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Abstract

Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of
biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density
to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse
localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction
technique called the Hough Transform simple biological structures are identified from both simulated and real localization
data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer
localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of
clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This
approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological
information.
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Introduction

Super-resolution (SR) imaging has recently led to a number of

important insights in biology that could not have been achieved

with conventional microscopy due to optical resolution limitations

[1,2]. A variety of approaches now achieve resolution far beyond

the diffraction limit. Localization based approaches such as

STORM [3], PALM [4], FPALM [5] and related methods have

been employed effectively for static and slowly-moving structures.

These approaches require sequential acquisition of positions of

individually resolved fluorescent molecules, which are then

assembled into a high-resolution image. The resolution in these

images is related to the localization accuracy and the sampling

density, with high-resolution images requiring comprehensive

sampling of the molecular positions. Because of these require-

ments, localization microscopies still struggle to provide high

spatial and temporal resolution images, primarily due to the time-

scale mismatch between acquisition and biological motion. Recent

demonstrations using very high laser power improved the frame-

capture timescale by an order-of-magnitude by accelerating the

localization and deactivation cycle time [6]. While this approach

achieved 0.5–2 second acquisition speeds, this still poses a

challenging limit for many biological processes.

Recently, computational methods from the branch of statistical

machine learning and computer vision [7–12] have been applied

to biological structures and biophysical processes. Various

generative models [13–15] have been used to facilitate analysis

of conventional microscopy images. The structure of localization-

based SR imaging data is different than that of conventional

microscopy. The catalog of molecular positions provided by this

approach provides information about the underlying structures at

molecular length scales. Such data requires computational

approaches that utilize the inherent positional information to

extract meaningful structural biology–scale information about

those cellular structures. Because localization microscopy relies on

sequential acquisition of molecular positions, a shorter acquisition

window results in identification of fewer molecular positions from

the underlying structure. Dynamic localization datasets are

inherently incomplete; yet represent a statistical sampling of the

complete underlying structure. We hypothesized that generative

models can accurately identify underlying biological structures at

high resolution using significantly less data. Such models can be

used to extract useful biological information such as characteristic

lengths and inclination angles of filamentous structures, organelle

size and shape and other representative characteristics of the

underlying structures.

Here we apply a parametric feature extraction method known

as the Hough Transform [16] to identify basic structures using

sparse single molecule (SM) data in 2-d. This approach is robust to

noise sources common in localization datasets. In addition, it is

robust to occlusion and the presence of features unrelated to the

parameterized features of interest. As implemented here, the

Hough Transform efficiently infers underlying structures in spite of

substantially reduced molecular sampling density and recovers

quantitatively useful information about the sample set based on the

parametric definitions of the objects. This computational frame-

work lays the groundwork for extension to more generalized

parametric objects in 2-d and 3-d.
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The Hough Transform (HT) and its close relative Radon

Transform has been previously used to study biological features

from images [8,17–19]. We extend the method to the analysis of

localization based super resolution image datasets. Although we

evaluate only the parametric case, the generalized Hough

Transform (GHT) and variants can be extended to non-

parametric cases. In case of the standard HT applied here, the

parameter space for lines is 2-d and for circles is 3-d, both

remaining computationally tractable for typical SR datasets [16].

In contrast, GHT variants usually involve a 4-d parameter space

with position, orientation and scale [20], and are substantially

more computationally expensive. An efficient extension of GHT

called displacement vector GHT (DV-GHT) is proposed in [21].

Some other improved and faster variants have been proposed for

2-d [22–29] and 3-d [30]. HT and GHT are inherently

parallelizable, so large-scale computation can be managed by

performing hardware-based parallel processing using the latest

GPUs [31] or field programmable gating arrays (FPGA) [32],

potentially making some of these generalized methods computa-

tionally approachable.

