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Abstract

Introduction

Microarray analysis has revolutionized the role of genomic prognostication in breast cancer.

However, most studies are single series studies, and suffer from methodological problems.

We sought to use a meta-analytic approach in combining multiple publicly available data-

sets, while correcting for batch effects, to reach a more robust oncogenomic analysis.

Aim

The aim of the present study was to find gene sets associated with distant metastasis free

survival (DMFS) in systemically untreated, node-negative breast cancer patients, from pub-

licly available genomic microarray datasets.

Methods

Four microarray series (having 742 patients) were selected after a systematic search and

combined. Cox regression for each gene was done for the combined dataset (univariate, as

well as multivariate – adjusted for expression of Cell cycle related genes) and for the 4

major molecular subtypes. The centre and microarray batch effects were adjusted by includ-

ing them as random effects variables. The Cox regression coefficients for each analysis

were then ranked and subjected to a Gene Set Enrichment Analysis (GSEA).
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Results

Gene sets representing protein translation were independently negatively associated with

metastasis in the Luminal A and Luminal B subtypes, but positively associated with metas-

tasis in Basal tumors. Proteinaceous extracellular matrix (ECM) gene set expression was

positively associated with metastasis, after adjustment for expression of cell cycle related

genes on the combined dataset. Finally, the positive association of the proliferation-related

genes with metastases was confirmed.

Conclusion

To the best of our knowledge, the results depicting mixed prognostic significance of protein

translation in breast cancer subtypes are being reported for the first time. We attribute this

to our study combining multiple series and performing a more robust meta-analytic Cox

regression modeling on the combined dataset, thus discovering 'hidden' associations. This

methodology seems to yield new and interesting results and may be used as a tool to guide

new research.

Introduction
Microarray analysis has revolutionized our understanding of breast cancer. A molecular classi-
fication of breast cancer based on the expression of certain genes has gained acceptance in the
last two decades. Luminal A, Luminal B, HER2 positive and Basal subtypes are the major sub-
types identified in multiple independent cohorts[1–5], and this classification is being refined
further by identification of more subtypes[6–8]. Analyses done on microarrays have suggested
that genes related to the cell cycle are of great prognostic importance[9–14].

However, to the best of our knowledge, a comprehensive analysis concentrated on finding
prognostically important cellular pathways and processes in the different breast cancer sub-
types has not been done. The few studies which have been done have either tried to extract a
prognostic gene signature[15–22] or have focused on a small number of pathways[12,23,24].
Furthermore, pathways which are prognostically important independent of the cell cycle
related genes have also not been looked at. A significant short coming of existing gene signature
studies using microarray technology are methodological flaws related to non-correction of
batch effects in microarray data analysis, which may potentially reduce their robustness[25,26].

In order to understand the natural history of breast cancer, it is important to exclude factors
that may impact on survival, and which may have changed over the past few decades. We real-
ized that node negative tumors afforded us the best opportunity to study long term survivors
and their gene signatures. At present, breast cancer patients are given a variety of treatments,
and the responsiveness of these treatments may have an effect on the clinical end point
selected, as well as may themselves be associated with gene expression[27–30]. Including
patients receiving systemic therapy and those deserving but not receiving any such therapy
would increase the heterogeneity of the analysis, thus rendering any modeling non-robust, and
the results difficult to interpret. This problem is compounded further by the non-availability of
the exact treatment regimen in most genomics data sets. The possibility of different treatment
regimens being associated in a variable, non-uniform manner with gene expression renders the
task of appropriate modeling and interpretation of results even more difficult. In order to
exclude such treatment related effects, we selected only systemically untreated patients for our
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study. This would have the advantage of studying the true tumor related natural history un-
confounded by treatment related effects. We included only those microarray data sets from
which the batch in which the analysis was done could be deduced, so that the batch effects
could be controlled for while analyzing the data.

The present study focused on finding significant pathways and processes associated with distant
metastasis in node negative breast cancer. We tried finding not only the main processes associated
with distant metastasis in the entire dataset, but also those which were significant independent of
cell cycle. Analysis was also carried out on the different molecular subtypes separately.

Methods

Data sources and study selection
The Gene Expression Omnibus (GEO) database was queried in June 2014 for node negative
breast cancer using the search terms “breast cancer” and “breast neoplasms”, combining them
with Boolean operator "OR", filtered to include only Gene Expression Series (“gse”), for organ-
ism “Homo sapiens” containing “Expression profiling by array”. An initial search resulted in
1142 series. From the 1142 series, only those having 50 or more samples were included. This
resulted in 317 data series. Of these 317 data series, only 5 contained arrays exclusively
from node-negative breast cancer patients without any systemic adjuvant therapy. The rest 312
were excluded because they did not meet our inclusion criteria of node negative patients not
receiving any systemic adjuvant therapy and having follow up data of a minimum of 05 years.
Of the five remaining series, one did not contain information about the batch or date in which
the microarrays were analyzed, and was excluded. Finally we were left with four series, viz.
GSE2034[31], GSE5327[32], GSE7390[33], and GSE11121[34], all having confirmed node neg-
ative patients who did not receive any form of systemic therapy. The flow chart summarizing
the steps in study selection is given in Fig 1.

