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The occurrence of diarrhea in Tibetan piglets is highly notable, but the microorganisms

responsible are yet unclear. Its high incidence results in serious economic losses for

the Tibetan pig industry. Moreover, the dynamic balance of intestinal microflora plays

a crucial role in maintaining host health, as it is a prime cause of diarrhea. Therefore,

the present study was performed to analyze the characteristics of bacterial microbiota

structure in healthy, diarrheal and treated weaned piglets in Tibet autonomous region

for providing a theoretical basis to prevent and control diarrhea. The study was based

on the V3–V4 region of the 16S rRNA gene and gut microbiota functions following the

metagenome analysis of fresh fecal samples (n = 5) from different groups. The Shannon

and Simpson indices differed substantially between diarrheal and treated groups (p <

0.05). According to our findings, the beta diversities, especially between healthy and

diarrheal groups, were found different. Firmicutes, Bacteroidetes and Proteobacteria

were the dominant phyla in three groups. Furthermore, the abundance of Fusobacteria

in the diarrheal group was higher than the other groups. The dominant genera in the

diarrheal group were Fusobacterium, Butyricimonas, Sutterella, Peptostreptococcus,

and Pasteurella. Moreover, Lactobacillus, Megasphaera and Clavibacter were distinctly

less abundant in this group. It is noteworthy that the specific decrease in the abundance

of pathogenic bacteria after antibiotic treatment in piglets was noticed, while the level

of Lactobacillus was evidently increased. In conclusion, fecal microbial composition

and structure variations were discovered across the three groups. Also, the ecological

balance of the intestinal microflora was disrupted in diarrheal piglets. It might be caused

by a reduction in the relative number of beneficial bacteria and an increase in the

abundance of pathogenic bacteria. In the context of advocating for non-resistant feeding,

we suspect that the addition of probiotics to feed may prevent early-weaning diarrhea

in piglets. Moreover, our findings might help for preventing diarrhea in weaned Tibetan

piglets with a better understanding of microbial population dynamics.
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INTRODUCTION

The Tibetan pig is a valuable indigenous specie, as it is the
only one that can survive in China’s high altitude. Tibetan pigs
are mainly found in semi-grassland and semi-farmland regions
of Tibet (1). Under long-term harsh environmental conditions,
Tibetan pigs have developed resistance against cold and diseases
by developing different characteristics. These characteristics have
made them indispensable for pig production in the plateau (2).

Early weaning is often used in intensive pig production, both
at home and on farms (3). Meanwhile, weaning is an important
turning point for piglet’s growth to reduce the rate of vertical
disease transmission and helps in the overall improvement of
a pig farm. Conversely, earlier weaning caused psychological,
environmental and nutritional stress in piglets, which induced
diarrhea, dystrophia and slow growth (4) resulting in significant
economic losses for the pig industry. Studies have argued
that the diarrhea of weaned piglets is caused by infection
with multiple pathogenic factors (bacteria, virus, etc.) and the
intestinal dysfunction of piglets (5). Also, the imperfect immune
system of the piglets, environmental changes, dietary changes,
and improper feeding methods are conducive to the invasion of
pathogenic strains, e.g., Escherichia coli (6).

The dynamic balance of intestinal microbiota plays an
important role in the immune regulation of animals (7). Normal
intestinal microbiota can stimulate the animal intestinal immune
system by improving the intestinal self-recognition and immune
ability of different bacteria. The intestine also serves as a barrier
that can reduce the probability of host infection. Furthermore,
weaning stress has disrupted the natural gut balance, reducing
helpful microorganisms (8).

Due to the harsh cultural environment and intensive breeding
strategies, Tibetan piglets frequently suffer from diarrhea
after weaning. These factors are significantly decreasing the
production performance and economics. The present study
was performed to analyze the microbial diversity of different
bacterial strains in healthy and diarrheal Tibetan piglets in
Nyingchi, Tibet autonomous region, to investigate the etiology of
diarrhea and develop a theoretical framework for it’s prevention
and treatment.

MATERIALS AND METHODS

Animal Feeding and Sample Collection
The experimental animals for this study were taken from five
healthy sows (The sows were raised at Tibetan Pig Collaborative
Research Center of Tibet Agriculture and Animal Husbandry
University) maintained at similar conditions. The sows gave birth
on the same day. Tibetan piglets and sows were bred together
in a farrowing house (the temperature of the farrowing house
was ∼21◦C, and the farrowing bed was strictly cleaned and
disinfected). The feed was given to the piglets when they were
3 weeks old. At the age of 6 weeks, healthy Tibetan piglets were
weaned and transferred to the nursery house (the temperature of
the nursery house was 16◦C).

