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Basement membranes (BMs) evolved together with the first
metazoan species approximately 500 million years ago. Main
functions of BMs are stabilizing epithelial cell layers and
connecting different types of tissues to functional, multi-
cellular organisms. Mutations of BM proteins from worms to
humans are either embryonic lethal or result in severe
diseases, including muscular dystrophy, blindness, deafness,
kidney defects, cardio-vascular abnormalities or retinal and
cortical malformations. In vivo-derived BMs are difficult to
come by; they are very thin and sticky and, therefore, difficult
to handle and probe. In addition, BMs are difficult to solubilize
complicating their biochemical analysis. For these reasons,
most of our knowledge of BM biology is based on studies of
the BM-like extracellular matrix (ECM) of mouse yolk sac
tumors or from studies of the lens capsule, an unusually thick
BM. Recently, isolation procedures for a variety of BMs have
been described, and new techniques have been developed to
directly analyze the protein compositions, the biomechanical
properties and the biological functions of BMs. New findings
show that native BMs consist of approximately 20 proteins.
BMs are four times thicker than previously recorded, and
proteoglycans are mainly responsible to determine the
thickness of BMs by binding large quantities of water to the
matrix. The mechanical stiffness of BMs is similar to that of
articular cartilage. In mice with mutation of BM proteins, the
stiffness of BMs is often reduced. As a consequence, these BMs
rupture due to mechanical instability explaining many of the
pathological phenotypes. Finally, the morphology and protein
composition of human BMs changes with age, thus BMs are
dynamic in their structure, composition and biomechanical
properties.

Introduction

Basement membranes (BMs) are thin sheets of extracellular matrix
(ECM) at the basal side of every epithelium. They outline muscle
fibers, and they are present at the basal surface of the vascular
endothelial cells and Schwann cells.1 BMs in situ are detected by
immunocytochemistry (Fig. 1A) or by transmission electron
microscopy (TEM; Fig. 1B). According to high-power TEM
micrographs, the thickness of BMs ranges from 100 nm for
average BMs to over 10 mm for the lens capsule, the thickest BMs
in the body. BMs are not static structures; their morphologies and
compositions change with age, particularly obvious in long-lived
humans.2 The direct protein analysis of in vivo-derived BMs is
complicated by the fact that BMs proteins are problematic to
solubilize. The identification of main BM constituents was
possible after realizing that mouse yolk sac tumors produce large
quantities of a BM-like extracellular matrix (ECM; see also refs. 3
and 4). BM proteins are multi-domain proteins of high molecular
weight that either polymerize or bind to other BM proteins. The
binding of BM proteins to cellular receptors, such as integrins5,6

and dystroglycan,7 is required for BM assembly. BM proteins
emerged about 500 million years ago during the evolution of
metazoan species, and they are the evolutionary oldest ECM
proteins.8 The importance of BMs is evident by the dramatic
phenotypes from worms to humans with mutations that affect the
assembly or stability of BMs. The phenotypes include early
embryonic death, muscular dystrophy, kidney and cardiovascular
defects and eye, ear and brain malformations.9-21 The current
model states that BMs are composed of a two-dimensional
scaffold of collagen IV and a network of polymerized laminin.1

Nidogen-1 has been proposed to provide the connection between
the two polymers.22-25

Isolation of BMs

BMs are not trivial to isolate. The main reason is that BMs are
often inseparably connected to an underlying connective tissue
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stroma. This is best illustrated with the epidermal BM of human
skin (Fig. 1A and B). Epidermis and dermis can be manually
separated after incubation of skin with EDTA or high salt
(Fig. 1C and D). In all cases, the epidermal BM stays with the
dermis, and attempts to isolate the BM results in a thick sheet of
dermal ECM with a thin BM on top (Fig. 1D). The tight
connection of a thin BM with a thick stromal layer also applies to
human amnion BM preparations that are frequently used to test
the transmigration of tumor cells and neutrophils in vitro.26,27 In
cases where the connection of the BMs to the adjacent stroma are
less tight and the BMs are thicker and, therefore, easier to grasp,
such the lens capsules (LC) or the corneal-derived Descemet’s
membrane (DM), BMs can be isolated by microdissection
followed by removal of adherent epithelial cells with detergent
(Fig. 2A). SEM images show that such BMs are clean and not
contaminated with cellular debris or stromal ECM (Fig. 2B). BM
isolation procedures have also been described for tissues with BMs
that have epithelial cell layers on both sides, such as the kidney
glomeruli or the retinal or cortical capillaries.28-30 In both cases,
the glomeruli and the blood vessels are isolated first, and the
glomeruli or capillaries are then treated with detergent to remove
the adherent epithelial cells. Our laboratory developed several
procedures to isolate BMs as large, coherent sheets. In a
mechanical procedure, the entire chick and mouse inner limiting
membrane (ILM), a BM from the retina, is isolated by splitting
the retina along the vitro-retinal border followed by several rinses
with detergent.31 The procedure results in single-layered, up to
finger nail-sized BM sheets that are tightly connected to a glass
slide or tissue culture plastic. The BM preparation is useful for
biomechanical studies and for tissue culture, but less usable for
biochemical analysis. In another procedure, segments of dissected
human retinas are incubated in Triton-X-100 followed by
deoxycholate, and the detergent-insoluble, free-floating ILM and
vascular BM sheets are isolated and cleaned by repeated detergent
washes.2 The ILMs and the vascular BMs from the retina are
separated under a dissection microscope (Fig. 2C and D). Dark
field illumination is essential to see the otherwise transparent