Data extraction and synthesis
The raw microarray data from each series was downloaded and pre-processed separately, as rec-
ommended by Hahne et al [35]using the frozen Robust Multi-array Average (fRMA) algorithm
[36]. The different series were then combined together with respect to our primary end point of
interest Distant Metastasis Free Survival (DMFS) or distant recurrence, depending on coding of
particular data series. The occurrence of distant metastasis was taken as the event of interest for
which time-to-event analyses were done. The series were censored at 10 years after diagnosis.

Prior to using a Cox regression model, the probes were collapsed to genes, by the WGCNA
package[37]. Probes which gave the maximum average expression were selected to represent
the gene.

Only the four major molecular sub-types were investigated using the PAM50 classifier[5],
i.e. Basal, HER2 Positive, Luminal A and Luminal B subtypes.

Six different analyses were conducted combining data from the four studies as follows: (a)
Univariate analysis on the entire combined dataset, (b) Multivariate analysis on the combined
dataset adjusting for expression of cell cycle related genes, (c) Univariate analysis on the HER2
subtype extracted from the combined dataset, (d) Univariate analysis on the basal subtype
extracted from the combined dataset, (e) Univariate analysis on the Luminal A subtype
extracted from the combined dataset, and, (f) Univariate analysis on the Luminal B subtype
extracted from the combined dataset.

To adjust for expression of cell cycle related genes for the multivariate analysis done in anal-
ysis (b) listed above, the AURKA module score[12] as implemented in the genefu package in
Bioconductor and R was added to the Cox regression model.
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Each analysis (a-f above), was evaluated by Cox regression models which included the gene
expression as a fixed effects variable and one of the following as a random effects variable: i)
Batch (as estimated from the scan date of the original microarray analysis), ii) Study series, iii)
Centre or institution, iv) Batch as a nested effect in the Series, and, v) Batch as a nested effect in
the Centre.

A sixth model (vi) was also performed as a control which did not include the batch or centre
(a simple marginal model with the gene expression as the sole variable).

Therefore, in each analysis (a-f above), for each gene, six different Cox regression models
were evaluated. For each analysis, the model which gave the lowest median Akaike Information
Criterion (AIC)[38] value was selected as the most appropriate model for that particular
analysis.

The coefficients obtained from the most appropriate Cox regression models (for each analy-
sis) were then ranked according to their value. Since the standard GSEA (Gene Set Enrichment
Analysis) currently lacks the software implementation for adjusting for batch effects, as well as
being incapable of performing time-to event analysis, hence the coefficients obtained were sub-
jected to a pre-ranked GSEA[39,40].

Fig 1. The PRISMA Flow diagram showing the method behind the inclusion of studies for the analysis.

doi:10.1371/journal.pone.0129610.g001
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The following downloaded gene set collections were used in the present study: i) The gene
sets representing the Canonical pathways (presented as C2: CP gene set collections), which
included gene sets from the Biocarta[41], KEGG,[42,43] Reactome[44] and Protein Interaction
Database[45] repositories, and, ii) The Gene Ontology[46,47] gene sets (presented as C5 gene
set collections).

A Family Wise Error Rate (FWER)-adjusted p-value of�0.05 was selected as our level of
significance for the pre-ranked GSEA. Ten thousand permutations were used (default being
one thousand); the default setting was kept for all the other parameters of the GSEA study. The
gene sets which were found significant in the pre-ranked GSEA analysis were then extracted.

The entire workflow is described in Fig 2.
Visualization of the relationship between the different significant gene sets from the pre-

ranked GSEA above was done by means of the Enrichment Map Cytoscape plugin[48], which
groups the highly redundant gene sets in clusters. The Overlap coefficient[48], at a threshold of
0.5, was used for clustering the gene sets, as recommended in the Enrichment Map manual.

The "leading edges" of significant gene sets from each of the six analyses (a-f) were then
studied after the pre-ranked GSEA. Genes which were the most commonly distributed among
the leading edges of the significant gene sets were identified for each analysis.