Hermann-Bank (9) test criteria were used to determine
healthy and diarrheal Tibetan piglets. The feces of healthy
Tibetan piglets (piglets without any clinical symptoms) were

granular or stripe-shaped for more than 2 days. While the feces
of diarrheal piglets were thin and unformed for more than 2 days.
The fecal samples of healthy and diarrheal piglets (the diarrheal
early-weaned Tibetan piglets not birthed by the same sow) were
simultaneously collected. All samples were transferred from the
ranch to the laboratory using a vehicle-mounted refrigerator
(−15◦C). Then the samples were stored at −20◦C for further
evaluation. The marked diarrheal Tibetan piglets were treated
with 1mL of Gentamycin (4%) sulfate through intra muscular
route (HuaXuCompany, China, Product number: 17925752842).
Five fecal samples from healthy piglets (group A; marked as A1,
A2, A3, A4, and A5), five fecal samples from diarrheal piglets
(group B; marked as B1, B2, B3, B4, and B5), and five fecal
samples from post-treatment piglets (group C; marked as C1, C2,
C3, C4, and C5) were selected.

DNA Extraction
The microbial DNA was extracted from 15 fecal samples of
piglets using QIAamp Fast DNA Stool Mini Kit (QIAGEN,
Hilden, Germany) as per the manufacturer’s recommendations.
The concentration and quality of DNA were detected with a
nucleic acid detector (Nanodrop, Thermo Scientific NC2000,
USA) and 1.2% agarose gel electrophoresis, respectively.

16S rRNA Amplification
The standard bacteria V3–V4 hypervariable region gene PCR
primers (forward primer: ACT CCT ACG GGA GGC AGC
A; reverse primer: GGA CTA CHV GGG TWT CTA AT)
were used. AxyPrep DNA Gel Extraction Kit (Axygen, CA,
USA) and the 2% agarose gel electrophoresis were used for
target fragment recovery and evaluation of PCR amplification
product. Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,
Waltham, Massachusetts, USA) was used to detect the recovered
PCR products. Moreover, TruSeq Nano DNA Low Throughput
Library Prep Kit (Illumina, CA, USA) was implied for sequence
library construction. Amplified products’ sequence ends were
repaired by End Repair Mix2. PCR amplification was carried
out to enrich the sequencing library template, and the library
enrichment product was purified again via BECKMAN AMPure
XP Beads. The library’s final fragment-selection and purification
were performed using 2% agarose gel electrophoresis.

The quality of libraries was examined on Agilent Bioanalyzer
using Agilent High Sensitivity DNA Kit before sequencing
procedure. The libraries with only one peak signal and no linker
signal were considered for the process. Moreover, the libraries
were quantified using Quant-iT PicoGreen dsDNA Assay Kit
on Promega QuantiFluor fluorescence quantification system.
The qualified library concentration was more than 2 nM. These
qualified libraries were gradient diluted and mixed in proportion
according to required sequencing. The MiSeq Reagent Kit V3
(600 cycles) was used to perform 2 × 300 bp paired-end
sequencing on the MiSeq sequencing machine after the mixed
libraries were denatured into single strands by sodium hydroxide.

Sequence Data Processing and Statistical
Analysis
Sequences analysis was established as operational taxonomic
units (OTUs) via Uclust with over 97% similarity (10). The
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FIGURE 1 | The fecal microflora of weaned piglets, analysed by a Venn diagram. (A) Healthy piglets; (B) Diarrheal piglets; (C) Treated piglets.

highest abundant sequence in each OUT was selected as the
representative sequence (11). Then, OTUs were taxonomically
classified and grouped by comparing with those in the Unite
database (12). Micro microflora’s richness and evenness index
was calculated using the measurement indexes (Chao1, ACE,
Shannon, and Simpson). Beta diversity based on the weighted
UniFrac distance matrices were calculated with QIIME (Version
1.7.0), while the Cluster analysis was preceded by principal
coordinate analysis (PCA) (13). The metastatic statistical
algorithm was used to analyze the discrepancy in microbial
communities between groups at the phylum and genus levels
(14). The heat map was created via R software (v3.0.3), and
all the data were evaluated statistically by one-way analysis of
variance through SPSS 20.0 software (SPSS Inc., Chicago, Illinois
60606-6307, USA).

