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A B S T R A C T   

The analysis of gait kinematics requires to encode and collapse multidimensional information 
from multiple anatomical elements. In this study, we address this issue by analyzing the joints’ 
coordination during gait, borrowing from the framework of network theory. We recruited twenty- 
three patients with Parkinson’s disease and twenty-three matched controls that were recorded 
during linear gait using a stereophotogrammetric motion analysis system. The three-dimensional 
angular velocity of the joints was used to build a kinematic network for each participant, and both 
global (average whole-body synchronization) and nodal (individual joint synchronization, i.e., 
nodal strength) were extracted. By comparing the two groups, the results showed lower coordi
nation in patients, both at global and nodal levels (neck, shoulders, elbows, and hips). Further
more, the nodal strength of the left elbow and right hip in the patients, as well as the average 
joints’ nodal strength were significantly correlated with the clinical motor condition and were 
predictive of it. Our study highlights the importance of integrating whole-body information in 
kinematic analyses and the advantages of using network theory. Finally, the identification of 
altered network properties of specific joints, and their relationship with the motor impairment in 
the patients, suggests a potential clinical relevance for our approach.   

1. Introduction 

The investigation of voluntary movement bestows considerable attention on the analysis of joint excursions due to its significance 
in understanding both the kinematics and the biomechanics of human body [1]. To this regard, the articular range of motion (RoM) 
defined as the extent of a joint movement, provides crucial information about joints functioning, body posture, and, above all, 
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kinematic coordination [2–5]. Traditionally, the study of RoMs has primarily focused on individual joints, providing valuable in
formation about the capacity of each individual joint to move through its anatomical range. However, human movement involves the 
coordination of multiple joints, which operate in a coordinated fashion under the control of both the musculoskeletal and the nervous 
systems, yielding smooth, purposeful, and efficient movements [5]. Understanding the complex physiological kinematics of the joints 
[3,6–8] is crucial for a comprehensive analysis of motor function. 

To date, only a few studies explicitly focused on the way the joints coordinate to produce the expected movement. Günther et al. 
evaluated the contribution of the leg joints to quiet human stance, estimating the coupling among ankle, knee, and hip joints [9]. The 
authors described the synergistic kinematic dynamics of these joints and stressed the individual contribution of each to quiet stance. 
Further investigations widened this framework, evaluating synchronization of leg joints (i.e., ankle, knee, and hip) at different fre
quencies [10]. The authors, by filtering the kinematic time series of each joint, highlighted the presence of frequency-specific coupling 
between different joints, emphasizing the importance of synchronization mechanism in the kinematics of human movement. Never
theless, those studies were conducted in quiet standing and only considered a few joints. Another study from Roemmich et al., 
investigated ipsilateral and contralateral interlimb coordination of hips and shoulders during gait, finding reduced coupling in patients 
with Parkinson’s disease (PD) with respect to healthy older adults [11]. 

However, for a comprehensive investigation, the information to consider to assess coordination requires to handle the spatio- 
temporal high-order synergistic interactions among several musculoskeletal segments, which requires to consider a high number of 
degrees of freedom (DOF) in a three-dimensional space. Based on Bernstein’s considerations [4] about coordination and the problem of 
mastering the many DOF implicated in each movement, Turvey proposed a series of assumptions that may underlie the overall 
principles governing the physiological mechanisms regulating motor coordination [5]. A fundamental theory lies in the idea that a 
reduction of the dimensionality of the information is required (and realized) by the neural control in order to cope with the highly 
demanding task of coordination [3,5]. One of the approaches used to reduce data dimensionality while extracting relevant information 
on the kinematics, is represented by principal component analysis (PCA) [12]. PCA allows to explain the variance in the data and 
individuate the patterns that characterize a movement. For instance, Alexandrov et al. employed PCA to measure the coupling between 
lower leg joints (i.e., hip, knee, and ankle) during trunk bending in patients with PD and healthy controls. The author found that 
patients with PD displayed increased coupling variability and disproportioned ratios between joints. Nonetheless, even though PCA 
allows us to determine the contribution of individual joints to the principal components, the kinematic synergies between the joints 
and their specific assessment remain ambiguous. To this regard, a holistic approach such as the one provided by network theory [13] 
may represent an adequate method to manage the dimensionality of the information involved in motor tasks and convey the multi
dimensional information represented by kinematic interactions occurring among several joints. Network theory is a branch of 
mathematics that provides a framework for analyzing the relationships among elements of complex systems [13]. By its means, it is 
possible to analyze how individual elements interact and influence each other. Within this framework, the single elements are rep
resented as nodes, and the relationships between them are represented as edges (i.e., links). By examining the structure and properties 
of the network, it is possible to investigate the functional organization, the patterns of connectivity, and the dynamics of the system as a 
whole. Furthermore, it is possible to investigate the role and the weight of each single node with respect to the whole network or 
extract global information about the whole system. In a previous paper [14] we conceived a kinematic network considering bones’ 
landmarks as nodes, and the coordination among these elements as edges. We named the resulting network human kinectome. In such a 
way, we were able to extract relevant and subject-specific information, representative of human movement. Furthermore, we found 
that the kinectome of patients with Parkinson’s disease was different (as there was a trunk hyper-synchronization) as compared to 
healthy subjects. Parkinson’s disease (PD) is a neurodegenerative disorder which compromises primarily (but not exclusively) the 
motor function. PD can serve as a valuable model to study the kinematic relations between anatomical segments and how the nervous 
system controls these dynamic interactions. There is a general agreement on the finding that joints’ RoM are reduced in PD patients, 
and this feature, that includes all lower limbs joints, is consistent across studies with patients at different stages of the disease [15–18]. 
Consequently, the study of joints’ RoMs kinematics is of particular interest in evaluating disabling motor symptoms in PD patients, 
including rigidity and impaired posture. 

