. Then, the nuclei were collected after the mixture was
spun down. The cross-linked sample was sent on dry ice to Phase
Genomics (Seattle, WA, USA) for sequencing. The Hi-C library was
generated using the Phase Genomics Proximo Animal kit version
4.0. Briefly, the DNA sample was digested with DpnII and the
5′-overhangs were filled while incorporating a biotinylated nu-
cleotide. The blunt-end fragments were ligated, sheared, and the
biotinylated ligation junctions captured with streptavidin beads.
The resulting fragments were sequenced on a NovaSeq 6000 (Illu-
mina NovaSeq 6000 Sequencing System, RRID:SCR_020150) 150-
bp paired-end run. A total of 680 million reads were produced, cor-
responding to approximately 85× coverage of the genome (NCBI
SRA: SRR18673000) (Table 1).

Overall, 90.3% of the Hi-C reads were aligned to the draft
genome assembly, sorted, and merged. Then duplicates were re-
moved using Juicer v1.6 (Juicer, RRID:SCR_017226) [55, 56] with

https://scicrunch.org/resolver/RRID:SCR_001228
https://scicrunch.org/resolver/RRID:SCR_018926
https://scicrunch.org/resolver/RRID:SCR_016071
https://scicrunch.org/resolver/RRID:SCR_001653
https://scicrunch.org/resolver/RRID:SCR_016741
https://scicrunch.org/resolver/RRID:SCR_001209
https://scicrunch.org/resolver/RRID:SCR_015008
https://scicrunch.org/resolver/RRID:SCR_020150
https://scicrunch.org/resolver/RRID:SCR_017226
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default parameters. Approximately 87% of the reads were found
to have Hi-C contacts. Afterward, the 3D-DNA pipeline was run
with default parameters (-i 15000, -r 2) to generate a candidate
assembly [57, 58], which was reviewed using JBAT v2.10.01 [59].
Finally, a high-quality chromosome-level genome assembly was
generated after a visual review on JBAT [59]. A total of 26 pseudo-
chromosomes were anchored, corresponding to 97.6% of the esti-
mated genome size, yielding a chromosome-level assembled ref-
erence genome with an N50 of 148.6 Mbp (Table 1, Fig. 1C) and a
BUSCO completeness of 97.3% (Fig. 1D, Table 1). Genome assem-
bly statistics were visualized with a snail plot in BlobToolKit v2.6.4
[60, 61] (Fig. 1E). The chromosome-level assembly of A. gigantea
(AldGig_1.0) has the longest contig and scaffold N50 and one of the
highest BUSCO completeness scores of all available chromosome-
level assembled chelonian genomes (Table 2).

Repetitive element analysis
To identify, classify, and mask repetitive elements in the A. gi-
gantea genome, we first generated a species-specific de novo re-
peat library using RepeatModeler v2.0.1 (RepeatModeler, RRID:SC
R_015027) [62, 63]. RepeatModeler utilizes RECON (RECON, RRID:
SCR_021170) [64], RepeatScout (RepeatScout, RRID:SCR_014653)
[65], and Tandem Repeats Finder (Tandem Repeats Database, RR
ID:SCR_005659) [66] to detect repeat families de novo, to identify
and classify consensus sequences. These consensus sequences
were then used to softmask the genome with RepeatMasker v4.1.0
(RepeatMasker, RRID:SCR_012954) [67] (-nolow, -xsmall). As a re-
sult, 46.7% of the genome (1,114,704,617 bp) were detected as
repetitive and softmasked. Long interspersed nuclear elements
(LINEs) were identified as the most abundant class of repetitive el-
ements (12.36%), followed by long terminal repeat (LTR) elements
(5.78%) (Supplementary Materials S3). The repeat content of the
A. gigantea genome was found to be slightly higher than the re-
peat contents of the green sea turtle (Chelonia mydas) (41.67%),
Goode’s thornscrub tortoise (Gopherus evgoodei) (41.67%), painted
turtle (Chrysemys picta belli) (42%), and red-eared slider (Trachemys
scripta elegans) (45%) genomes [68].

