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Sensing and responding to environmental cues is critical for the adaptability and success
of the food-borne bacterial pathogen Listeria monocytogenes. A supramolecular multi-
protein complex known as the stressosome, which acts as a stress sensing hub, is
responsible for orchestrating the activation of a signal transduction pathway resulting in
the activation of σB, the sigma factor that controls the general stress response (GSR).
When σB is released from the anti-sigma factor RsbW, a rapid up-regulation of the large
σB regulon, comprised of ≥ 300 genes, ensures that cells respond appropriately to the
new environmental conditions. A diversity of stresses including low pH, high osmolarity,
and blue light are known to be sensed by the stressosome, resulting in a generalized
increase in stress resistance. Appropriate activation of the stressosome and deployment
of σB are critical to fitness as there is a trade-off between growth and stress protection
when the GSR is deployed. We review the recent developments in this field and describe
an up-to-date model of how this sensory organelle might integrate environmental signals
to produce an appropriate activation of the GSR. Some of the outstanding questions
and challenges in this fascinating field are also discussed.
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INTRODUCTION

The firmicute Listeria monocytogenes is a remarkably robust bacterium with a capacity to grow
and survive over a wide range of challenging environmental conditions. It is unusual among food-
borne pathogens in being able to grow at refrigeration temperatures and it is very tolerant to high
salt concentrations, being able to grow in media containing over 1.5 M NaCl. Additionally, it has
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an effective protective response against low pH, designated the
adaptive acid tolerance response, which allows it to survive at
pH values as low as 3.0 for extended periods (O’Byrne and
Karatzas, 2008; Dorey et al., 2019b). These traits, combined with
the almost ubiquitous occurrence of this microorganism, can
allow it to persist in the human food-chain and occasionally
establish infections in immunocompromised individuals, elderly
people and pregnant women (NicAogáin and O’Byrne, 2016).
When they arise, infections can be life-threatening, and outbreaks
are associated with high mortality rates, typically 20–30%
(Lecuit, 2007).

While many factors contribute to the phenotypic robustness
of this pathogen the general stress response (GSR) plays
a central role (Gandhi and Chikindas, 2007; Hecker et al.,
2007; O’Byrne and Karatzas, 2008; Dorey et al., 2019b). This
response is characterized by a general reprogramming of cellular
transcription mediated by an alternative sigma factor called SigB
(σB), first identified in L. monocytogenes just over two decades ago
(Becker et al., 1998; Wiedmann et al., 1998). Homologs of σB are
found in most Gram-positive bacteria (Hecker et al., 2007).

In this mini-review, we discuss the recent developments in
our understanding of how σB contributes to stress tolerance
and how its activity is regulated in response to stress. We
explore its contribution to virulence and analyze the resource
implications for the cell of deploying the GSR. We highlight some
of the key research questions that remain to be answered in this
important field.

σB-DEPENDENT ROBUSTNESS IN L.
MONOCYTOGENES

The robustness of L. monocytogenes is modulated in part by
σB, an alternative sigma factor responsible for the upregulation
of approximately 300 genes in L. monocytogenes (Milohanic
et al., 2003; Wemekamp-Kamphuis et al., 2004; Chatterjee
et al., 2006; Abram et al., 2008a,b; Raengpradub et al., 2008;
Ollinger et al., 2009; Toledo-Arana et al., 2009; Oliver et al.,
2010; Shin et al., 2010b; Chaturongakul et al., 2011; Palmer
et al., 2011; Ribeiro et al., 2014; Liu et al., 2017; Cortes
et al., 2020), including several non-coding sRNA (Nielsen
et al., 2008; Toledo-Arana et al., 2009). The σB regulon,
which is not the primary focus of this mini-review, has
recently been systematically reviewed by Liu et al., 2019.
A subset of approximately 60 genes, identified across strains
of L. monocytogenes belonging to different lineages, constitute
the σB core regulon (Oliver et al., 2010). Genes comprising the
σB regulon are involved in carbohydrate metabolism (Abram
et al., 2008b; Tapia et al., 2020), cell envelope modification
(Abram, 2007; Tiensuu et al., 2013), pH homeostasis (Cotter
et al., 2005; Karatzas et al., 2010, 2012), osmoregulation (Fraser
et al., 2003; Cetin et al., 2004; Wemekamp-Kamphuis et al., 2004;
Abram et al., 2008a), regulation of amino acids biosynthesis
(Marinho et al., 2019), flagellar biosynthesis (Raengpradub et al.,
2008; Toledo-Arana et al., 2009), quorum sensing (Marinho
et al., 2020), and antibiotic resistance (Begley et al., 2006).
These mechanisms under σB control have been previously