In this paper, we aimed to demonstrate that joints coordination can be evaluated in the framework of network theory, and that such 
an approach allows to represent physiological kinematic patterns and to assess their alterations. Furthermore, we hypothesize that 
kinematic alterations occur not only in the range of motion of individual joints but also in the synergies between joints. Hence, the joint 
excursions of PD individuals (in the off medication condition) and healthy matched controls were recorded using a stereo
photogrammetric system with reflective markers. Velocity of joints’ excursion was considered as representative of movement control 
[19], hence, the standardized covariance between joints’ angular velocities was measured to build a coordination matrix (i.e., kine
matic networks) for each participant. We hypothesized that joint coordination is lower in patients as compared to healthy controls. The 
kinematic networks were compared between groups at both the global (averaged synchronization among joints) and the nodal (in
dividual joint synchronization with the whole network) level. Furthermore, we hypothesized that the subject-specific network features 
of the patients were related to the clinical motor impairment, as assessed by the part III of the Unified Parkinson’s Disease Rating Scale 
(UPDRS-III) [20]., which specifically assesses the motor impairment. To evaluate this hypothesis, we used linear correlation and 
multilinear regression analyses, to test whether a correlation exists and whether the network features could predict the UPDRS-III 
score, respectively. 
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2. Materials and methods 

2.1. Participants 

Twenty-three patients affected by PD (according to the United Kingdom Parkinson’s Disease Brain Bank criteria) [21], and 
twenty-three healthy controls (HC) were enrolled (Table 1). We aimed to match the controls as closely as possible for sex, age, ed
ucation level, body mass index (BMI), and walking speed [22–24], ensuring that there were no statistically significant differences. 
Furthermore, both the patients and the controls reported not participating in structured physical activity or sports. Inclusion criteria 
for patients were: 1) minimum age of 45 years; 2) Hoehn & Yahr (H&Y) score <3 while off-medicament; 3) disease duration <15 years. 
Exclusion criteria for both groups included: 1) Mini-Mental State Examination (MMSE) score <24 [25]; 2) Frontal Assessment Battery 
(FAB) score <12 [26]; 3) Beck Depression Inventory II (BDI-II) > 13 [27]; 4) further neurological or psychiatric disorders; 5) use of 
additional psychoactive drugs; 6) any further physical or medical conditions causing walking impairment (besides Parkinson’s disease 
for the patients’ group). The sample size was based on previous literature on the same research topic. A written informed consent was 
obtained from all participants, in accordance with Helsinki declaration. The study was approved by the AORN “A. Cardarelli” Ethic 
Committee (protocol number: 00019628) on July 21, 2020. 

2.2. Intervention and data collection 

The protocol consisted of stereophotogrammetric recording of both PD and HC individuals during gait (Fig. 1A). Specifically, the 
patients were recorded while in off state (participants did not assume levodopa in the last 14–16 h before the recordings). Before the 
acquisition, the UPDRS-III score of each patient was acquired. All the subjects were instructed to walk forth and back through a 
measured space 10 m long, and were recorded while walking in the central part of the path. We avoided recording participants during 
direction changes, as this study focused on linear gait. The best trials were considered, (i.e., when all the markers were highly visible), 
obtaining eight gait cycles for each participant. 