Results

Simulated Data Generation
The basic structural elements in biology are often simple

geometric shapes such as lines, circles and ellipsoids [33]. To

mimic filamentous structures such as actin fibers or microtubules

and circular shaped structures such as clathrin-coated pits or

endosomes we have generated artificial data consisting of binary

lines and circles in distinct channels (Fig. 1). The density of lines

in the example mask corresponds to real biological structures

such as lamellipodial actin networks [34] if the mask area

represents a 640 nm6640 nm region of a cell (a 1 pixel = 1 nm2

scale). Active pixel points from the mask structures are randomly

selected to simulate stochastic activation of fluorescent mole-

cules, analogous to PALM and STORM imaging. This reduces

the selection bias of molecules from a certain region of the

structures and retains the relative density of the molecules for all

regions. For all simulated and real datasets, the found or

simulated molecular positions were the input to the HT

calculations. A number of papers have reviewed robust

approaches for identifying molecular positions from localization

datasets [35,36].

Noise Sources
The two basic noise sources in localization-based SR imaging

are position noise (localization accuracy) and outlier noise

(background signal) [4,37]. The position noise represents the

limitations inherent in finding the true position of a molecular

emitter, while the outlier noise represents spurious localizations

and nonspecific fluorophore binding sites typical of real datasets.

Outlier noise was generated as ‘Salt and Pepper’ noise in

MATLAB although any type of noise can be considered. The

position noise of 0, 5 and 10 pixels represent the FWHM of the

Gaussian spread of position relative to the true active-pixel

location in the mask. Outlier noise densities tested were 0, 0.002,

0.005, 0.01, 0.02 and 0.05 expressed as the fraction off-mask pixels

considered as a found molecular position. Outlier noise densities

above 0.002 are extremely high for single molecule datasets and

unrealistic, but were included to assess the robustness of the

reconstruction method to high degrees of noise. Additional

simulations were performed at other intermediate position noises.

While only three cases are shown here all are available (Fig. S2

and Movies S1, S2, S3, S4, S5, S6, S7).

Simulations of the linear and circular masks at different outlier

noise, position noise and sampling density demonstrated that the

HT is able to reconstruct the linear and circular structures robustly

and accurately at high outlier noise levels and position noise levels

similar to those seen in real single molecule localization data

[3,4,38]. The reconstructed lines and circles are shown in Fig. 2

and the reconstruction performance, quantified using a complex

wavelet structural similarity index measure (CW-SSIM) is shown

in Fig. 3.

Reconstruction from simulated data
Figure 2 shows a cropped section of the reconstructed lines (top

row) and reconstructed circles (bottom row) overlaid on the point

datasets for the mask shown in Fig. 1A at different outlier noise

densities, a position noise of 5 pixels and a data density of 15%

(fraction of total number of possible points that constitutes the

structure). The full reconstruction for lines and circles at all the

position noise and outlier densities are shown in the Movies S1,

S2, S3, S4, S5, S6, S7.

The plots shown in the top row of Fig. 3A, 3B, 3C for lines

reveals that at lower position noise cases, the reconstruction

measure is close for different outlier noise densities; although as

Figure 1. Structural mask for simulated data. (A) Lines and Circles,
cropped image in the yellow rectangle box is shown in Figure 2. (B)
lines only (C) circles only.
doi:10.1371/journal.pone.0036973.g001
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expected it is better at low outlier noise. In general the

reconstruction gets better with increased sample density but

beyond a data density of 10–15% (low position noise) and 15–20%

(high position noise), more data does not provide more informa-

tion about the structure and the CW-SSIM measure reaches a

plateau. This indicates that collection of SM-SR data has an

optimum value for dynamic experiments. The plots shown in the

bottom row Fig. 3A, 3B, 3C for circles reveal a similar trend at

various position noise and outlier noise to that of line reconstruc-

tion. The reconstruction for circles is significantly better than the

lines, an improvement expected due to the 3-d parametric space

for circles.

The HT is more robust to outlier noise than to position noise in

these simulations. This is likely a result of the Hough accumulator

which scores votes for objects that are coincident with a feature

and does not account explicitly for localization uncertainties

(objects that are near to a feature). Improvements to the algorithm

could incorporate localization uncertainty directly.