reviewed (O’Byrne and Karatzas, 2008; NicAogáin and O’Byrne,
2016; Dorey et al., 2019b; Liu et al., 2019), and they contribute
to the survival of L. monocytogenes under a broad range of
lethal stresses (Cole et al., 1990; Ferreira et al., 2001; Sue et al.,
2003; Wemekamp-Kamphuis et al., 2004; Begley et al., 2005,
2006; Giotis et al., 2008; Palmer et al., 2009; Shin et al., 2010a;
Dowd et al., 2011; Feehily et al., 2012, 2013, 2014; O’Donoghue
et al., 2016; Curtis et al., 2017; Bourke et al., 2019; Williams
et al., 2019). Activation of σB by one stress often triggers cross
protection against other types of stress in L. monocytogenes
(Begley et al., 2002; Bergholz et al., 2012; Pittman et al.,
2014), indicating that a large fraction of the σB regulon is
activated simultaneously. However, many σB-dependent genes
are differentially expressed under different growth conditions
(Toledo-Arana et al., 2009), suggesting the involvement of
additional transcriptional regulators to achieve condition-specific
gene expression.

L. MONOCYTOGENES STRESSOSOME
STRUCTURE

To sense environmental changes L. monocytogenes relies on a
1.8 MDa supramolecular apparatus designated the stressosome
(Figure 1). This stress-sensing organelle is found in members
of the proteobacteria, the firmicutes, the actinobacteria, the
cyanobacteria, and in the Bacteroides and Deinococcus groups
(Pané-Farré et al., 2005). In Bacillus subtilis, the stressosome is
composed of RsbRA and its paralogs (RsbRB, RsbRC, RsbRD,
and YtvA), RsbS and RsbT forming a pseudo-icosahedral core
with turrets on its surface (Chen et al., 2003; Marles-Wright and
Lewis, 2008; Martinez et al., 2010; Pané-Farré et al., 2017), the
presence of which was later confirmed in L. monocytogenes. The
L. monocytogenes stressosome is composed of RsbR (Lmo0899)
and its paralogs RsbR2 (Lmo0161), RsbL (Lmo0799), RsbR3
(Lmo1642), RsbS and RsbT (Impens et al., 2017). The C-terminal
domains of RsbS and RsbR fold into Sulfate Transporter and
Anti-Sigma (STAS) factor antagonist domains and self-assemble
into the stressosome’s core (Aravind and Koonin, 2000). RsbR
N-terminal domains, the putative sensory elements of the
stressosome, fold into a non-heme globin like structure and
associate in dimers (Murray et al., 2005), forming turrets at
the complex surface. Pull-down experiments revealed that the
RsbR N-terminal domain in L. monocytogenes can bind to
the small membrane-spanning peptide Prli42, which has been
suggested to anchor the stressosome to the cell membrane
and to contribute to oxidative stress sensing (Impens et al.,
2017). In the same study, the remaining RsbR paralogs were
also found associated with the stressosome, the exception being
Lmo1842, which was not detected, perhaps consistent with the
low transcription levels of the corresponding gene (Wurtzel
et al., 2012; Bécavin et al., 2017). In a recent study, in vitro
assembly of the L. monocytogenes stressosome proteins purified
from Escherichia coli, revealed that it has an icosahedral shape
with a 2:1:1 RsbR:RsbS:RsbT stoichiometry and an hexagonal
basic structural subunit composed of two dimers of RsbR and
one dimer of RsbS (Figure 1A), where the dimeric interfaces
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FIGURE 1 | Schematic representation of the oB regulatory pathway in L. monocytogenes. (A) The repeating hexagonal subunits of the stressosome that are
composed of two dimers of RsbR, one dimer of RsbS, and two monomers of RsbT (Williams et al., 2019). It is hypothesized that the N-terminal turrets formed by the
RsbR dimers detect stress signals, triggering conformational changes that propagate into the STAS domains, initiating the kinase activity of RsbT. This results in the
phosphorylation of RsbR Thr209 and Thr175 and RsbS Ser56, which in turn leads to the release of RsbT from the stressosome. (B) Free RsbT interacts with and
activates the RsbU phosphatase, which acts on phosphorylated RsbV. Simultaneously, the anti-sigma factor RsbW that binds and prevents σB from interacting with
the RNA polymerase (E), releases σB and preferentially interacts with non-phosphorylated RsbV. σB can then interact with RNA polymerase forming the holoenzyme
EσB. Once stress is removed, RsbX dephosphorylates the stressosome (except for RsbR Thr175 which remains phosphorylated; Misra et al., 2011), resulting in the
sequestration of RsbT back into the stressosome and inactivating the signal transduction.