RNA extraction and sequencing
A whole-blood sample of approximately 1 mL was collected from
an individual named Grosser Bub (“Big Boy”) during routine veteri-
nary blood sampling in the Zurich Zoo. A total of 125 μL of whole
blood was immediately diluted with the same amount of water,
added into TRIzol™ LS Reagent (Invitrogen, Carlsbad, CA, USA),
and stored on ice for <2 hours until extraction. RNA was extracted
at the Genetic Diversity Center, ETH, following a combination of
a TRIzol™ LS (Invitrogen) RNA isolation protocol and the RNeasy
Mini Kit (Qiagen). First, the sample was incubated at room tem-
perature for 5 minutes. Then, 0.2 mL chloroform was added to the
sample and the mixture was inverted for 15 seconds, followed by a
3-minute incubation at room temperature. The resulting mixture
was centrifuged at 11,000 rpm for 15 minutes at 4◦C. After cen-
trifugation, the upper phase containing the RNA was collected,
mixed with 1× 70% ethanol, and transferred to an RNeasy spin
column. For the remaining procedure, the protocol “Purification
of Total RNA from Animal Tissues” of the kit was followed, start-
ing from step 6. Briefly, the RNA was bound to the spin column,
washed, and eluted in 30 μL molecular grade water. The initial
quality control of the RNA was done on a TapeStation (Agilent)
and the concentration was measured with a Qubit Fluorometer
(Thermo).

The PacBio IsoSeq library for RNA sequencing (RNA-seq) was
produced at the Functional Genomic Center Zurich using the SM-

RTbell Express Template Prep Kit 2.0 (Pacific Biosciences), accord-
ing to the manufacturer’s instructions. A total of 300 ng RNA was
used as input for the cDNA synthesis, which was carried out using
the NEBNext® Single Cell/Low Input cDNA Synthesis & Amplifi-
cation Module (NEB, Ipswich, Massachusetts, United States) and
Iso-Seq Express Oligo Kit (Pacific Biosciences) following instruc-
tions. To enrich for longer transcripts (>3 Kb), 82 μL ProNex Beads
was used for the cleanup of the amplified DNA, as outlined in the
protocol. For all subsequent quality control steps, a Bioanalyzer
2100 12-Kb DNA Chip assay (Agilent) and a Qubit Fluorometer
(Thermo) were used to assess the size and concentration of the
library. The SMRT bell-Polymerase Complex was prepared using
the Sequel Binding Kit 3.0 (Pacific Biosciences) and sequenced on
a PacBio Sequel instrument using the Sequel Sequencing Kit 3.0
(Pacific Biosciences). In total, one Sequel™ SMRT® Cell 1 M v3 (Pa-
cific Biosciences) was run with one movie of 20 hours per cell, pro-
ducing ∼1.1 Gbp of HiFi data (NCBI SRA: SRR18674283) (Table 1).