Data collection was performed in the Motion Analysis Laboratory of the University of Naples Parthenope. We used a recording 
camera system composed of eight infrared stereophotogrammetric cameras (ProReflex Unit—Qualisys Inc., Gothenburg, Sweden) and 
55 reflective markers. The markers were positioned on each subject in specific anatomical landmarks, according to the modified Davis 
protocol [28], like in Minino et al. [29]. Data were filtered using a lowpass 4th order Butterworth filter with 0.16Hz cutoff frequency. 
For each participant we obtained the three-dimensional time series of the position of the 55 passive markers during gait. This in
formation was used to calculate the excursion angle (in 3D space), in each frame, of the following joints: neck, shoulders, elbows, 
pelvis, hips, knees, ankles. Specifically, based on the bone segments built in the Visual 3D software, we computed the 
three-dimensional angle between couple of segments, according to the following formula [1]: 

θ3D =
(AB • BC)

(‖AB‖ • ‖BC‖)
[1]  

where ϴ3D is the angle, B is 3D point of the joint of interest, A and C are the point of the proximal and distal ends, respectively. 
Hence, we obtained a time series for each joint angle. Then, we calculated the first derivative of the angles with respect to time to 

obtain the angular velocity (Fig. 1B). 

Table 1 
Participants’ characteristics, including the statistical comparison between the healthy control group (HC) and the patients with Parkinson’s 
disease (PD), for demographic, anthropometric, neuropsychological parameters. Abbreviations: Body mass index (BMI), mini mental state 
examination (MMSE), frontal assessment battery (FAB), Beck’s depression inventory (BDI), unified Parkinson’s disease rating scale part III 
(UPDRS-III). Value expressed as mean (± standard deviation).   

HC PD p-value 

Demographic 
Age (years) 65.39 (±11.8) 65.3 (±11.59) 0.991 
Education (years) 12.22 (±5.81) 10.74 (±3.84) 0.251 
Gender (f/m ratio) 7/16 6/17 0.743 
Anthropometric 
BMI 24.28 (±5.81) 26.15 (±2.96) 0.183 
Neuropsychological 
MMSE 27.59 (±1.69) 28.14 (±2.13) 0.334 
FAB 16.12 (±1.74) 16.7 (±2.81) 0.416 
BDI 6.91 (±3.8) 6.26 (±4.62) 0.635 
Clinical 
UPDRS-III - 29.2 (± 16) - 
Disease Duration (months) - 89.19 (± 50.4) -  
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2.3. Network implementation 

We used the network approach to build a kinematic network based on joints’ angular velocity [13,14]. Within this framework, our 
points of interest were the joints, which correspond to the nodes of the network. The edges, on the other hand, which are the elements 
connecting the nodes, were set to be the kinematic relationships between the time series of each pair of nodes. These kinematic re
lationships were calculated as standardized covariance, hence measured using the Pearson correlation coefficient between each couple 
of joints, as an expression of coordination (Fig. 1C). Correlating all the time series among them we obtained a matrix for each 
participant, whose rows and columns represented the joints (nodes of the network), and each entry (i.e., the edges) represented the 
correlation coefficient between couples of joints [30] (Fig. 1D). Nodes on the diagonal, that represents the correlation between the 
same time series are set from 1 to 0 since they are of no interest. Please note that, we employed a fully connected network where each 
joint is related with all the others, based on the assumption that coordination between joints occurs even if the considered joints are not 
directly anatomically connected (e.g., typical antiphase swing between leg and contralateral arm) [31]. 

2.4. Community detection 

We performed a community detection analysis, to investigate the modular organization of the kinematic coordination of the two 
groups. The analysis was performed based on the assumption that there are highly differentiated subnetworks of joints, i.e., kinematic 
synergies [32], that may represent functional groups performing specific tasks during gait. Modularity is a measure that assesses the 
presence of separate clusters in a network. To determine the community structure within each group (both healthy individuals and 
patients), we utilized the Louvain method, by applying consensus clustering across 100 iterations [33,34]. The Louvain method is a 
community detection algorithm used in network analysis to identify and reveal the underlying modular structure of a network. It is an 
iterative algorithm that optimizes the modularity of the network by iteratively moving nodes between communities. The goal is to 
maximize the density of edges within communities while minimizing the density of edges between communities. With this method, the 
joints that work synergically were grouped in the same cluster, as a result of a data-driven algorithm. 