form a rigid structure that is responsible for the stressosome
integrity (Williams et al., 2019). While the current understanding
of the stressosome structure has been thoroughly reviewed in a
number of studies (Marles-Wright and Lewis, 2010; Pané-Farré
et al., 2017; Tiensuu et al., 2019), there are no structural models
available yet that include all RsbR paralogs.

INSIGHTS INTO THE MECHANISM OF
STRESS SENSING BY THE
STRESSOSOME

In B. subtilis two residues in the RsbRA STAS domain (Thr171
and Thr205) and one in RsbS (Ser59), can be phosphorylated
through the action of the serine/threonine kinase RsbT (Kim
et al., 2004), and these residues are all conserved in RsbR and
RsbS of L. monocytogenes (Ferreira et al., 2004) (Figure 1).
In contrast to B. subtilis, where all RsbRA paralogs possess
phosphorylatable residues, in L. monocytogenes only RsbR has
these conserved threonines (Thr175 and Thr209). In B. subtilis
RsbRA Thr171 (Lm Thr175) is constitutively phosphorylated
(Kim et al., 2004). Indeed, L. monocytogenes RsbR Thr175 was
also found phosphorylated in the absence of stress, but not
Lm RsbR Thr209 nor Lm RsbS Ser56 (Misra et al., 2011).

B. subtilis RsbRA Thr205 was found to be phosphorylated only
under extreme conditions (Eymann et al., 2011). Bs RsbS Ser59
phosphorylation rate seems dependent on Bs RsbRA Thr171
and Thr205 phosphorylation (Chen et al., 2004). Amino acid
substitutions of L. monocytogenes Thr175 and/or Thr209 to Ala
resulted in reduced σB activity and consequently reduced survival
in acidic conditions (He et al., 2019).

Following the release of RsbT and consequent activation of σB,
a negative feedback mechanism controlled by the phosphatase
RsbX allows the stressosome to be reset to its non-stressed
dephosphorylated state, which leads to the recapture of RsbT
(Voelker et al., 1997; Chen et al., 2004; Eymann et al., 2011).
Deletion of rsbX produces a constitutive σB activation and
consequently increased survival in acidic conditions (Xia et al.,
2016) and a reduced competitiveness against a WT strain, a
consequence of the reduced growth rate associated with increased
σB activity (Guerreiro et al., 2020) (see section “σB Deployment Is
a Double-Edged Sword”).

From the plethora of stresses that result in σB activation, only
the blue-light sensing mechanism is well understood. Light is
sensed by the phototropin RsbL in L. monocytogenes (Ondrusch
and Kreft, 2011; Tiensuu et al., 2013; O’Donoghue et al., 2016;
Dorey et al., 2019a) and by YtvA in B. subtilis (Gaidenko
et al., 2006; Ávila-Pérez et al., 2010), both of which have
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FIGURE 2 | Schematic representation of the alterations in resource allocation that occur during the GSR. Cell growth largely depends on the housekeeping sigma
factor σA in the absence nutrient limitations or stressful conditions. Under these conditions (no stress), most of the transcriptional machinery is dedicated to the
transcription of housekeeping genes that preceded by σA promoters. In the absence of stress, σB is sequestered by the anti-sigma factor RsbW. At the onset of
stress σB is released from its anti-sigma factor RsbW, resulting in competition between σB and σA and the displacement of σA from a proportion of the RNA
polymerase pool. It is possible that the interaction of σB with RNA polymerase is specifically regulated as has been described in other species. Consequently, genes
under σA control that are associated with growth functions are downregulated and σB dependent genes (the GSR regulon) are upregulated. The energy resources
needed to maintain the general stress response reduces the availability of ATP for growth and reproduction. σB may specifically regulate growth rate to allow for
improved maintenance and repair, thereby increasing the likelihood of survival.