BMs. The BM sheets can be used for biochemical analysis and,
after mounting on a solid support, also for biomechanical studies
and tissue culture. Detergent treatment is the most widely used
method to remove cellular contaminants during BM preparations.
Experiments showed that when LCs, isolated by microdissection
only, are extracted with detergent and the extracts analyzed by
protein assays, SDS PAGE and western blots, little if any proteins,
laminin or collagen IV are detectable in the extracts.32 The data
indicate that BMs are resistant to detergent, and detergent
treatment does not lead to a loss of BM proteins.

A different approach to obtain BMs is to culture epithelial or
endothelial cells either on plastic or on a collagen gel and allow the
cell to assemble a BM. After weeks in culture, the cells are lysed,
leaving behind a BM-like extracellular matrix.33,34

Compositionally, the in vitro-synthesized BMs are similar to in
vivo-derived BMs, but it is unclear whether they also share their
high biomechanical strength.

Protein Composition of BMs

The first BM proteins were identified by the analysis of the
BM-like ECM from yolk sac tumors.3,4 In contrast to intact,
in vivo-derived BMs, the tumor ECM can be dissolved in
buffers containing chaotropic or chelating agents and
analyzed by conventional biochemistry.35 Laminin 111,
collagen IV, perlecan and nidogen 1 were identified in this
first round of studies. Additional laminins, collagen IVs,
nidogens and two more proteoglcyans, agrin and collagen
XVIII, were later identified by means of antibodies and
molecular cloning.36

While most of the BM proteins have been identified, the
composition and the protein stoichiometry of in situ-derived BMs
are still unknown. The most commonly used approach to
determine the proteome of an intact, in vivo BM has been
immunocytochemistry.37,38 A drawback of this method is that it
(1) restricts itself to candidate proteins, (2) depends on the
availability and quality of antibodies and (3) provides no data on

Figure 1. BMs are detected in tissue sections of human skin by immunostaining with antibodies to BM-specific proteins, such as collagen IV (A) (red), or
by TEM (B). The epidermal BM (BM) of the skin is located between the epidermis (Ep) and the underlying dermal stroma (St). The vascular BMs are
detected along the endothelial lining of blood vessels (BV). When the skin is experimentally split into the epidermal (C) and the dermal layers (D), the
epidermal BM consistently stays with the dermal connective tissue, as shown by anti-collagen IV staining (C and D). It is inseparable from the dermal
connective tissue, making a clean preparation of this BM impossible (D). The sections were counter-stained with SytoxGreen. Bars: (A, C and D), 100 mm;
(B) 500 nm.
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protein abundance. A more comprehensive method is SDS-PAGE
followed by mass spectrometry: the procedure is unbiased, does
not require specific probes and provides measures of protein
abundance. The first mass spectrometry-based proteome analysis
of an in vivo-derived BM was pioneered using the embryonic
chick ILM as a model.32