2.5. Network analysis 

From each matrix we extracted global and nodal strength, as network metrics for further analyses [35]. Nodal strength is obtained 
by summing all the edges incident upon a given node; specifically, since negative correlation coefficients represent correlations as well, 
nodal strength is calculated by summing the absolute value of the edges. Similarly, global strength is obtained by averaging the ab
solute values of the edges. At nodal level, the nodal strength represents the total correlation of a specific joint with all the other joints 
across the network, while at global level it represents the average correlation across all joints. Both metrics were compared between HC 
and PD groups. 

2.6. Comparison with different measures 

To provide an overview of the behavior of a different metric within the same dataset, we set out to compute a parameter that can be 
related to motor control. In particular, we took into consideration the smoothness of movement, measured through the spectral arc 
length (SPARC) metric [36]. SPARC quantifies the arc length of the Fourier magnitude spectrum over an adaptive frequency range. It 
effectively captures movement intermittencies while remaining unaffected by amplitude or duration, demonstrating that smoothness 
not only reflects fluidity but also the precision in controlling movement. Both metrics were calculated for each joint and then compared 
between HC and PD groups. 

Fig. 1. From data recording to network building. The figure displays a concise description of the pipeline. A. Participants are recorded while 
walking through a stereophotogrammetric system. Red circles represent the joints of interest for our analysis. B. Time series related to the velocity of 
joints’ excursion during gait cycle are computed. C. Pearson Correlation Coefficient between pairs of joints was computed as a proxy for coordi
nation. D. Coefficients of correlation are stored in a matrix that presents the joints on rows and columns, and the coordination values between 
couples on the specific edges. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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2.7. Statistics 

Statistical analyses were performed in MATLAB 2022a. Network nodal strength values were compared between groups through 
permutation testing. The subjects’ labels were randomly shuffled 10,000 times, and at each iteration the absolute value of the dif
ference between the surrogates group means was computed, obtaining a random distribution of the differences [37]. We compared the 
observed difference to the random distribution to obtain the statistical significance. Correlation analysis between nodal strength values 
and motor scores was performed through the Pearson correlation test. Multilinear regression model with k-fold cross validation (k = 5) 
[38] was employed to assess the UPDRS-III prediction based on network nodal strength values (variance inflation factor was used to 
assess multicollinearity among predictors [39]). P-values were corrected by false discovery rate and only corrected p-values <0.05 
were considered as significant. 

3. Results 

For this study, thirty-four patients affected by PD and twenty-six healthy controls (HC) were assessed for eligibility, as shown in the 
enrollment flow chart in Fig. 2. Five patients and three HC did not meet the inclusion criteria. At the in-person screening, twenty-eight 
HC and twenty-seven patients attended, of which two did not meet the inclusion criteria. Thus, twenty-eight HC and twenty-five 
patients were enrolled from July 22, 2020 to August 10, 2020. Upon reviewing the recorded data, 2 patients and 2 HC showed 
low-quality data and were therefore excluded from further analysis. The final analyses were conducted on twenty-three patients and 
twenty-three HC selecting the best matching between the two groups. 

First, we built the covariance matrices based on the joints’ angular velocity, to assess the coordination among all joints during gait, 
for each participant. We analyzed the modular organization of the kinematic network of the two groups, and compared network 
metrics (i.e., joint-specific nodal strength and average nodal strength) in HC and PD patients. Finally, we investigated the relationship 
between network metrics and clinical motor impairment in PD. 

3.1. Modularity analysis 

The modularity analysis highlighted the groups of joints that are functionally coordinated during walking (Fig. 3). HC and PD 
patients exhibited similar clustering, although some differences were present. The two main clusters, which included the ipsilateral 
shoulder and elbow and the contralateral hip, were preserved in patients (although, as shown in the subsequent analysis, the level of 
coordination of these joints was lower in patients as compared to controls). The main difference was in the lower limbs. There, HC 
showed a cluster for each leg, highlighting strong coordination between ipsilateral knee and ankle during walking. In PD patients, the 
right ankle and knee did not belong to the same coordination cluster. Finally, the neck and pelvis also appeared in separate clusters in 
both groups and did not show coordination with any other body element. 