N-terminal light-oxygen-voltage (LOV) domains that associate
with a flavin mononucleotide (FMN) (Losi et al., 2002; Ondrusch
and Kreft, 2011). Like other RsbR paralogs, RsbL/YtvA associate
in homodimers (Buttani et al., 2007; Möglich and Moffat,
2007; Jurk et al., 2010). After blue-light absorption, the FMN
forms a covalent adduct with the Cys56 in L. monocytogenes
RsbL and Cys62 in B. subtilis YtvA (Avila-Pérez et al., 2006;
Gaidenko et al., 2006; O’Donoghue et al., 2016). The adduct
produces a local structural rearrangement in RsbL, propagating
into the stressosome core and activating the signal transduction
(Salomon et al., 2001; Crosson and Moffat, 2002). Once blue-
light is removed, the covalent adduct decays to its ground
state (τ 1/2 = 95 min), resetting the protein to its non-stressed
state (Chan et al., 2013). Interestingly, L. monocytogenes does
not activate σB when exposed to blue-light at 37◦C, suggesting
that the bond between FMN and residue Cys56 may not
form at this temperature (Dorey et al., 2019a). Indeed Chan
et al. reported that FMN:RsbL association is reduced as the
temperature increases above 26◦C. Presumably the absence of an
evolutionary pressure to detect light at 37◦C, when the pathogen
is most likely within the dark confines of a host, produced this
temperature-dependent light sensing phenotype.

It is hypothesized that the N-terminal domains of RsbR
and the other paralogs are also responsible for the stress
signal integration into the stressosome, however, neither the

mechanisms involved nor the stress signals being detected
are known at present. In B. subtilis nutritional stress is
sensed through RsbP and RsbQ and integrated into the
signal transduction pathway regulating σB downstream of the
stressosome via RsbV (Vijay et al., 2000). In L. monocytogenes
homologs of RsbPQ are not present, and nutritional starvation
is detected by the stressosome through RsbR instead
(Chaturongakul and Boor, 2004; Chaturongakul and Boor,
2006; Martinez et al., 2010).

SIGNAL TRANSDUCTION

The stressosome, along with proteins that integrate the signal
transduction responsible for σB regulation, are encoded in
the sigB operon (rsbR, rsbS, rsbT, rsbU, rsbV, rsbW, sigB,
and rsbX). Once stress is sensed, RsbT is released from the
stressosome core and is then free to initiate a signal cascade
by associating with RsbU, which in turn directs its phosphatase
activity toward phosphorylated RsbV (Yang et al., 1996). The
anti-sigma factor RsbW, which binds to σB and blocks its
interaction with RNA polymerase (RNApol), has a higher affinity
for the dephosphorylated form of RsbV than for σB. RsbV–RsbW
interaction restores the phosphorylated state of RsbV through the
kinase activity of RsbW, which in turn promotes the reassociation
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of RsbW with σB, thereby establishing another negative feedback
loop (Yang et al., 1996). Once dissociated from RsbW, σB interacts
with RNApol resulting in the upregulation of the σB regulon.
It has been proposed that the signal transduction cascade in
L. monocytogenes can be inferred from the well-studied B. subtilis,
since both species share a high level of conservation (Ferreira
et al., 2004). Many studies of σB regulation in L. monocytogenes
have confirmed that the signal transduction pathways likely
function in a very similar way between these two microorganisms
(Chaturongakul and Boor, 2004, 2006; Cosgrave, 2010; Shin et al.,
2010a; Utratna et al., 2014; O’Donoghue,, 2016; Guerreiro et al.,
2020; Hsu et al., 2020).