Gene prediction and annotation
Gene prediction was performed using a combination of ab initio
and evidence-based prediction methods (RNA-seq and homology
based) with the braker2 pipeline v2.1.5 (BRAKER, RRID:SCR_01896
4) [69–73]. All gene predictions were performed with pretrained
parameter sets for chicken (Gallus gallus domesticus), which is the
evolutionarily closest taxon for A. gigantea available within the
software. Using pretrained parameters yielded more complete an-
notations compared to training with extrinsic evidence (i.e., RNA-
seq and protein data) as assessed by BUSCO protein complete-
ness analyses. The ab initio prediction was performed by utiliz-
ing the softmasked reference genome (–AUGUSTUS_ab_initio –
softmasking). Evidence for the transcriptome-based prediction
was based on combining information from A. gigantea PacBio
Iso-seq and all available RNA-seq databases from chelonians in
closely related genera (Chelonoidis spp. and Gopherus spp.; Sup-
plementary Material S4). For the alignment of short- and long-
read transcripts, the splice-aware alignment tools STAR v2.7.9
(STAR, RRID:SCR_004463) [74, 75] and minimap2 v2.24 (Minimap2,
RRID:SCR_018550) [76, 77] (-ax splice:hq -uf) were used, respec-
tively. Additionally, evidence for the homology-based prediction
consisted of a protein database combining all vertebrate pro-
teins in the OrthoDB v10 (OrthoDB, RRID:SCR_011980) [78] and the
protein sequences of G. evgoodei (NCBI RefSeq: GCF_007399415.2)
and C. n. abingdonii (NCBI RefSeq: GCF_003597395.1). This dataset
was aligned against the chromosome-level assembled reference
genome via the ProtHint pipeline v2.6.0 (ProtHint, RRID:SCR_0
21167) [79, 80]. RNA-seq and homology-based evidence were in-
corporated for the braker2 pipeline (BRAKER, RRID:SCR_018964)
run in –etpmode [73, 79, 81–85]. All gene models derived from ab
initio and evidence-based methods were integrated into a high-
confidence nonredundant gene set by using TSEBRA v1.0.3 [86,
87], with the “keep ab_initio” configuration set. The translated pro-
tein sequences from the predicted gene models were searched
against protein profiles corresponding to major clades/families of
transposon open reading frames by TransposonPSI v1.0 [88]. Over-
all, 331 genes were identified as likely derived from transposable
elements and excluded from the annotation. The resulting gene
model set consisted of 23,953 protein-coding genes with a mean
gene length of 39,458 bp (including introns) and an average of
nine exons per coding sequence (Table 1). The mean gene length
is smaller compared to genes of other turtles such as G. evgoodei
(48 Kbp; NCBI RefSeq: GCF_007399415.2), C. n. abingdonii (45 Kbp;
NCBI RefSeq: GCF_003597395.1), and C. mydas (47 Kbp; NCBI Ref-
Seq: GCF_015237465.2).

https://scicrunch.org/resolver/RRID:SCR_015027
https://scicrunch.org/resolver/RRID:SCR_021170
https://scicrunch.org/resolver/RRID:SCR_014653
https://scicrunch.org/resolver/RRID:SCR_005659
https://scicrunch.org/resolver/RRID:SCR_012954
https://scicrunch.org/resolver/RRID:SCR_018964
https://scicrunch.org/resolver/RRID:SCR_004463
https://scicrunch.org/resolver/RRID:SCR_018550
https://scicrunch.org/resolver/RRID:SCR_011980
https://scicrunch.org/resolver/RRID:SCR_021167
https://scicrunch.org/resolver/RRID:SCR_018964
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Table 2: Contiguity and completeness statistics of all available chromosome-level assembled chelonian genomes.

Species name
(Accession No.) Family

Genome size
(Gbp)

Contig N50
(Mbp)

Scaffold N50
(Mbp) BUSCO completeness∗

Aldabrachelys gigantea
(this study)

Testudinidae 2.374 61.5 148.6 97.3% [S: 96.2%, D: 1.1%], F: 0.4%, M:
2.3%

Gopherus evgoodei
(GCF_007399415.2)

Testudinidae 2.299 13.027 147.4 97% [S: 95.9, D: 1.1%], F: 0.5%, M: 2.5%

Chelonia mydas
(GCF_015237465.2)

Cheloniidae 2.134 39.416 134.4 97.3% [S: 96.3%, D: 1.0%], F: 0.4%, M:
2.3%

Dermochelys coriacea
(GCF_009764565.3)

Dermochelyidae 2.165 7.03 137.6 96.3% [S: 95.3%, D: 1.0%], F: 0.6%, M:
3.1%

Chrysemys picta bellii
(GCF_000241765.4)

Emydidae 2.481 0.021 16 96.6% [S: 95.7%, D: 0.9%], F: 1.1%, M:
2.3%

Trachemys scripta elegans
(GCF_013100865.1)