3.2. Networks features 

Afterwards, we moved to compare the joint-specific and global characteristics of HC and PD networks. Healthy subject showed 
significantly higher average nodal strength as compared to the patients (p < 0.001) (Fig. 4). Furthermore, nodal comparison showed 

Fig. 2. Enrollment flow chart. The figure shows the flowchart describing the enrollment of study participants, from eligibility to analysis. The 
sample size at each step is reported separately for patients and healthy controls. 
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significant differences in six joints. Compared to the HC, the PD group displayed lower nodal strength values of the following joints: 
right shoulder (p = 0.004; pFDR = 0.021), left shoulder (p = 0.005; pFDR = 0.021), right elbow (p = 0.002; pFDR = 0.021), left elbow 
(p = 0.013; pFDR = 0.03), right hip (p = 0.01; pFDR = 0.029), left hip (p = 0.018; pFDR = 0.035) (Fig. 4). 

Fig. 3. Visual representation of the kinematic network built on the joints’ angular velocity. The networks of healthy controls (HC) and 
patients with Parkinson’s disease (PD) are represented both in the shape of a matrix and as schematic visualization. In the matrix version, node 
labels are colored to reflect their cluster membership, as determined by community analysis. Please note that values on the diagonal, representing 
the correlation between the same time series, have been set to 0, as they are of no interest. Similarly, in the skeleton-based schematic visualization, 
the nodes (representative of the joints) are colored according to their cluster, representing kinematic synergies. The size of the nodes depends on the 
values of nodal strength (the larger the size of the node, the greater its value). The connections between nodes are displayed as black lines, and, 
similarly, the thickness of the lines depends on the value of the corresponding edge. For visualization purposes, only the top 25 % of edges with the 
highest values are shown. 

Fig. 4. Comparison of joint networks features. Violin plot of the comparison between joint nodal strength values of healthy controls (HC) and 
individuals with Parkinson’s Disease (PD). Each violin displays the distribution of data; dots within each violin represent the observations; hori
zontal lines represent the average value of the group; each violin contains a box plot with a white circle representing the median value. Please note 
that healthy subjects display higher values (i.e., higher coordination) at both global (i.e., Average), and nodal level. * pFDR-value <0.05, ** pFDR- 
value <0.01, *** pFDR-value <0.001. 
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3.3. Clinical correlations 

Thereafter, we looked for relationships between the clinical condition and the joint network’s characteristics. Fig. 5 displays the 
statistically significant correlation between the average nodal strength and the UPDRS-III (r = − 0.62, p = 0.0017). Furthermore, we 
investigated whether the nodal features would also relate to the clinical condition. Indeed, UPDRS-III were significantly correlated 
with both left elbow (r = − 0.65, p = 0.0007, pFDR = 0.0088) and right hip (r = − 0.6, p = 0.0024, pFDR = 0.0143) nodal strength 
(Fig. 5). Finally, we asked ourselves if the correlation between UPDRS-III and average nodal strength was mainly driven by the 
contribution of the left elbow and the right hip. Hence, we calculated the average nodal strength again, but this time excluding both left 
elbow and right hip. We found that even in this case the (partial) average nodal strength was significantly correlated with the clinical 
condition (r = − 0.48, p = 0.02). 

3.4. Prediction of the clinical impairment through a multilinear model 

Finally, keeping into consideration the features that were correlated with the UPDRS-III (i.e., average nodal strength, left elbow 
nodal strength, right hip nodal strength, partial average nodal strength), we set out to test their predictive power towards the UPDRS- 
III using a multilinear model including age, education and gender as nuance variables, validated with a k-fold cross validation scheme. 
Surprisingly, all the nodal strength values (including the partial average nodal strength, i.e., the average nodal strength without the 
right hip and left elbow contribution) significantly contributed to the prediction. In particular, multilinear models based on average 
nodal strength (p = 0.002, β = − 0.639) and partial average nodal strength (p = 0.018, β = − 0.519) predicted 47 % and 33 % of UPDRS- 
III variance, respectively (Fig. 6). 

Concerning the nodal strength values, multilinear regression models based on left elbow (p < 0.001, β = − 0.717) and right hip (p =
0.001, β = − 0.773) predicted 54 % and 43 % of the UPDRS-III variance, respectively (Fig. 7). 