On the whole, Fig. 3 demonstrates that most of the structural

information can be recovered with only a fraction of the single

Figure 2. Representative linear and circular structure reconstruction. Column (A) Mask (B) outlier noise density 0 (C) outlier noise density
0.005 (D) outlier noise 0.02. Position noise is 5 pixels with data density of 15% for all cases here.
doi:10.1371/journal.pone.0036973.g002

Figure 3. Reconstruction measure using Structural Similarity Index CW-SSIM. A total of 100 random simulations were performed at each
data density and at outlier noise densities of 0, 0.005 and 0.02. Top row is for lines and bottom row is for circles. Column (A) Position noise of 0 pixel.
(B) Position noise of 5 pixels. (C) Position noise of 10 pixels. Reconstruction measure for all the noise densities are shown in Figure S2.
doi:10.1371/journal.pone.0036973.g003

Generative Models for Super-Resolution Images
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molecule data for analysis of lines and circles. In this example

mask, for lines, about 15% data identifies 80–85% or more of the

input structures while for circles around 10% of the data identifies

more than 90–95% of the input structures. Sampling beyond these

levels only modestly increased the information recovery. For lines

and circles, inclusion of additional data density beyond these levels

only resulted in modest additional feature identification (,10%).

With an improved HT we would likely improve the performance

in recovering the dense linear structures, for example using Monte

Carlo optimization over parameter space or maximum likelihood

shape reconstruction [39].

We also performed similar analysis for parallel sets of lines to

determine the resolution, calculated as the smallest pairwise

distances between all the lines, at different data densities. The

reconstruction result is shown in Figure 4 for the mask in Figure

S4, and we found that the highest resolution is obtained at 10–

15% of the input data. This is a marked contrast to the spatial

sampling requirements according to the Nyquist theorem,

requiring a measured molecular density at half the length scale

of the smallest feature size in the data.

Reconstruction from real data
We obtained the molecular position table from the previously

published two-color STORM datasets [37] that labeled clathrin

(red) and tubulin (green) in BS-C-1 cells. We applied the Hough

Transform reconstruction for lines and circles independently on

the two channels. The reconstruction is shown in Fig. 5 and the

full reconstruction at more data densities is shown in Movie S8. It

is not possible to determine the CW-SSIM without the actual

structure, so the performance is gauged visually and with

quantitative feature analysis. We have validated the robustness

of the HT on the real data by performing the feature extraction

and analysis with 100 random samplings at each of three data

densities. The statistics from these analyses are shown in

Table 1.The parameter extraction and distribution properties

from the 100 random samplings are very consistent, evidenced by

the negligible standard deviations in the mean and median

parameter values. It should be noted that at 100% density the data

remains the same for each sampling and hence the feature

extraction is exactly the same for all the sampling instances with

standard deviation of practically zero for all the parameter values.

This method is robust to cross-talk (Fig. S3) (as explained in the

methods section) of the multicolor channels and so it was not

necessary to perform density filtering [37] prior to analysis.

The original data provided was in camera pixel coordinate

space. We have performed the reconstruction at 256 scaling from

the original coordinate space (,6 nm66 nm pixel-size). This scale

retains most close points without being binned into the same pixel

when we discretize the coordinates for analysis. Most of the

structural information is obtained at just 10% of the single

molecule localization data (Fig. 5) and very little additional

information is recovered at higher data densities. This holds true

for both the image reconstruction and the extracted distributions

of quantitative traits from the objects. The quantitative informa-

tion extracted from the HT parameters for objects identified in the

tubulin and clathrin localization data is shown in the histograms of

Fig. 5 (third row–tubulin, fourth row–clathrin). The histograms of

tubulin orientation are practically identical with a mean and

median of about 750 for the three data densities shown here. The

distribution of clathrin vesicle diameters is also similar for the three

data densities. The mean and median values of the distributions of

clathrin diameters are slightly higher with increasing data density,

increasing from 140 nm (10%) to 160 nm (100%), a likely

consequence of the increased data density providing more votes

from localizations at the periphery of the circular objects. As with

any automated analysis, there are some missed structures and

some spurious structures in the reconstruction. These represent

,10% of the distinct features identified by manual inspection. The

choice of parameters could be optimized iteratively to achieve the

best possible solution.