ACTIVATION OF σB AT THE
SINGLE-CELL LEVEL

Bacterial populations display random fluctuations in the
expression of individual genes, metabolite pools, and
macromolecular concentrations that generate heterogeneity
within the population (Cai et al., 2006; Levine et al., 2013).
These differences can give rise to a “bet hedging” survival
strategy, where some cells are better prepared for environmental
changes and hence have a higher chance of survival under
unfavorable conditions. Emerging single-cell analytical methods
are increasingly being used to further investigate how σB activity
is regulated at the single-cell level. After exposing B. subtilis
to mycophenolic acid (MPA), an inhibitor of GTP synthesis
that indirectly triggers energy stress, σB activation was studied
using fluorescent protein reporters and time-lapse microscopy
(Locke et al., 2011). A series of stochastic pulses of σB activity
was observed in individual cells, with an increased frequency
of pulses observed with increasing MPA concentrations. These
observations could be explained by fluctuations (noise) in the
concentration of some of the key components of σB regulatory
circuit. A minimal mathematical model of the circuit, where
fluctuations in the RsbQP phosphatase/RsbW kinase ratio
cause sudden increases in σB activation, exhibited a similar
behavior to the experimental observations (Locke et al., 2011).
Surprisingly, when a microfluidic-based strategy was used
to study σB activation, the results obtained were somewhat
different from those obtained by Locke et al. (Cabeen et al.,
2017). In this case, the amplitude of the response increased with
the magnitude of the stress, but the frequency of σB activation
remained unchanged (no stochastic pulses were observed). When
bacteria were exposed to environmental stresses (osmotic stress
and ethanol), a single pulse of activation of σB was observed,
whose amplitude depended on the rate at which the stress
increased (Young et al., 2013) or its magnitude (Cabeen et al.,
2017). However, strains producing only one of the four RsbR
paralogs present in B. subtilis displayed repeated stress-activation
peaks in single cells, resembling the stochastic activation of σB

reported previously (Cabeen et al., 2017). Pulsing activity of σB

has also been observed during biofilm development, allowing
mutually exclusive cell states to co-exist in the same regions
of the biofilm and enabling the formation of simple spatial
patterns (Nadezhdin et al., 2020). The presence of positive

and negative feedback loops within the σB activation pathway
contributes to the generation of noise, with a positive feedback
loop amplifying the fluctuations and negative feedback loop,
once RsbW is activated, that terminates the pulsing (Nadezhdin
et al., 2020). Differences in the experimental approach might
affect σB dynamics differently, causing distinct responses. Future
studies will probably need to refine the mathematical models
used to predict the activation patterns of σB in order to resolve
the observed experimental discrepancies.

In L. monocytogenes heterogeneous activation of σB was
observed when cells were subjected to osmotic shock, with
an increased proportion of cells having an active σB as the
magnitude of the stress was increased (Utratna et al., 2012).
A similar stochastic behavior of σB was also observed in another
study under similar stress conditions (Guldimann et al., 2017),
further supporting the idea of a bet-hedging survival strategy in
L. monocytogenes.

σB-DEPENDENT STRESS RESISTANCE
ROLE IN VIRULENCE

To establish an infection L. monocytogenes needs to survive under
the harsh conditions of the gastrointestinal (GI) tract, including
the acidic conditions of the stomach, osmotic stress in the small
intestine, and the presence of bile salts in the duodenum (Sleator
et al., 2009; Gaballa et al., 2019; Tiensuu et al., 2019). Survival
in the presence of these stresses is partially dependent on σB,
as an intragastrically inoculated 1sigB strain exhibits attenuated
virulence (Garner et al., 2006; Oliver et al., 2010). σB regulates the
glutamate decarboxylase (GAD) system (Wemekamp-Kamphuis
et al., 2002; Cotter et al., 2001a,b, 2005), bile resistance genes
such as bilE (Fraser et al., 2003; Sleator et al., 2005), bsh (Sue
et al., 2003; Zhang et al., 2011), pva (Begley et al., 2005), and
also controls opuC, gbu, and betL to help the bacteria cope with
osmotic stress (Fraser et al., 2003; Sue et al., 2003; Cetin et al.,
2004; Raengpradub et al., 2008).