3.5. Comparison with different metrics 

With regard to the comparison of joint-specific smoothness, we only found significant results before FDR correction. Specifically, 
patients with PD (compared to HC) showed lower SPARC values (i.e., lower smoothness) in right shoulder (mean PD = − 6.81, mean 
HC = − 5.43, p = 0.022, pFDR = 0.152) and right elbow (mean PD = − 6.47, mean HC = − 5.55, p = 0.028, pFDR = 0.152), and these 
values were not correlated with the UPDRS-III. 

4. Discussion 

In this study, we evaluated the joints’ coordination in healthy individuals and people with PD utilizing the framework of network 
theory. The underlying idea of this approach assumes that a thorough evaluation of the motor function must include the mutual 
relationship among all body segments. Despite the informative nature of the individual characteristics of limbs and joints, we believe it 
is useful to integrate this information by also focusing on the relationships between the different parts of the body involved in 
movement. Indeed, humans realize their movement accurately coordinating multiple body segments, and only through the adequate 
tuning of the whole system it is possible to accomplish motor tasks [4]. Studying motor behavior in known physiopathological con
ditions like Parkinson’s Disease may allows us to gain further insights into the nervous system’s regulation of movement. Therefore, we 
utilized a network approach to assess joint coordination by quantifying the interdependence of angular velocities among the joints 
during gait. This way, each node (i.e., joint) of the network captures the influence of all other nodes, thereby allowing to analyze 
movement into a holistic framework. 

Coordination is a mechanism that allows to tune the coupling among different body parts in order to perform a measured and 
(globally) smooth movement [5]. In our analysis, patients with PD displayed lower global coordination compared to healthy 

Fig. 5. Correlation with clinical motor impairment. Correlation analysis (performed using Pearson’s correlation coefficient) between joints’ 
nodal strength values and clinical motor impairment evaluated through the part III of the Unified Parkinson’s Disease Rating Scale (UPDRS-III). 
Correlation coefficient (r) and p-values (p) are reported for each analysis. All significant correlations display a negative coefficient, which means the 
higher the impairment evaluated with the clinical scale, the lower the coordination. Furthermore, average nodal strength was recalculated (partial 
average) without considering left elbow and right hip, excluding the possibility that the correlation between clinical condition and average nodal 
strength was driven by the nodal components. 
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individuals. This result can be interpreted as a reduction in the ability to synchronize the movement of different musculoskeletal 
segments during gait. In PD, the loss of dopamine can also affect the timing and sequencing of muscle contractions required for 
complex movements like walking [40–42]. As a result, individuals with Parkinson’s disease may experience difficulties in maintaining 
a steady and coordinated gait, leading to more fragmented and less fluid walking pattern. To this regard, please note that patients and 
controls walking speeds were kept as similar as possible, since it is widely reported that walking speed affects the gait pattern [43]. 
Additionally, the impairment of global kinematic coordination may also be influenced by secondary factors such as muscle stiffness, 
postural instability, and reduced proprioception [44,45]. These factors further contribute to the overall motor dysfunction observed in 
Parkinson’s disease, impacting the smoothness and precision of movements. 

Then, moving to the nodal characteristics of the network, we obtained detailed information with respect to specific joints. The 
results revealed that the patients presented altered coordination that included joints throughout the whole body. In particular, 
shoulders, elbows, and hips nodal strength values were the lowest in the patients’ group. This result highlights the reduced capability 
of individuals with PD to appropriately couple the movement of several body segments, mostly within the upper part of the body 
[46–48]. Surprisingly, the lower part of the body (ankle and knee) seems not to display any significant result, whereas ankle and knee 
impairments are commonly reported in studies on PD [49–52]. To this regard, Shiba et al. [53], analyzing the biomechanics of lower 
limbs in patients with Parkinson’s disease (considering various conditions such as on/off medication and with/without freezing of 
gait), highlighted significant differences compared to the control group also in knees and ankles kinematics. Specifically, considering 
patients in the off condition and without freezing of gait (i.e., those most similar to our sample), they showed several alterations in the 
flexion-extension movements of both the ankle and the knee (as well as the hip) compared to healthy controls. It should be emphasized 
that our analysis is different in nature and focuses on coordination (i.e., the interaction between different parts). The network approach 
does not aim to replace current knowledge but to integrate it to offer a broader perspective. In this case, our hypothesis is that although 
alterations (e.g., reduction in peak range of motion) are present, the coordination between joints is sufficiently preserved, as the 
patient is indeed able to walk and thus execute the necessary kinematic synergies. Further investigations and specific experimental 
designs conducted on larger samples will be able to focus on this aspect to verify whether coordination alterations also exist in the 