Emydidae 2.126 0.205 140.4 95.0% [S: 94.0%, D: 1.0%], F: 1.2%, M:
3.8%

Mauremys mutica
(GCF_020497125.1)

Geoemydidae 2.484 15.011 135 97.3%[S: 95.2%, D: 2.1%], F: 0.5%, M:
2.2%

Mauremys reevesii
(GCF_016161935.1)

Geoemydidae 2.368 33.353 130.5 97.5% [S: 95.9%, D: 1.6%], F: 0.4%, M:
2.1%

Rafetus swinhoei
(GCA_019425775.1)

Trionychidae 2.238 30.964 132 96.4% [S: 95.3%, D: 1.1%], F: 0.6%, M:
3.0%

∗BUSCO score generated from the sauropsid (sauropsida_odb10) database. BUSCO statistics: C, complete; D, duplicated; F, fragmented; M, missing; S, single copy.

The completeness of the annotation was assessed based on
single-copy orthologs via BUSCO v5.1.2 (BUSCO, RRID:SCR_01500
8) [53, 54] with default parameters in the protein mode. The pro-
teome BUSCO completeness scores were 93.7% and 91.9% for the
vertebrate (vertebrata_odb10) and sauropsida (sauropsida_odb10)
datasets, respectively. The level of BUSCO completeness for the
datasets is comparable to those of the annotations of the C. n.
abingdonii (vertebrata, 96.9%; sauropsida, 97.7%) and G. evgoodei
(vertebrata, 99.7%; sauropsida, 99.3%) (Supplementary Material
S5).

Functional annotation of the encoded proteins was performed
using the suite of search tools included in InterProScan v5.53–
87.0 (InterProScan, RRID:SCR_005829) [89, 90], with default pa-
rameters, in combination with putative gene names derived from
UniProtKB/Swiss-prot (UniProtKB/Swiss-Prot, RRID:SCR_021164)
[91]. AGAT v0.8.0 [92, 93] was used for summarizing the properties
of the structural annotation and for combining the structural and
functional annotation results. Of all the prediction gene models,
94.1% could be functionally annotated (Table 1, Supplementary
Material S6).

Identification of noncoding RNA genes
Transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear RNA
(snRNA), and microRNA (miRNA) were annotated using Infernal
v1.1.4 (Infernal, RRID:SCR_011809) [94, 95], which builds covari-
ance models as consensus RNA secondary structure profiles from
the genome. The tool then uses the models to search Rfam (Rfam,
RRID:SCR_007891) [96], a database of noncoding RNA families.
Overall, the homology-based noncoding RNA annotation revealed
a total of 6,754 tRNAs, 3,636 rRNAs, 345 snRNAs, and 671 miRNAs
encoded in the genome.

Mitochondrial genome assembly and evaluation
Mitochondrial reads were extracted from the PacBio HiFi dataset
and assembled with Hifiasm v0.15.5 [40, 41] using the MitoHifi v2.0
pipeline [97, 98]. The genome size was 16,467 bp and the assem-
bly was 100% identical at the nucleotide level to the A. gigantea
mitochondrial reference genome available at NCBI RefSeq with
accession number NC_028438.1 [99].

Synteny analysis
We investigated the collinearity of A. gigantea chromosomes
with three other chromosome-level chelonian genome assemblies
from three different families, including G. evgoodei (Testudinidae;
NCBI RefSeq: GCF_007399415.2), the yellow pond turtle (Maure-
mys mutica) (Geoemydidae; NCBI RefSeq: GCF_020497125.1), and
T. s. elegans (Emydidae; NCBI RefSeq: GCF_013100865.1) (Fig. 2).
We analyzed the largest 10 chromosomes corresponding to 75%
of the A. gigantea assembly. Chromosomes from each genome
were aligned to other genomes using minimap2 v2.24 (Minimap2,
RRID:SCR_018550) [76, 77] with default parameters (-ax asm5).
The resulting alignments were processed with SyRI v1.5.4 [100,
101] to identify syntenic regions and structural rearrangements.
The syntenic regions and structural rearrangements for the four
chelonian genomes were visualized with plotsr v0.5.3 [102, 103].
Among genomes, we found 1.5 to 1.6 Gbp of syntenic regions and
15.3 to 54.6 Mbp of rearrangements corresponding to 89–94% and
0.8–3% of the compared genome portions, respectively. The rear-
rangements included 0.2 to 1.4 Mbp of duplications, 2.5 to 7.7 Mbp
of translocations, and 6.6 to 51.6 Mbp of inversions. The high ra-
tio of syntenic regions that we found is between chelonian taxa
that diverged around 50 to 70 million years ago (mya) [104] (Fig. 2)
and is in agreement with previous studies, where the base sub-
stitution rate (evolutionary rate) of chelonians was found to be
relatively low ([105, 106]; see [107]).