A growing body of evidence points toward a complex two-
way regulatory network between σB and the master regulator of
virulence, PrfA (Gaballa et al., 2019; Tiensuu et al., 2019). σB is
also responsible for the regulation of the RNA chaperone Hfq
which also plays a role in virulence and osmotic stress resistance
(Christiansen et al., 2004). The activity of PrfA is crucial for
the expression of genes that are important for pathogenesis,
including the genes from the Listeria Pathogenicity Island 1
(LIPI-1) and the inlAB loci (de las Heras et al., 2011). One
of the three promoters that drive prfA transcription, P2, is a
σB-dependent promoter (Nadon et al., 2002). Under certain
forms of stress, transcription from the P2 promoter is enhanced,
demonstrating a role for σB in prfA expression (Kazmierczak
et al., 2006). There is also a transcriptional overlap between σB

and PrfA regulons, with a group of genes being under the control
of both systems (Milohanic et al., 2003). Significantly, it has been
shown that σB plays a crucial role in limiting the availability
of branched chain amino acids (BCAA) in L. monocytogenes,
raising the possibility that σB might influence PrfA activity via
CodY, a global transcription regulator and sensor of BCAA
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(Marinho et al., 2019). When BCAA availability is low, as they
are inside the mammalian host cell, CodY plays a direct role
in the transcriptional activation of prfA (Lobel et al., 2015).
A genome wide analysis of the CodY regulon identified sigB
as one of the genes that is also directly regulated by CodY,
indicating that CodY may promote prfA transcription by at least
two different mechanisms: directly via binding to the prfA gene
and indirectly by relieving sigB repression (Lobel and Herskovits,
2016). However, in vitro binding of CodY to the 5’ coding region
of prfA is very weak, suggesting that other indirect mechanisms
are likely to be involved in CodY-mediated prfA activation
(Biswas et al., 2020).

Unlike most Gram-positive bacteria, L. monocytogenes has
the ability to synthesize glutathione (GSH) (Gopal et al., 2005),
and is also capable of utilizing exogenous GSH (Portman et al.,
2017). It has been shown that GSH allosterically activates
PrfA, causing a conformational change that increases binding
of PrfA to DNA, promoting the transcription of virulence
genes accordingly (Reniere et al., 2015; Hall et al., 2016).
The expression of GSH reductase (lmo1433), an enzyme that
contributes to oxidative stress resistance by reducing GSH
disulfide to GSH, is positively regulated by σB (Kazmierczak et al.,
2003). These observations could imply that σB can indirectly
contribute to PrfA activation by maintaining the intracellular
GSH levels high through the expression of GSH reductase.
This multi-layered regulatory network plays a major role in
modifying gene expression in response to environmental stress
in L. monocytogenes and is central to this pathogen’s remarkable
adaptive capacity.

σB DEPLOYMENT IS A DOUBLE-EDGED
SWORD

In addition to conferring stress resistance, the activation of σB

also results in reduced growth in L. monocytogenes (Figure 2)
(Brøndsted et al., 2003; Chaturongakul and Boor, 2004; Abram,
2007; Cosgrave, 2010; Zhang et al., 2013; O’Donoghue et al.,
2016; Curtis et al., 2017; Marinho et al., 2019; Sæbø et al., 2019;
Guerreiro et al., 2020). It has been hypothesized that living
organisms often limit their growth in exchange for increased
survival, when conditions are unfavorable due to nutrient
limitation (Nyström, 2004). Recently, we have shown that
L. monocytogenes σB-defective strains exhibit a decreased acid
tolerance but have increased growth rates and a competitiveness
advantage under mild heat stress (Guerreiro et al., 2020). This
growth advantage allows strains with reduced σB activity to
overtake the WT in mixed strain competition experiments. The
reason for this growth advantage is not clear at present but
three hypotheses seem worth considering. First, competition
of different sigma factors for the same allosteric site of the
RNApol to produce an active holoenzyme (Eσ) could redirect
transcription away from growth-related functions (Figure 2). In
L. monocytogenes the availability of σB to form EσB is ultimately
governed by the signal transduction leading to the release of σB

from RsbW. As more σB is released from RsbW the competition
with other sigma factors increases (Figure 2). This potentially