We have compared this HT approach to an alternative feature

extraction method. Blob detection [40] with the Laplacian of

Figure 4. Parallel line reconstruction. Reconstruction measure using Structural Similarity Index CW-SSIM (top row) and resolution, calculated as
the minimum inter line distance (bottom row) at indicated outlier noise densities. A total of 100 random simulations were performed at each data
density. Column (A) Position noise of 0 pixel. Column (B) Position noise of 2 pixels.
doi:10.1371/journal.pone.0036973.g004

Generative Models for Super-Resolution Images
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Gaussian (LoG) as the kernel is an established method for object

detection generally applied to intensity images. We applied blob

detection to datasets with 10% and 50% of the clathrin

localizations included, and attempted to extract quantitative

parameters from the blob analysis (Fig. S5). This approach

generated multiple blob circles of different radii at multiple scales

for the same feature, so we had to filter out the smaller circles

with an aggressive size filter, eliminating some circles of a

biologically relevant length scale. While this approach correctly

locates the possible features, it tends to overestimate the circle size

as can be seen from Fig. S5C and S5G and the diameter

histograms S5D and S5H. Moreover since it does not discrim-

inate between different feature types, it is not robust to cross talk

from the other channel. For quantitative analysis of sparse

localization data, the HT is significantly more robust than the

blob detection.

Figure 5. Single molecule localized data of clathrin (red) and tubulin (green). Top row is the plotted positions from both channels. Scale
bar is 500 nm. Second row is the representative reconstructed structures from both channels, overlaid on the data (A) 10% data (B) 50% data. (C)
100% data. Third row is the histogram of orientation angle of the reconstructed line segments and the bottom row is the histogram of the diameters
of the reconstructed circles.
doi:10.1371/journal.pone.0036973.g005

Generative Models for Super-Resolution Images

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e36973



Discussion

Generative models allow efficient reconstruction of underlying

parametric objects in both simulated and real localization

microscopy datasets at data densities between 10–20%. These

approaches substantially improve the efficiency of SM–SR imaging

to generate quantitative biological and structural information. This

approach can be potentially used with dynamic SM-SR imaging of

structural components in cells to improve the temporal resolution

by a factor of 5 to 10. Since the parameters of the method represent

physical traits such as radius of circles or orientation angle of lines,

we are able to extract meaningful and reliable distributions of

object properties with this approach in both simulated and real

datasets. More careful quantification of the parameter space could

be used to extract, for example, the underlying molecular density

for a feature, since the classical HT method is based on implicit

Bayesian voting of the localized points in the datasets. It is also

possible to obtain the persistence length of the tubulin from the

obtained coordinates of the lines with further analysis.

The difference of estimated median clathrin vesicle diameter

seen at different data densities in Fig. 5 is a result of the voting

process. At lower data density the edge points are most likely

underrepresented in the vote counts relative to high data densities.

To overcome this issue we can apply weighted voting for circle

detection so that even a small number of points towards the outer

edge of the circles can receive enough votes to be considered as a

valid shape. We have tested this correction, but found that the full

normalization appeared to overestimate the boundary. The

correct level of voting normalization could be estimated through

a statistical learning of several such objects at low data density.

Nevertheless, there is always systematic bias in estimating

biological structures, from real biological experiments. In spite of

this, quantitative comparisons across treatment conditions with

similar data densities remain informative in assessing differences in

biological datasets. The robustness of the HT-based feature

estimation makes such an approach feasible.

As seen from the results section, the classical HT for line

detection was limited to narrow filamentous structures since it has

no accommodation for the uncertainty of the molecular position.

Methods do exist for such purposes [41]. In this study we have

shown that given sparse molecular positions we can generate the

corresponding biological structures with high efficiency using

simple shape primitives. Variants of the HT and other methods

[42–47] can detect arbitrary shaped structures. Here we have

applied only the classical form of the HT for inferring basic

parameterizable biological shapes. This approach could be easily

extended and improved by including parameter optimization

through Monte Carlo sampling. Extension to arbitrary shapes

could be accomplished using variants of the classical HT such as

the Generalized HT [20], which can be used for shapes without a

parametric form, Randomized or Probabilistic HT [24], or the

Progressive Probabilistic HT [29]. These generative methods may

be particularly useful for dynamic imaging of cellular components

at high spatial and temporal resolution.