As shown in Figure 3A , the typical banding pattern of an in
vivo-derived BM shows protein bands with molecular weights
between 150 kD and 1,000 kD; most BM proteins have
molecular weights around 200 kD, and very few, if any, below
100 kD (Fig. 3A). The embryonic chick ILM consists of
approximately 20 proteins, including several members of the
laminin family, nidogen 1 and 2, perlecan, agrin, collagen
XVIII and collagen IV a5/6.32 FREM and FRAS, two
members of the bleb protein family, were also detected,
confirming previous immunocytochemistry that detected both
proteins in the mouse ILM.39 Semi-quantitative evaluation of
the data, based on the emPAI values (number of sequenced
peptides per molecular weight of the protein40), showed that
the laminins and the nidogens are the most prominent
proteins in this embryonic BM (Fig. 3B). Laminin 121 and
521 are equally abundant; collagen IV accounts for less than
10% of the total ILM protein.32 The data were confirmed by
western blotting. When adult human BMs were analyzed by
western blots, results showed that collagen IV accounts for
50% in ILM and 80% of the total protein in LC. Thus,
collagen IV is the most prominent protein in adult human
BMs, and its abundance increases with age.2 The chick and
human data combined indicate that BMs undergo an age-
related compositional change from a laminin to a collagen IV-
dominated ECM.

A caveat for mass spectrometry analysis of BMs is that not all of
the BM protein mass can be solubilized; we estimate that 80% of
the human ILM, 60% of the LC and 70% of the DM total
protein can be solubilized and successfully analyzed. The insoluble
part of the BMs consists most likely of crosslinked collagen IV
polymers, but the exact composition of this part of BM proteome
remains to be established.

Biomechanical Properties of BMs

The phenotype analysis of fish, mice and humans with mutations
of BM proteins suggests that a central function of BMs is to
provide mechanical strength to epithelial tissues. By using atomic
force microscopy (AFM), our laboratory has confirmed that BMs
from mice with BM protein mutations are, indeed, mechanically
weaker than BMs from non-mutant control mice. This indicates
that decreased mechanical strength of BMs is a causal contributor
to the phenotypes of blood vessel ruptures, muscular dystrophy
and neural ectopias that are typical for mice and humans with BM
protein mutations.41 With the exception of the lens capsule, the
thickest BM in the body,42,43 biophysical measurements of BMs
have been out of reach for experimentation.44 Several years ago,
we introduced AFM as a new method for probing BMs. The
AFM uses a sharp tip mounted at the end of a flexible cantilever
to probe the sample; the deflection of the cantilever is recorded by
means of a laser reflecting from the cantilever tip. By choosing a
very soft cantilever, the imaging force can be in the range of
interatomic forces (about 10−9 newtons), thus the name “atomic
force” microscopy.45 The state of art AFM uses a Z-scanner to
control the vertical position of the probe and a XY scanning stage
to control the horizontal position of the sample. In the imaging
mode, the AFM tip raster-scans over the sample to show its
surface topography and to measure its thickness (Fig. 4C). The
main advantage of using the AFM is that the microscope can
operate in PBS, thus, the native surface structure can be imaged
and the thickness of fully hydrated BMs can be probed under
physiological conditions.

Conventional TEM of human ILM, human corneal BMs and
human epidermal BM showed that these BMs increase in thickness
with age2,46,47 (Fig. 4A and B). AFM studies confirmed that human
ILMs undergo an age-dependent increase in thickness (Fig. 4C and
D). However, the thickness of BMs measured by AFM are on
average four-times greater than measured by TEM.2,48 The
difference is due to the tight binding of water to the BM sheets
that is removed during the dehydration and embedding of the
samples for TEM, but that remains when the samples are probed by

Figure 2. Isolation of BMs and the gross morphology of isolated BMs. The DM is peeled off the inner surface of a detergent-treated human cornea (A).
The BM is completely transparent. When imaged by SEM, the DM appears as clean ECM sheet without cellular contamination (B) (St, stromal surface; Ep,
epithelial surface). Sheets of isolated ILM and retinal vascular BMs are shown in (C and D). The micrographs show the appearance of the BMs under a
dissecting microscope using dark field. The vascular BM sheet (D) was from the foveal area of the retina. Note the foveal avascular zone in the middle of
the sample. Bars: (B), 100 mm; (C and D), 500 mm.
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AFM under PBS. Experiments also showed that the glycosami-
noglycans of the proteoglycan are responsible for binding large
quantities of water to the ECM and thereby determine to a major
degree the thickness of BMs.2,32 While AFM can probe very thin as
well as thick BMs, measurements are restricted to BMs that can be
mounted as a single layered, flat sheet on a solid support. This kind
of preparation is problematic for the narrow and tubular vascular
BMs and the BM tubes from muscle fibers.