impacts the housekeeping σA, which is responsible for the
transcription of growth related genes (Österberg et al., 2011).
Indeed mathematical models support this type of competition
(Mauri and Klumpp, 2014). Whether σB has a higher affinity
for RNApol than σA or a displacement mechanism exists, as
has been shown for B. subtilis σE and σK during sporulation
(Ju et al., 1999), are still unknown. Second, σB activation may
result in the depletion of energy resources to the extent that it
has a negative impact on growth. Indeed, exposure to different
types of stress results in the reduction of the ATP pool in
several bacteria (Antonietti and Ferrini, 1986; Hecker et al., 1989;
Antonietti and Tomaselli, 1991). Additionally, 1sigB mutants
exhibit higher intracellular ATP levels compared to a WT strain
after the exposure to osmotic stress (Xia et al., 2016). In contrast,
an 1rsbX mutant has lower ATP levels, as a result of the over-
activation of σB (Xia et al., 2016). Third, it is conceivable that
σB specifically reduces growth as part of an overall damage
mitigation strategy in the face of stress. We recently showed that
the σB-dependent sRNA, Rli47, blocks isoleucine biosynthesis in
L. monocytogenes through a direct interaction with ilvA mRNA.
This interaction results in restricted growth under conditions
where isoleucine is limited and suggests a possible role for σB

in controlling growth under those conditions (Marinho et al.,
2019). Further studies will be needed to tease these possibilities
out fully but it is already clear that σB has an important impact
on fitness and is likely to be subjected to a strong selective
pressure. Indeed this may well explain the complexity of the
regulatory system controlling σB activity; deciding precisely when
and to what extent σB should be deployed is critical to resource
allocation in times of stress and this ultimately determines
fitness (Figure 2).

FUTURE PERSPECTIVES AND
CHALLENGES

It is over 20 years since the σB system has been discovered in
L. monocytogenes and its role in controlling the GSR and the
many stress-related phenotypes associated with loss-of-function
have been well described. However, there is still much to learn
about how its activity is regulated.

Probably the biggest challenge facing the field, and this is
also true in Bacillus, is that there is very little understanding
of what stress signals are detected and how these signals are
integrated into the σB regulatory pathway via the stressosome.
The only exception to this is the mechanism that allows photons
of blue light to be detected by the stressosome protein RsbL (Chan
et al., 2013; O’Donoghue et al., 2016). It is clear that acid and
salt and growth-phase all trigger the activation of σB (Utratna
et al., 2011) but the nature of the stress signal detected in each
case is unknown, neither is the sensory mechanism known. It is
thought that, like RsbL, the N-terminal domains of RsbR or its
paralogs (RsbR2, 3, and 4), which are predicted to form turret-
like structures that protrude from the surface of the stressosome,
are likely to play an important role in signal integration. Whether
multiple distinct signals can be detected (possible by virtue of
the distinct N-terminal domains of RsbR and its paralogs), or
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whether a single generic stress-associated signal is detected is
still unknown at present. In the case of oxidative stress, it has
been proposed that the membrane-spanning miniprotein Prli42
might transduce signals directly to the stressosome through its
interaction with RsbR, but the mechanism involved has not been
elucidated (Impens et al., 2017).

Although some structural information is available for the
stressosome (Williams et al., 2019), high resolution crystal
structures of individual components combined with cryo-
electron microscopic images of native stressosomes (as opposed
to in vitro reconstituted stressosomes) will be required to build
a clear picture of what the in vivo structure of the stressosome
is like. Information on subcellular localization and assembly
dynamics will also be useful to build a model of where in the cell
stress sensing occurs and whether stressosomes are structurally
homogeneous in vivo or whether different stoichiometries can
produce functional differences between them. Single-cell time-
resolved approaches will be necessary to see whether structural
or stoichiometric differences in stressosomes between cells
might contribute to heterogeneity in σB activity observed
within populations subjected to stress. The extent to which
individual L. monocytogenes cells engage in bet-hedging in
response to stressful environmental conditions remains to
be fully explored.

Finally the role of the GSR in modulating the virulence of
L. monocytogenes is still an open question. There are multiple
lines of evidence suggesting regulatory crosstalk between σB and

PrfA and these need to be explored further (Gaballa et al., 2019;
Tiensuu et al., 2019). While σB plays an essential role during the
GI stage of the infectious cycle, it is less important during the
systemic stages, where PrfA appears to be the dominant regulator.
Both regulators are modulated by complex multi-layered control
circuitry, highlighting the importance to fitness of deploying
these systems only when the prevailing conditions are suitable.
We have seen clear evidence that there is a significant burden on
resources associated with deploying the GSR (Guerreiro et al.,
2020) and a similar cost has been reported for inappropriate
activation of PrfA (Bruno and Freitag, 2010). Clarification of the
nature of the regulatory crosstalk between these systems will give
new insights into the biology of this human pathogen as well as
suggesting new approaches to control it.
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