Fig. 6. Clinical impairment prediction based on global network features. First row, consisting of the three top panels, shows the results of the 
predictive model based on average nodal strength; the second row, consisting of the three bottom panels, shows the results based on the partial 
average nodal strength (average nodal strength without contribution of the joints that are significantly correlated with the UPDRS-III). First panels 
(panels on the left side of the figure) display the R2 values while adding predictors; significant predictors are in bold and report the negative beta 
coefficient (-β*); second panels (the two panels in the middle) compare actual vs predicted clinical motor scores; third panels (on the right side of the 
figure) show the distribution of the residuals. Predicted values are obtained performing k-fold cross validation with k = 5. UPDRS-III: part III of the 
Unified Parkinson’s Disease Rating Scale. 
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kinematics of the knee and ankle. It should be noted that even the smoothness measure did not highlight differences in knee and ankle 
joints. One possibility is that our sample, consisting of patients with a low staging grade, does not show significant alterations in 
movement control and coordination, even though their range of movement may be limited. However, it should also be noted that as 
evidenced by the community detection algorithm, the ankle and the knee of the right side failed to work synergistically in PD, with 
respect to the healthy controls. This aspect may be related to the asymmetries, a common feature of parkinsonian gait [54,55]. 

The coordination among articular excursions was explored in previous studies on PD, by investigating the coupling between 
selected pairs of joints. Roemmich et al., evaluated the ipsilateral and contralateral interlimb coordination between hip and shoulder 
[11], analyzing the cross-covariance of the joint angle vectors, thereby exploiting a technique similar to the one that we utilized to 
build the matrices of joint kinematics. The authors found reduced coordination in patients with respect to healthy controls. Kellaher 
et al., performed a similar study, this time with the participants walking backwards, which yielded similar results [56]. However, these 
analyses were limited to a few selected pairs of joints and did not take into consideration all the possible combinations among multiple 
pairs of joints. Our framework lends itself as a coherent development of these analyses, based on the robust and updated framework of 
network theory and allowing to effectively convey high-dimensional patterns within a single mathematical object (i.e., a matrix). 
Information that is comparable to the ones calculated by Roemmich et al. is indeed available as the individual edges of these kinematic 
matrices and represent the coordination between couple of joints. As shown in Fig. 3, the ipsilateral coordination between hips and 
shoulders is not present among the mostly coordinated edges, while the contralateral coordination, despite being represented, is 
clearly lower (narrower lines in the PD representation). Furthermore, patients displayed lower general coordination of hips and 
shoulders in node-specific analysis. 

As a further step, we investigated the relationship between our network-extracted features and the motor impairment evaluated 
through UPDRS-III. We found out that global and nodal features related to the kinematic network, were correlated to the clinical motor 
condition. In particular, the average nodal strength of the network, a metric conveying information about the whole body, negatively 
correlated with the clinical score. The interpretation of this result is straightforward and tells us that the lower the average nodal 
strength (i.e., the overall joints’ coordination), the higher the clinical impairment. Moreover, nodal correlation between specific joints’ 
nodal strength and the UPDRS-III score also showed the same trend, involving the right hip and the left elbow joints. First, it should be 

Fig. 7. Clinical impairment prediction based on joint-specific network features. The first row, consisting of the three top panels, shows the 
results of the predictive model based on left elbow nodal strength; the second row, consisting of the three bottom panels, shows the results based on 
the right hip nodal strength. First panels (panels on the left side of the figure) display the R2 values while adding predictors; significant predictors 
are in bold and report the negative beta coefficient (β*); second panels (the two panels in the middle) compare actual vs predicted clinical motor 
scores; third panels (on the right side of the figure) show the distribution of the residuals. Predicted values are obtained performing k-fold cross 
validation with k = 5. UPDRS-III: part III of the Unified Parkinson’s Disease Rating Scale. 
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noted that right hip may be seen as a key point as it represents the connection between the upper and the lower body. Hence, in this 
case the right hip joint correlation may refer to the inability to coordinate such pivotal point to the remaining joints. Our hypothesis is 
that this feature is related to the unilateral stiffness that commonly affects PD patients at the early stage [57–59]. Then, since bipedal 
locomotion occur with contralateral movement of the upper and the lower body, it does not come as a surprise that at the upper level 
the left side of the body (i.e., left elbow joint) presents a similar correlation with the clinical motor impairment, likely as a form of 
biomechanical compensation. Finally, it should be noted that the correlation between the average nodal strength and the UPDRS-III is 
also confirmed even when we exclude the right hip and the left elbow nodal strength from the computation. This confirms that the 
correlation with the average coordination ability was not exclusively driven by the contribution of those joints (i.e., the left elbow and 
the right hip), thereby a global coordination impairment correlated the clinical motor scores occurs in PD. 