RESULTS

Sequencing Results and OTU Cluster’s
Statistical Analysis
The current study subjected 15 fecal samples collected from
Tibetan piglets to the high-throughput sequencing analysis. After
optimizing the preliminary data, a total of 413,584, 427,913,

and 408,109 high-quality valid sequences were obtained from
the A, B and C groups, respectively. As shown in the dilution
curve of species observation index, with the deepening test
depth, its slope gradually decreased and reached the plateau
stage. This finding indicated that the sequencing quantity of the
samples was saturated, and the majority of bacteria were covered
(Supplementary Figure 1). The sequences were established at
the phylum, class, order, family, genus and species levels as OTUs
via Uclust with over 97% similarity (Supplementary Figure 1).
The three groups shared 1,315 bacteria species, as found by Venn
map/diagram analysis (Figure 1). The diarrheal piglets showed
1,529 common bacteria species, which were not found in the
healthy and antimicrobial-treated piglets. A total of 2,209 bacteria
species were found to be common among the healthy piglets.

Effects of Microbial Community Diversity
The alpha diversity of fecal microbiota was evaluated by using
Chao1, ACE, Shannon and Simpson. The Simpson and Shannon
index demonstrated that there was no striking difference in the
micro microflora abundance between group A (0.887, 5.962) and
B (0.834, 4.97) (p > 0.05) (Figure 2), whereas C (0.945, 6.582)
group was significantly higher than that of the B group (p <

0.05) (Figure 2). The ACE and Chao1 indices showed that A
group and C group had higher richness than B group, whereas no
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FIGURE 2 | Diversity indices of the fecal microbiota in different Tibetan piglets. Chao1, ACE, Shannon, and Simpson indices were used to evaluate the alpha diversity

of the fecal microbiota. The results were evaluated through one-way ANOVA. All of the data represent means ± SD. *p < 0.05.

striking difference in the microflora richness was noticed among
the three groups (p > 0.05) (Figure 2). Specifically, The Chao1
index amounted to 1,625.74, 1,427.63, and 1,899.73 in groups
A, B, and C, while the ACE index reached 1,721.43, 1,504.51,
and 1,972.87 in groups A, B, and C, respectively. However,
significant differences were found in the microbial community
structure by principal component analysis (PCA) in different
groups, especially among healthy piglets, as compared with other
two groups (Figure 3).

Composition Analysis of the Microbial
Community Structure in Different Groups
The bacterial community in the three groups were assessed
at different taxonomical levels. Firmicutes (75.28 ± 12.70%
in group A, 62.78 ± 15.75% in group B, 72.16 ± 12.65%
in group C) and Proteobacteria (10.36 ± 8.48% in group A,
13.76 ± 18.62% in group B, 13.66 ± 15.87% in group C) were
dominant in all samples at the phylum level (Figure 4A). Other
phyla, including Bacteroidetes and Actinobacteria, presented a
lower abundance (<8% of all samples) (Figure 4A). Interestingly,
Fusobacteria in group B (13.02± 8.82%) was higher as compared
to group A (0.08 ± 0.13%) and group C (2.58 ± 4.16%).
Peptostreptococcaceae (21.92 ± 22.13%), Enterobacteriaceae
(11.32 ± 18.75%), Streptococcaceae (12.32 ± 19.45%), Collinsella
(3.86 ± 7.75%), Dorea (2.26 ± 2.09%) were predominant in the
B group, whereas Psychrobacter (4.30 ± 9.61%) and Clostridium
(2.04 ± 2.34%) in the C group at the genus level (Figures 4C,D).
In addtion, Lactobacillus (47.10 ± 15.31% in group A, 2.00 ±

0.78% in group B, 12.22 ± 2.18% in group C) and Akkermansia
(4.38 ± 9.68% in A group) were predominant bacteria genera.
The relative abundance of genera Prevotella, Roseburia and
Bacteroides were <2% in all samples (Figures 4C,D).