In addition to thickness, the AFM also allows to measure
biomechanical characteristics of BMs: in the force indentation
mode, the tip of the AFM is advanced toward the sample with a
predetermined force that produces a small indentation; the
repulsion force deflects the cantilever, whereby the degree of the
deflection is dependent on the stiffness of the sample;49-51 the
deflection of the cantilever relative to the applied force is
represented by a force curve (Fig. 5E). The elastic or Young’s
modulus of the sample can be calculated from the force curves
using the Hertzian and Sneddon model.2,49-51 A steep slope of the
curves means a high, a shallow slope a low Young’s modulus.
Stiffness measurements showed that the Young’s modulus for

adult human ILMs, LC and DM is in the single digit MPa-range
(1–4 MPa) and increases with age.2,42 The stiffness of BMs is
approximately 1,000 times greater than that of epithelial cell
layers (1–4 kPa), and similar to that of articular cartilage, both
measured by AFM,52,53 explaining why defects of BMs leads to the
disruption of the corresponding epithelia. AFM is currently the
only method to measure the biomechanical properties of
nanometer-thin to micrometer-thick BMs.2,32,41,48

Data showed that a variety of BMs from mice with mutation of
BM proteins are instable. The ILMs from these mice, for example,
rupture at random locations and retinal cells migrate through the
gaps into the vitreal cavity, forming retinal ectopias (Fig. 5A; see
also refs. 17, 41 and 54). ILMs isolated from those mutant mice
show numerous perforations at random locations (Fig. 5B). AFM
force measurements reveal that ILMs of these mutant mice have
an up to 50% lower Young’s modulus than ILMs of wild type
mice (Fig. 5E and ref. 41). Mechanical weakness provides a
straightforward explanation for the disruption of the BMs during
the expansion of the retina during development. Contrary to
previous beliefs, it appears that the laminins are at least as

Figure 3. Proteome analysis of a BM. A Coomassie-stained SDS PAGE of chick ILM proteins is shown in (A). Note that BM proteins typically have molecular
weights between 150 kD and 1,000 kD. Semi-quantitative mass spectrometry analysis of the E10 chick ILM proteome based on emPAI values (B) shows
that laminin and nidogens are the most prevalent proteins. The collagen IV members represent only a minor portion of the ILM proteome.

Figure 4. The thickness of human BMs. TEM images of a fetal (A) and an 83-year-old retina (B). White bars indicate the height of the ILMs. The ILM
increases in thickness by a factor of 20 from 100 nm at fetal stages (A) to 1.5 mm at old age (B). In contrast to the even, regular and text-book-like fetal
ILM (A), the retinal surface (Ret) of the aged ILM is highly irregular, whereas the vitreal side (Vit) is even and smooth (B). Representative AFM height
measurements from a 44- and 88-y-old ILM confirm that the thickness of the ILMs increases with age (C). The scans extend from the flat glass surface on
the left to the convoluted edge and further deeper into the BM sheet on the right. The thickness is measured by comparing the height difference of the
glass surface and deep averaged ILM surface. The graph in (D) shows the age-related increase in ILM thickness as measured by AFM. The thickness of the
ILMs, as measured by AFM, ranges from 0.4–4 mm, on average four-times greater than measured by TEM. Bar: (A and B), 500 nm.

www.landesbioscience.com Cell Adhesion & Migration 67



important for BM stability as collagen IVs that traditionally have
been considered to be the main stabilizing components of BMs.

Cell Adhesion Properties of BMs

BMs in vivo provide a solid support for epithelial cells to attach. In
cases where BMs are defective, the adjacent epithelial layers are in
danger of falling apart and to undergo apoptosis. Laminins are the
top candidates to provide cell adhesive property to BMs by binding
to integrins and dystroglycan as their corresponding cell surface
receptors. Indeed, mutations of integrins and dystroglycan result in
phenotypes that are similar if not identical to mutation of key BM
proteins.5-7 Cell adhesion, cell migration, cell invasion and neurite
outgrowth assays have been tested in vitro using intact, in vivo-
derived BM as substrates, but more widely used for these assays is
matrigel, an ECM extract from the EHS mouse tumor.55,56

Matrigel, however, forms a soft gel and is not comparable with
the much tougher and thinner in situ BMs. In vivo-derived BMs
that have been used as substrates for in vitro assays include human
amnion and rat peritoneal BMs.57-59 These BMs were mostly used
in assays investigating tumor cell transmigration and leucocytes
diapedesis through BMs.58,59 We have used the embryonic chick
ILM as a substrate for cell adhesion, cell migration (Fig. 6A and B)
and neurite outgrowth assays.31,60,61 We also developed methods to
immobilize several in vivo-derived human BMs and used them in
cell adhesion and neurite outgrowth assays as well.2 Experiments
showed that cells of all origin adhere to embryonic chick and adult
human BMs in less than 30 min and survive in short-term and
long-time cultures (Fig. 6C).