Methods

Hough Transform
The Hough Transform [16](HT) is a standard computer vision

tool for recognition of global patterns in an image space by

recognition of local patterns such as points or peaks in a

transformed parameter space. The basic idea of HT method is

to identify parametrizable curves such as lines, polynomials,

circles, ellipsoids, and others using a voting procedure on the

parameter space based on features in the image. Each input

feature contributes to a global consensus shape that most likely

generated the image point. Localization datasets produce discrete

features, namely the set of found molecular positions. Since each

point is treated independently, outlier noise pixels will add small

peaks and occluded points will just alter the peak intensities in the

parameter space without changing the actual structure. In

addition, points from other shapes will not significantly contribute

to the peaks for the consensus shape in the transformed parameter

space. These traits make the HT robust to noise, partial occlusion

and the presence of other shapes, common problems encountered

with localization microscopy. HT does not require any prior

information about the number of solution classes and can find

multiple instances of the shape at once. We have applied the

classical HT to extract linear and circular structures from SR

biological datasets. HT implicitly generates the observable

structural data from a probability density function through a

Bayesian process [48]. Hence HT is an implicit generative model

of parameterized shapes.

Hough Transform as a Generative Model for Biological
Structures Using Single Molecule Data

In classical machine learning a generative model is defined as a

model that can randomly generate observable data with a

parameter set defined by a full joint probability distribution with

priors. The working principle of the Hough Transform (HT) is

essentially a voting process. Investigated from a Bayesian

perspective, if the votes follow a probability distribution, the joint

probability distribution of all the input feature points is, in effect,

the voting process. The mathematical proof has been shown

elsewhere [48] for conventional images and edge points found

through edge detection. In the current application, the features are

localized single molecules from labeled biological structures that

can be represented as parametric objects. The proof can be

straight forwardly extended to this situation.

Parameterization of a structure is based on a function that

defines the structure in terms of a set of variables. The parametric

normal form of a line is:

Table 1. HT extracted feature parameter values for the real
data over 100 random samplings at 10, 50 and 100% data
density.

Data density 10% 50% 100%

haverage

(degree)
m 76.04 75.6 74.9

s 1.4 0.64 1.6610213

hmedian

(degree)
m 75.8 76.4 75.5

s 1.02 1.1 0.0

Daverage

(nm)
m 137.2 152.8 164.0

s 3.5 1.5 2.6610213

Dmedian

(nm)
m 138.1 156.5 161.6

s 6.4 2.6610213 2.6610213

haverage and hmedian are the mean and median values of the orientation angle of
all the lines for a particular sampling. Daverage and Dmedian are the mean and
median values of the diameter of all the circles. m and s are respectively the
mean and standard deviation over the 100 random samplings for the average
and the median values of the h and D distributions.
doi:10.1371/journal.pone.0036973.t001
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r~x cos hzy sin h, with a 2{

d parameter space Hl~ r,hð Þ
ð1Þ

The parametric equation for a circle is:

x{að Þ2z y{bð Þ2~

r2 with a 3-d Hough parameter space Hc~ a,b,rð Þ
ð2Þ

The working principle for a classical HT is explained below.

Fig. 6A represents the parametric normal form line

r~x cos hzy sin h, drawn in solid blue color, passing through

a point (50, 50), with h~45o and r~69:3. Here the origin is (1,1).

Fig. 6B shows a sinusoidal curve in the Hough parameter

space(r,h), corresponding to the point (50,50) in the real space.