The relationship between clinical scores and joint coordination was found also in the study performed by Roemmich et al. [11]. 
Indeed, the authors found that the upper-lower extremities (i.e., shoulder and hip, respectively) coordination was related to the motor 
impairment (evaluated with UPDRS-III). Similarly, our study showed that the higher the coordination, the lower the UPDRS-III score. 
Furthermore, the multilinear regression analysis confirmed the predictive power of the nodal strength over the UPDRS-III. This result 
strengthens the clinical relevance of the network approach to movement analysis. Furthermore, setting the analysis in a k-fold cross 
validation framework increases the possible reproducibility and the generalization capacity of our findings [60]. 

Our results are in line with existing theories that dysfunction of motor circuits and neural synchronization are key factors in the 
pathophysiology of Parkinson’s disease [61]. The reduced motor coordination observed in our patients supports the hypothesis of a 
breakdown in communication and synchronization between the brain areas responsible for motor control [62]. However, our results 
also suggest that motor dysfunction in Parkinson’s may not be uniform, but rather localized or more pronounced in certain areas of the 
body (that may vary at different disease staging), suggesting the possible alteration of physiological kinematic synergies. To this re
gard, low beta oscillation, known to be involved in the regulation of motor control and neural synchronization, may play a relevant 
role [63,64]. In Parkinson’s patients, a significant reduction in corticomuscular coherence associated with these oscillations may 
explain the reduced motor coordination and the altered kinematic synergies. Future studies could explore how these techniques can be 
integrated into existing theoretical models of Parkinson’s (i.e., integrating corticomuscular and/or synergies with kinematic synergies) 
and contribute to a more detailed understanding of motor and neural interactions. 

Our work presents limitations that need to be discussed. First, it should be emphasized that the sample size is small. Further studies 
with larger sample sizes are necessary to confirm our results. Moreover, the sample of patients examined refers to an early stage of the 
disease. While this is beneficial for the homogeneity of the sample, it does not allow us to generalize our findings to other stages of the 
disease. Further studies on diverse populations are necessary to confirm the applicability of our results to the entire population of 
individuals with Parkinson’s. Furthermore, concerning possible confounding factors, when matching the two groups with regard to the 
physical activity, we only collected self-reported information that none of the participants was practicing structured physical activity. 
A more extensive quantitative data collection to assess the level of activity/inactivity would be advised. 

5. Conclusion 

In conclusion, we showed that valuable insight about the overall movement patterns and coordination can be gained by measuring 
the joints’ kinematic network. This methodological approach offers the possibility to characterize the coordination, allowing the 
assessment of each part of the body in a holistic view that always keep into consideration the whole-body movement. Furthermore, 
network features of this analysis are predictive of the clinical motor impairment, suggesting that such an approach may be useful to 
monitor the development of the disease, focusing both on specific body parts, or on the average coordination during gait. In particular, 
our approach suggests that during the rehabilitation and functional recovery of the patient, great attention should be paid not only to 
improving mobility but also to the ability to properly coordinate joint movements. The network approach could, in the future, serve as 
a resource for health specialists for the proper assessment of the patient’s coordination abilities, compared to possible reference values 
gathered from appropriate populations. Furthermore, it should be noted that, while the primary focus is about the measurement and 
analysis of joint movements, it inherently entails information about muscle coordination as well. The joint angles and velocities 
utilized to build the network are a direct result of the underlying muscle activations orchestrated by the brain. Hence, studying the 
coordination patterns and the relationships between joint movements, may allow to investigate higher functions in pathophysiological 
conditions affecting the motor behavior, such as PD. Specifically, it may be possible to indirectly obtain information on the coordi
nation mechanisms in place at higher levels of control, such as the synergistic muscular activation operated by the central nervous 
system. However, while interesting, further studies are needed to verify to which extent it is possible to find a direct link between the 
kinematic network and higher cognitive functions. 
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