We also performed a complementary collinearity analysis
based on orthologous gene sets of A. gigantea and the phylo-
genetically closest available chromosome-level assembled G. ev-
goodei (NCBI RefSeq: GCF_007399415.2) reference genomes (split
time ca. 50 mya [104]). We first created orthogroups with the pro-
teomes of the two species using Orthofinder v2.5.4 (OrthoFinder,
RRID:SCR_017118) [108, 109]. A total of 41,979 genes (91.3% of to-
tal) were assigned to 15,662 orthogroups. The orthologues were
then fed in i-ADHoRe v.3.0 [110, 111] to detect genomic regions
with statistically significant conserved gene content requiring a
minimum of three anchor points within each syntenic region
(gap_size = 15, cluster_gap = 30, q_value = 0.05, prob_cutoff =
0.01, anchor_points = 3, alignment_method = gg2, level_2_only =
true). Finally, longer-term ancestral synteny detected for the two

https://scicrunch.org/resolver/RRID:SCR_015008
https://scicrunch.org/resolver/RRID:SCR_005829
https://scicrunch.org/resolver/RRID:SCR_021164
https://scicrunch.org/resolver/RRID:SCR_011809
https://scicrunch.org/resolver/RRID:SCR_007891
https://scicrunch.org/resolver/RRID:SCR_018550
https://scicrunch.org/resolver/RRID:SCR_017118
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Figure 2: Synteny analysis of 10 chromosomes in Aldabrachelys gigantea (blue horizontal lines), Gopherus evgoodei (orange horizontal lines), Mauremys
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species was visualized with Circos v0.69–8 (Circos, RRID:SCR_011
798) [112, 113] (Supplementary Material S7). Both synteny analysis
approaches were providing a consistent picture of high collinear-
ity.

Sample collection for low-coverage whole-genome rese-
quencing
The native distribution of A. gigantea is restricted to Aldabra Atoll
(Fig. 1B) with deep water channels separating the four main is-
lands (Grande Terre, Malabar, Polymnie, and Picard; Fig. 3A). The
smallest island, Polymnie, no longer harbors any tortoises [14].
Tortoises were also harvested to extinction on Picard in the 1800s,
but the island has since been repopulated through translocations
from Malabar and Grande Terre [114]. In addition to the Atoll,
there is an unknown but large number of ex situ individuals in
zoo, seminatural, or rewilded populations [19]. Assessments of the
genetic health of native and rewilded populations will be crucial
to inform future species management. However, the uncertainty
about genomic vulnerabilities and which ex situ individuals to use
for rewilding efforts constitute significant barriers.

To assess the utility of our reference genome resources to im-
prove genomic monitoring and inform rewilding efforts, we per-
formed low-coverage whole-genome sequencing of a representa-
tive sample of two main islands as well as zoo-housed individu-
als. Low-coverage sequencing is a powerful and cost-effective ap-
proach for conservation and population genomics [115], as well as
ancient DNA analyses [116]. We collected blood samples from a to-
tal of 30 adult A. gigantea (Supplementary Material S8) from Mal-
abar (East, n = 10; West, n = 5) and Grande Terre (East, n = 8; South,
n = 4; West, n = 3) (Fig. 3A). The collection yielded ∼200 μL of blood
from the cephalic vein of a front limb. We received a research per-
mit from the Seychelles Bureau of Standards (ref #A0347) for our
collection. An export permit was issued by the Ministry of Agri-
culture, Climate Change and Environment, Republic of Seychelles
(permit #A1457), and an import permit was granted by the Federal
Food Safety and Veterinary Office of Switzerland to the Depart-
ment of Evolutionary Biology and Environmental Studies, Univer-