When we have three points (Fig. 6C), the Hough parameter space

has three sinusoidal curves (Fig. 6D) corresponding to the three

points in real space and they have an intersection point

corresponding to a particular pair of r,hð Þ values indicating that

the three points are collinear in the real space (Fig. 6C). The

individual curves are accumulated in a matrix (the Hough matrix),

and consensus lines are identifiable as peaks within this

accumulation matrix (in this case, a single point with a value of

3). When there are multiple lines in the image space, there will be

several intersections of the sinusoidal lines (peaks) for the group of

points falling on the corresponding lines in the image space. Line

end points are determined based on votes and a pre-defined

maximum gap allowed between two points. If the distance

between points exceeds a threshold the line is terminated at the

previous point generating an end point.

Figure 6. Illustration of working principle of the Hough
Transform for lines. (A) Parametric normal form line passing through
a point (50, 50) (B) Hough matrix parameter space with sinusoidal line
corresponding to (50, 50). (C) 2 additional points added to (A). (D)
Sinusoidal curves intersect for the three collinear points. One peak in
the Hough space corresponds to one line in the image.
doi:10.1371/journal.pone.0036973.g006

Figure 7. Illustration of working principle of the Hough Transform for circles. (A) Hough accumulator space for a circle (a,b,r) when the
radius r is unknown. The scanning circles in the parameter space are on the cone surface in the 3-d space. (B) 5 points on a circle (100, 100, 50). (C)
Circles in the Hough accumulator space corresponding to each of the input points in (B). (D) 20 points on a circle (100, 100, 50). (E) Circles in the
Hough accumulator space corresponding to each of the input points in (D). The intersecting peak represents the center of the circle we are searching.
doi:10.1371/journal.pone.0036973.g007

Generative Models for Super-Resolution Images
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The detection of circles works on the same voting principle as

that of lines, only the Hough parameter space is 3-d a,b,rð Þ. For

each input point on the original circle (Fig. 7B) there will be a

range of circles (depending on the discretization of the

parameter space) in the Hough accumulator space with the

input point as the center. The intersection of those circles will

define the center of the circle in the original image space. For

the above example with 5 and 20 points, the intersection of the

circles in Hough space (Fig. 7C) is around (100,100) as the

original circle (Fig. 7B). This example also shows how more

input points, produces more votes for a particular circle

increasing the probability of locating the center of the circles.

The Hough space for multiple objects is shown in Figure S1.

The accumulator slices are of the same size as the image space

and the stack length is the total length of the radius range that

has to be searched. So the accumulator array has a dimension of

Image Width6Image Height6Length of Radius discretization.

For objects with a known radius the search space is 2-d and

calculations are much faster.

Experiments
The detection of lines and circles using HT was performed for

100 random samplings of the data points on the structures at

each data density. To remove spurious feature peaks in the

Hough parameter space, we have used a 2-d median filter for

lines and a discrete filter with a Laplacian of Gaussian kernel in

order to smooth the 3-d Hough accumulator matrix for circles.

To quantify the reconstruction, the structural similarity score

was calculated for each random sample using a Complex

Wavelet Structural Similarity Measure [49] (CW-SSIM) (Text

S1) and the mean of those scores was calculated for each

data density. These calculations were performed for different

position noise and at different outlier noise densities as described

above.

Parameter Information for HT Reconstruction of Real
Dataset

The parameter values are shown in Table 2 (a more detailed

one is provided in Table S1). Here the Hough Matrix is denoted

by H and cH for the lines and circles respectively. A 2-d median

filtering was applied to H with sliding window = [length (row H);

length (column H)]/75. A Laplacian of Gaussian filter (Text S2)

and unsharp mask filter with parameter value of 0.2 was applied to

the 3-d accumulation Hough matrix cH.

Supporting Information

Text S1 Structural Similarity Index Measure (SSIM).

(DOCX)

Text S2 Parameter Information for HT reconstruction
of real dataset.

(DOCX)

Figure S1 Example of Hough space for multiple lines
and circles in the real data (Fig. 5). (A) Hough Matrix for the

lines (microtubules) at 5% data density (B) Hough accumulator

space for circles (CCPs) at 5% data density.