The relative abundance of Fusobacteria in group B was
significantly higher as compared to group A (p< 0.01) and group
C (p < 0.05) at the phylum level (Figure 5A). The abundance
of Elusimicrobia (p < 0.05) in the C group was significantly

higher than group A and group B (Figure 5A). Furthermore,
Fusobacterium, Butyricimonas, Sutterella, Peptostreptococcus,
Pasteurella and Veillonella were the most abundant genus in
group B, which were significantly higher than in other groups (p
< 0.05) (Figure 5B). In contrast, Megasphaera and Clavibacter
were less abundant in diarrheal piglets than healthy piglets (p <

0.05) (Figure 5B). Lactobacillus in the A group was significantly
higher (p < 0.01) than in the B and C groups, whereas the
abundance in group C was also significantly higher than that
in group B (p < 0.01) (Figure 5B). Moreover, the relative
abundance of Klebsiella, Bilophila, Roseburia, 1–68, Clostridium,
Sutterella and Tissierella_Soehngenia in group C (p < 0.05)
were significantly higher than in group A at the genus level
(Figure 5B).

We also performed Linear discriminant analysis effect size
(LEfSe) tests to compare further intestinal microflora differences
among the three groups (Figure 6). When comparing different
Tibetan piglets, we found 4, 7 and 11 bacterial taxa that were
abundant in healthy, diarrheal, and treated piglets. Furthermore,
healthy piglets had the most enriched phylotypes from the
phylum Lactobacillus, whereas diarrheal piglets had the most
Sutterella, Fusobacterium, and Pasteurella phlylotype.

DISCUSSION

Piglet diarrhea is a common issue throughout the pig breeding
process. The reasons for piglet diarrhea are quite a lot, such as
weaning, nutritional, environmental and physiological stress on
piglets (15). In addition, pathogenic bacteria, stress, management
factors and excessive feed intake are also associated with piglet
diarrhea (16). Moreover, intestinal epithelial mucosal barrier is
the first line of defense that animals use to resist in such adverse
conditions as it plays an important role in animals’ normal
intestinal functioning. Therefore, the changes in intestinal
microbiota diversity would affect the intestinal function and
cause diseases. This study evaluated the fecal microflora structure
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FIGURE 3 | Principal component analysis of the fecal microbiota. PCA map based on Euclidean distance. Each point indicates one sample. The distance of the two

points indicates the difference in fecal microbiota. A: Healthy piglets; B: Diarrheal piglets; C: Treated piglets.

in healthy, diarrheal and treated piglets of Tibet autonomous
region. The findings showed that diarrhea altered the bacterial
microbiota structure of Tibetan pigs and impacted the variety
of fecal microflora. There were a variety of bacteria in the feces
of the Tibetan piglets. By Venn diagram analysis, 1,529 bacterial
species were shared among the diarrheal piglets, which were not
found in the healthy and treated piglets. Whereas, 2,209 bacterial
species were found in the healthy group. PCA analysis showed
a significant difference in bacterial community structure among
the three groups, especially between healthy and diarrheal piglet
groups based on Euclidean distance.

Generally, species are phylogenetically affiliated to phyla
Firmicutes, Proteobacteria, and Bacteroidetes, which are
abundant in Large White and Chinese Shanxi Black pigs
(17). Our results indicated that Firmicutes, Bacteroidetes
and Proteobacteria were the most dominant phyla in three
groups of Tibetan piglets, which were consistent with previous
observations in pig (18), bovine (19), sheep (20) and yak
(21). Actinobacteria were mainly distributed in the stomach
of herbivores, and they promote fiber decomposition and
help in the digestive function of these animals (22). It is
noteworthy that Actinobacteria was dominant phylum in

Tibetan piglets, which was identified with predecessor’s research
in wild pigs (23). This phenomenon may be related to the
herbivorous nature of Tibetan piglets. Some studies suggest
that the abundance of Fusobacteria (24) and Fusobacteria
phyla activate host inflammatory responses in order to protect
against pathogens that promote tumor growth (25). Remarkably,
the higher abundance of Fusobacteria in the fecal microbiota
of diarrheal piglets may induce an immune response and
increase the risk of pathogen infection of the host. Our results
manifested that the Elusimicrobia level in the C group showed
an upward trend as compared to the A and B groups, while
it was known as an enigmatic bacterial phylum previously.
The first representatives were termite gut-associated (26)
isolated from the rumen (27) and the environment (28), that
comprised of Planctomycetes, Verrucomicrobia, Chlamydia,
Omnitrophica, Desantisbacteria (29), Kiritimatiellaeota (30)
and Lentisphaerae (31). Cultivation and genome-based studies
revealed that some species belonging to Elusimicrobia that
are capable of glucose fermentation (32) with the ability to fix
nitrogen (28).