sity of Zurich (permit #19DB000064/22-AS). European zoological
institutions currently host over 360 A. gigantea individuals [117].
Here, we analyzed two female individuals living in Zurich Zoo,
Switzerland. The individual named Hermania was used to create
the reference genome, and the individual named Maleika arrived
at Zurich Zoo in 1984 and lived there until her death in 2018. The
historic information surrounding the exact importation location
from Aldabra is sparse or unknown. Sampling from Hermania was
performed as described above, and sampling from Maleika was
performed by using ∼500 mg of muscle tissue sampled after vet-
erinary necropsy and stored in absolute ethanol until DNA extrac-
tion.

DNA extraction and sequencing
DNA extraction was performed with 3 μL of blood from Hermania
and 15 mg of muscle tissue from Maleika, using the sbeadex™ kit
(LGC Genomics, Middlesex, UK), following the manufacturer’s pro-
tocol for DNA extraction from nucleated red blood cells and tissue,
respectively. Genomic DNA concentrations were measured with a
dsDNA Broad Range Assay Kit (Qubit 2.0 Fluorometer; Invitrogen).
More than 200 ng DNA per sample was sent to Novogene Company
(Cambridge, UK) for library preparation and sequencing. Briefly,
the genomic DNA was randomly fragmented to a size of 350 bp,
end-polished, A-tailed, and ligated with Illumina adapters for Illu-
mina sequencing. After polymerase chain reaction (PCR) enrich-
ment, products were purified (AMPure XP system) and checked for
quality on an Agilent 2100 Bioanalyzer (Agilent). Molarity was as-
sessed using real-time PCR. Libraries were sequenced on the Illu-
mina Novaseq 6000 platform with paired-end runs of 150 bp read
length. For each of the 32 samples, ∼2.6 Gbp raw reads were gen-
erated (NCBI SRA: SRR18674070-101) (Supplementary Material S8,
Table 1).

Data filtering, alignment, and genotype likelihood estima-
tion
To account for the low-coverage sequencing approach, we as-
sessed genotype likelihoods using the Atlas Pipeline [118, 119]. We

https://scicrunch.org/resolver/RRID:SCR_011798
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first used the GAIA workflow to remove Illumina adapters with
TrimGalore v0.6.6 (Trim Galore, RRID:SCR_011847) [120] with de-
fault parameters. Only reads longer than 30 bp were retained.
Then, reads were aligned to the reference genome with BWA us-
ing BWA-MEM v0.7.17 [50] filtering for mapping quality scores >20.
Alignments were processed with the RHEA workflow for indel re-
alignment with GATK v3.8 (GATK, RRID:SCR_001876) [121]. A tar-
get interval set was created with a representative set of 15 sam-
ples, and each individual was realigned together with a represen-
tative set of individuals (guidance samples) to enable realignment
of low-coverage samples without jointly realigning all samples.
The average read depth per sample was 1.62 to 2.06 with a mean
of 1.79 (Supplementary Material S8).

We used ANGSD v0.93 (ANGSD, RRID:SCR_021865) [122, 123]
to produce genotype likelihoods appropriate for the low cover-
age of individual samples. GATK was used (GATK, RRID:SCR_001
876) [121] to infer major and minor alleles from the likelihoods
(doMajorMinor 1, doMaf 1). Quality filtering for the subsequent
downstream analyses was performed as follows: only properly
paired (only_proper_pairs 1) and unique reads (uniquieOnly 1)
were used, and only biallelic sites were retained (skipTrialleleic
1). Nucleotides with base qualities below 20 were discarded. Ex-
cessive SNPs around indels and excessive mismatches with the
reference were corrected (C50, baq 1, [124]). Sites with read cover-
age in fewer than 50% of the samples were excluded (minimum
representation among samples >50%, -minInd 16). SNPs with a
genotype likelihood P value <0.001 were retained, producing a fi-
nal set of 7,131,506 variant sites.