(TIF)

Figure S2 Reconstruction measure using Structural
Similarity Index CW-SSIM. A total of 100 random simulations

were performed at each data density and at outlier noise densities

of 0 0.002, 0.005, 0.01, 0.02 and 0.05. Top row is for lines and

bottom row is for circles Column (A) Position noise of 0. (B)

Position noise of 5. (C) Position noise of 10.

(TIF)

Figure S3 Crosstalk between red and green channel.
CCP(left) and Tubulin(right) data showing cross-talk from the

green and red channel. Scalebar is 500 nm.

(TIF)

Figure S4 Parallel line mask.

(TIF)

Figure S5 Laplacian of Gaussian (LoG) blob detection
of circular features. Multi-scale kernel size range is set to

1.0%–10% of the image size (140061400) and radius search

range of 1.6–19 pixels which corresponds to ,10 to 120 nm.It is

a multiscale detection hence there are more than one circles

with different radius for a detected blob. (A) Detection at 10%

data density. (B) Same as (A), circles with radius less than 6

pixels (,38 nm) are removed. (C) Close up view of the yellow

region in (B). (D) Histogram of the detected bob radii in (B) (E)

Detection at 50% data density. (F) Same as (E), circles with

radius less than 6.5(,41 nm) pixels are removed. (G) Close up

view of the yellow region in (F). (H) Histogram of the detected

bob radii in (F).

(TIF)

Table S1 HT Parameter information for the HT
reconstruction of the real dataset. [,] indicates fixed range

values for all conditions. The corresponding data density (%) is

shown in brackets. The single values listed for the parameters h,

r, and r are the discretization steps. Scale = 25 and pixelsi-

ze = 158 nm.

(DOCX)

Table 2. HT Parameter information for the HT reconstruction
of the real dataset.

Parameter Value, Range

Lines

h (degree) 0.5, [290, 89.5]

r (pixels) 6

maximum peaks 5000

peak separation (2 d) (pixels) [15,19] or [17,19]

peak threshold (0.23–0.26)6max(H)

minimum line length (pixels) (126–168)

H bin gap filling (pixels) (47.5–33.6)

Circles

r (pixels) 0.4, [10, 120]6scale/pixelsize

maximum peaks 200

minimum spatial separation between peaks
(pixels)

55

minimum radius separation between peaks
(pixels)

(71–75)

peak threshold (0.53–0.63)6max(cH)

[,] indicates fixed range values for all conditions and those in (-) are values that
vary from 5–100% data density. The single values listed for the parameters h, r,
and r are the discretization steps. scale = 25 and pixelsize = 158 nm. A detailed
list of parameter values for all data densities (5% steps) are provided in the
Table S1.
doi:10.1371/journal.pone.0036973.t002
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Movie S1 HT reconstruction of lines shown in the mask (Fig. 1B)

at position noise of 0 and noise densities of 0, 0.002, 0.005, 0.01,

0.02, 0.05.

(AVI)

Movie S2 HT reconstruction of lines shown in the mask (Fig. 1B)

at position noise of 5 and noise densities of 0, 0.002, 0.005, 0.01,

0.02, 0.05.

(AVI)

Movie S3 HT reconstruction of lines shown in the mask (Fig. 1B)

at position noise of 10 and noise densities of 0, 0.002, 0.005, 0.01,

0.02, 0.05.

(AVI)

Movie S4 HT reconstruction of circles shown in the mask

(Fig. 1C) at position noise of 0 and noise densities of 0, 0.002,

0.005, 0.01, 0.02, 0.05.

(AVI)

Movie S5 HT reconstruction of circles shown in the mask

(Fig. 1C) at position noise of 5 and noise densities of 0, 0.002,

0.005, 0.01, 0.02, 0.05.

(AVI)

Movie S6 HT reconstruction of circles shown in the mask

(Fig. 1C) at position noise of 2 and noise densities of 0, 0.002,

0.005, 0.01, 0.02, 0.05.

(AVI)

Movie S7 HT reconstruction of parallel lines shown in the mask

(Fig. S4) at position noise of 2 and noise densities of 0, 0.002,

0.005, 0.01, 0.02, 0.05.

(AVI)

Movie S8 HT reconstruction of the real data shown in (Fig. 5).

(AVI)
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