Fusobacterium is being unveiled pathogen of gastrointestinal
disorders. Previous research indicated that Fusobacterium plays
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FIGURE 4 | Relative abundance of gut bacterial taxa among different groups. (A) Phylum level; (B) Family level; (C) Genus level; (D) Taxonomic assignment at genus

level. A1–A5: Healthy piglets; B1–B5: Diarrheal piglets; C1–C5: Treatment piglets.

a role in the pathogenesis of ulcerative colitis (33) and
exert potentially carcinogenic (colorectal cancer) effects on the
host (34). Butyricimonas bacteraemia has been described in
patients with colon cancer (35) and patients with posttraumatic
chronic bone and joint infections (36). It was isolated from
a stool sample of a morbidly obese French patient living in
Marseille, using the culturomics approach, which is critical to
deciphering the links among gut microbiota and obesity (37).
Recent reports link Sutterella with gastrointestinal diseases to
induce substantial inflammation; rather, it can degrade IgA
(38). Peptostreptococcus promotes colorectal carcinogenesis and
modulates tumor immunity (39).

On the contrary, indole acrylic acid produced by commensal
Peptostreptococcus species suppresses inflammation (40).
Nevertheless, we observed that Peptostreptococcus was
significantly higher in the diarrheal Tibetan piglets than in
the other two groups. Its exact mechanism in Tibetan pigs
needs to be further studied. Pasteurella are one of the important
pathogens that infect a wide range of animals, including swine
atrophic rhinitis (41), porcine respiratory disease complex
(42), bovine hemorrhagic septicemia (43, 44), avian cholera
(45–47) and rabbit respiratory disease (48, 49). A specific
decrease in the abundance of Lactobacillus in diarrheal Tibetan
piglets increased after antibiotic treatment in Tibetan piglets.

Lactobacillus has been widely recognized for its role in gut
microbiota, metabolism, immunity, and health maintenance
(50–52).

Additionally, Lactobacillus is widely used in animal
production because of its antibacterial activity and various
biological characteristics (53). Megasphaera is a lactate-utilizing
bacterium whose ruminal abundance is significantly elevated
during fat milk depression (54), producing several short-chain
fatty acids (SCFAs). These SCFAs serve as an energy source
for host animals and play an important role in gut health
(55). The genus Clavibacter harbors economically important
plant pathogens, infecting crops such as potato and tomato
(56, 57). Thus, our results conveyed important information
that the relative abundances of pathogenic bacteria (such as
Fusobacterium, Butyricimonas, Sutterella, Peptostreptococcus,
Pasteurella) increased in the diarrheal Tibetan piglets, which
disrupted the normal dynamic balance of the intestinal
microbiota and led to a competitive decrease in the abundance
of beneficial bacteria (Lactobacillus, Megasphaera). This
phenomenon may also be the main cause of diarrhea in weaned
Tibetan piglets. In addition, the intestinal microbial structure
was changed by antibiotic treatment in weaned Tibetan piglets.
Moreover, abundance of Lactobacillus was also increased
significantly after antibiotic treatment.
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FIGURE 5 | The metastatic composition of microbial diversity. (A) Microbial diversity at phylum level, (B) microbial diversity at genus level. A: Healthy piglets; B:

Diarrheal piglets; C: Treated piglets.
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FIGURE 6 | Linear discriminant analysis effect size (LEfSe) analysis of fecal microbiota composition in different groups of Tibetan piglets. (A) Histogram of the Linear

Discriminant Analysis (LDA) scores computed for bacterial taxa differentially abundant among different groups. (B) A cladogram showing statistically and

physiologically consistent distinctions among different groups. A: Healthy piglets; B: Diarrheal piglets; C: Treated piglets.

Overall, there were significant difference in gut microbial
composition and structure among the groups. Hence, the
current study suggested that the decreased relative abundance
of beneficial bacteria and increased relative abundance of
pathogenic bacteria might cause diarrhea in Tibetan piglets.
Therefore, this study provides a better insight into microbial
population structure in order to prevent diarrhea in weaned
Tibetan piglets.
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