Population genetic structure and individual assignments
Our low-coverage sequencing analyses focused on revealing
within- and among-island genetic differentiation within the
Aldabra population, as well as assigning likely origins for zoo-
housed individuals. We first assessed the global genetic struc-
ture of the samples using a principal component analysis with
PCAngsd v09.85 [125]. Based on a total of 6,651,907 variant sites
with a minor allele frequency >0.05, individuals from Malabar
and Grande Terre were split into individual groups (Fig. 3B). Both
zoo samples were grouped within the group of Grande Terre indi-
viduals, revealing the most likely origin for these individuals cap-
tured in the 20th century. The principal component analysis also
reveals a finer scale east–west population structure within islands
confirming recent results based on ddRAD sequencing [126]. We
evaluated the impact of more stringently filtering mapping qual-
ity (MQ >30 instead of >20), but the resolution of genetic group-
ings was not meaningfully impacted (Supplementary Material S9).

We also assessed genetic structure using unsupervised
Bayesian clustering with NGSAdmix (NGSadmix, RRID:SCR_00320
8) [127]. We performed pairwise linkage disequilibria (LD) prun-
ing to reduce dependence among SNP loci [127]. Pairwise LD was
calculated using ngsLD [128] and LD pruning was performed by
allowing a maximum among-SNP distance of 100 Kbp and a min-
imum weight of 0.5. After LD pruning, 5,862,629 SNPs were re-
tained and 50 replicate runs of NGSAdmix (NGSadmix, RRID:SC
R_003208) [127] were performed. We varied the number of clus-
ters (k) between 2 and 5 and visualized the assignments with
PopHelper v.1.0.10 [129, 130] (Fig. 3C). The admixture analyses for
k = 2 clusters revealed a main split with groups formed by East
Grande Terre together with East Malabar opposed to West Mal-
abar. South and West Grande Terre individuals were assigned to
both groups. At k = 4, each major sampling region was assigned
to a single cluster. The zoo individual Maleika showed a geno-
type highly consistent with South and West Grande Terre individ-

uals. The individual Hermania (Fig. 3D) was assigned to different
Grande Terre regions.

Variant annotation
Assessing the genetic health of a species is crucial for its long-
term survival, and one major aspect of genetic health is mutation
load. For a first glimpse at the distribution of putatively delete-
rious mutations in the Aldabra giant tortoise genomes, we used
SnpEff v5.1 (SnpEff, RRID:SCR_005191) [131, 132] to functionally
annotate all SNPs. SnpEff predicts the effects of genetic variants
(e.g., loss of function) and allows estimating the expected impact.
We identified SNPs in ANGSD v0.93 (ANGSD, RRID:SCR_021865)
[122, 123] as described above, but this time including the option -
doBCF to create a BCF file. We converted the BCF to a VCF file with
BCFtools v1.10.2 (SAMtools/BCFtools, RRID:SCR_005227) [133, 134]
applying a minor allele frequency (MAF) filter of ≥0.05. The com-
plete SNP dataset without a MAF filter yielded 7,131,506 SNPs
where all SNPs had a minor allele frequency of ≥1%, whereas
6,651,907 SNPs were retained with MAF ≥0.05. We identified 1,077
and 630 SNPs with a putatively high impact on gene function for
the complete and MAF ≥0.05 datasets, respectively. For two SNP
datasets, we identified 788 and 432 SNPs annotated as loss-of-
function variants (e.g., mutated start or stop codons), and 325 and
124 SNPs were identified to have nonsense-mediated decays effect
for the complete and MAF ≥0.05 datasets, respectively (see also
Supplementary Material S10, S11). Analyzing whether selection is
able to remove highly deleterious mutations will provide critical
information on the ability of the species to retain high fitness over
generations through purging.