Histology of embryonic brain and retina showed that many
newly forming nerve fiber trajectories form along the pial BM of
the brain or along the ILM of the retina. Further, peripheral nerve
regeneration occurs along the BM sheaths of Schwann cells. The
data suggest that BMs provide a favorable substratum for de novo
neurite outgrowth and axon regeneration. The supportive activity
of BMs has been confirmed in neurite outgrowth assays using
human amnion BM and embryonic chick ILM as substrates in

vitro: chick and mouse retinal explants and dorsal root ganglia
grow out neurites on BM substrates with a density and growth
rate that is superior to that of purified laminin or fibronectin.31,57

Surprisingly, the growth rate of axon on adult human BMs was as
profuse and the rate of growth was as high as on embryonic BMs
(Fig. 6D) demonstrating that BMs from adult or even aged
human tissues retain their neurite outgrowth promoting prop-
erties for their entire life. Thus, BMs provide a preferred substrate
for axon regeneration in the adult organisms.

Concluding Remarks and Open Questions

There is a wealth of information on individual BM proteins,
including members of the laminin, nidogen and collagen IV
families.62-64 The functions and interplay of these proteins in the
context of the complete BM structure, however, are much less
known. It is still unclear which proteins and protein family
members are present in all BMs and which proteins vary from one
BM to another. Further, it is unclear what the differences in the
proteomes mean in terms of the specific function of the BMs.
Extending the proteome analysis to more and different BMs will
certainly help to address these questions. With the availability of
AFM as a method to analyze the biomechanical properties of BMs,
future experiments analyzing the mechanical stability of BMs from
mice with different BM protein mutations will help pinpointing the
importance of specific proteins for the biomechanical properties of
BMs. Further, BMs are excellent substrates for cell adhesion and
cell migration; a potential application is to use BMs for medical
proposes, such as in wound healing and tissue repair. This is
particularly interesting where transparency is an issue, such as in the
eye. Finally, the medical relevance of BM thickening at old age is an
unsolved mystery. It is well possible that BM thickening
contributes to age-related chronic diseases, particularly in long-
term diabetes, where BM thickening is further exacerbated.65
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Figure 5. Stiffness measurements of mutant and wild type mouse ILMs. SEM images of the vitreal surfaces of an intact retina from a LARGE mutant
(LARGE KO) and of a wild type mouse (WT). The images show numerous ectopias (Ec) in the retina of the mutant mouse (A) and a continuous, smooth
surface of the retina from the control mouse (C). ILMs isolated from the mutant mice have numerous perforations (B), while wild type mice have a
continuous ILM (D); the ILM flat mounts had been stained for collagen IV. Representative force curves of ILMs from two different mutant mouse lines
(LARGE and POMgNT1) show a much shallower slope than the force curves of ILMs from wild type mice (E) indicating a lower Young’s modulus. LARGE
and POMgNT1 mutations affect the glycosylation of dystroglycan, one of the laminin receptors that are essential for BM assembly. Bars: (A and C), 10 mm;
(B and D), 25 mm.
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Figure 6. Cell adhesion/migration and axonal growth on embryonic chick ILM (A and B) and adult human DM (C and D). SEM micrograph showing an
ILM whole mount from the embryonic chick retina. The BM is covered by a dense monolayer of neuroepithelial endfeet (A). When cells (Bowes human
melanoma cells, arrow) are plated at low density onto this BM, the cells adhere and migrate on the BM by displacing the endfeet, and the cells leave
behind a track as a record of their migratory behavior (B; start: site, where the cell adhered and started migration for 10 h). TEM micrograph showing a
crossection of MDCK cells on a human DM after 4 d of culture. The cells attached to the BM and formed microvilli at the apical surface (C). When chick
embryonic retina strips are cultured on an adult human DM flat mount, numerous axons grow out from the explants during 24 h in vitro. The neurites
were visualized by anti-tubulin staining. Note, neurite outgrowth was restricted to the BM substrate; there was no neurite outgrowth on the poly-lysine
coated plastic (star). Bars: (A and B), 20 mm; (C), 5 mm; (D) 500 mm.
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