Conclusions
We assembled the first high-quality, chromosome-level annotated
genome for the Aldabra giant tortoise, resulting in one of the best-
assembled chelonian genomes. Chromosomal collinearity anal-
yses revealed a high degree of conservation even among dis-
tantly related tortoise species. We showed that the high-quality
resources can be combined with low-coverage resequencing to
gain crucial insights into the genetic structure within Aldabra,
as well as to resolve the exact origin of zoo-housed individuals.
Understanding levels of genomic diversity in both native and ex
situ populations is crucial to inform rewilding efforts and priori-
tize conservation efforts. Furthermore, genome-wide analyses of
polymorphism can be used to assess the presence of deleterious
mutations endangering the long-term health of populations and
will allow high-confidence estimates of inbreeding based on runs
of homozygosity. Finally, given the exceptionally long life span and
large body size of A. gigantea, the high-quality genome will inform
comparative genomics studies focused on the genetic underpin-
nings of aging and gigantism.

Data Availability
The raw sequencing data, the nuclear and mitochondrial genome
assemblies, and the annotation produced in this study have been
deposited in the NCBI under BioProject accession number PR-
JNA822095. All supporting data are available in the GigaScience Gi-
gaDB database [135].

Editors’ Note
A video abstract of this work is available in the GigaScience
YouTube channel: https://youtu.be/Hak1xO-H8bM

https://scicrunch.org/resolver/RRID:SCR_011847
https://scicrunch.org/resolver/RRID:SCR_001876
https://scicrunch.org/resolver/RRID:SCR_021865
https://scicrunch.org/resolver/RRID:SCR_001876
https://scicrunch.org/resolver/RRID:SCR_003208
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https://www.youtube.com/gigasciencejournal
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Additional Files
Supplementary Material S1. The k-mer (k = 17) profile of the
Aldabrachelys gigantea genome. Consistent with low heterozygos-
ity, most of the k-mers form one peak centered on roughly 20×
coverage and do not form another peak centered at roughly half
the coverage that would represent k-mers arising from heterozy-
gous alleles.
Supplementary Material S2. Genome contiguity statistics of
the assemblies obtained from different assemblers. The column
shaded in gray represents our initial assembly obtained via de-
fault parameters in Hifiasm.
Supplementary Material S3. Summary of repeat annotations.
Supplementary Material S4. Accession details of the short-read
RNA-seq samples used in this study.
Supplementary Material S5. BUSCO statistics for the protein-
coding gene annotation of Aldabrachelys gigantea, Chelonoidis abing-
donii, and Gopherus evgoodei.
Supplementary Material S6. Summary statistics of the function-
ally annotated protein-coding genes.
Supplementary Material S7. Circos plot showing the synteny be-
tween the Aldabrachelys gigantea Hi-C scaffolds (orange) and Go-
pherus evgoodei assembly pseudo-chromosomes (green).
Supplementary Material S8. Details of the location of 30 low-
coverage whole-genome resequencing samples.
Supplementary Material S9. Principal component analysis plot
of 30 wild and two zoo-housed individuals. The analysis was per-
formed with a more stringent mapping quality filter (MQ >30).
Principal components 1 and 2 account for 14.5% and 3.77% of the
overall genetic variation, respectively. Wild individuals sampled in
Grande Terre and Malabar are shown with circles and triangles,
respectively (Grande Terre East, light blue; South and West, green;
Malabar East, dark blue; West, purple triangles). Two zoo-housed
individuals, Hermania and Maleika, are shown with a black dia-
mond and a light pink square, respectively.
Supplementary Material S10. Numbers of annotated SNPs with
no MAF filtering and MAF ≥0.05 by their impact.
Supplementary Material S11. Percentage of effects by their region
on the genome (A) effects of SNPs with no MAF filter and (B) MAF
≥0.05.
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