A standard GSEA was performed again at the end to find the relationship between each
gene set included in each analysis (a-f above) and the AURKA module score for each data
series. For this analysis, the “Pearson”metric for ranking genes was used, as recommended by
the GSEA user manual; no correction was made for the batch effects, and one thousand permu-
tations were used in the analysis of each data series. A final adjusted p-value was calculated by
combining the p-values obtained from the four studies by the Stouffers method[49]. The
FWER was calculated by the method of Holm[50]. An FWER-adjusted p-value of�0.05 was
selected as our level of significance.

Microarray preprocessing, categorization into subtypes and Cox regression were carried out
by the statistical environment R v3.1.0[51] using the coxme[52], GEOquery[53], affy[54], gen-
efu[55], hgu133a.db[56] andWGCNA[37] packages.

All the gene sets used in the GSEA were downloaded from the website of the Broad institute
[57]:

The GSEA analyses were carried out by GSEA2-2.0.14 software downloaded from the Broad
institute.

Results
The Clinical characteristics of the patients in the data series are given in Table 1, while
the tumor-related characteristics are detailed in Table 2.

The comparability of the expression values from the different samples was visualized using
boxplots. fRMA pre-processed expression data were seen to be comparable between samples,
with the distribution of the expression values between different arrays being similar to one
another (S1 Fig). This supported the contention that the fRMA pre-processed data from differ-
ent series could be combined together for analysis.

Of the various mixed models considered, the model with just batch effects as random vari-
able (Cox regression model (i) in Methods above) gave the lowest AIC values for the analyses
from (a)-(d) and analysis (f) above. For analysis (e), i.e. Univariate analysis on the Luminal A
subtype, the cox regression model with Batch nested in Centre as RE Variable (model (v) in
methods above) gave the lowest AIC values. These models (which gave the lowest AIC value
for an analysis) were selected as the most appropriate model for that particular analysis.

Details of the AIC values are shown in S1 Table.
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Note on interpretation of the GSEA results: GSEA is a competitive gene set analysis
method. In this context, a gene set negatively associated with metastasis means that it is more
negatively associated with metastasis than random gene sets formed from genes other than
those in the gene set tested. A gene set positively associated with metastasis means that it is
more positively associated with metastasis than random gene sets formed from genes other
than those in the gene set tested.

Fig 2. Flow chart of present analysis till the Pre-ranked GSEA to find DMFS associated gene sets.

doi:10.1371/journal.pone.0129610.g002
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I) Results of the analysis on the entire combined dataset
When the combined dataset was analyzed in a univariate setting (analysis (a) in Methods
above), gene sets related to protein translation were found to be negatively associated with dis-
tant metastasis (good prognosis), as depicted in Table 3 and Fig 3; while gene sets related to the
Cell cycle (i.e. proliferation-related gene sets) were the only gene sets to be significantly posi-
tively associated with metastasis (poor prognosis) (Table 4, Fig 3).

On performing the multivariate analysis adjusted for the Cell cycle by adding the AURKA
module to the Cox regression model (analysis (b)), gene sets representing the integrin1 path-
way and the proteinaceous extracellular matrix were positively associated with metastasis
(Table 5).

II) Results of the subtype analysis
The results for the gene sets significantly associated with distant metastasis in the individual
molecular subtypes are detailed below.

Table 1. Summary of patient characteristics of the four series analysed.

GSE2034(N = 286) GSE5327(N = 58) GSE11121(N = 200) GSE7390(N = 198)

Median Follow up period in years
(range)

8.8 (0.17–14.25) 7.4 (0.36–13.04) 8.6 (0.08–20.00) 13.7 (0.34–24.95)

Mean patient age in years (range) 54 (26–83) Unknown 60 (25–90) 46 (24–60)

Radiotherapy given Yes 248 — 125 —

No 38 — 75 —

Unknown 00 58 00 198

doi:10.1371/journal.pone.0129610.t001

Table 2. Summary of tumor characteristics of the four series analysed.

GSE2034 GSE5327 GSE11121 GSE7390

Tumor size T1 146 (51%) — 111 (56%) 102 (52%)

T2 132 (46%) — 81 (40%) 96 (48%)

T3/4 8 (3%) — 8 (4%) 0 (0%)

Unknown 0 (0%) 58 (100%) 0 (0%) 0 (0%)

Tumor Grade Well differentiated 7 (2%) — 41 (21%) 30 (15%)

Moderately 42 (15%) — 110 (55%) 83 (42%)

Poorly differentiated 148 (52%) — 45 (23%) 83 (42%)

Unknown 89 (31%) 58 (100%) 4 (2%) 2 (1%)

Molecular subtypes Basal 58 (20%) 38 (66%) 22 (11%) 45 (23%)

HER2 41 (14%) 12 (21%) 21(11%) 26(13%)

Luminal A 108 (38%) 4 (7%) 104 (52%) 71 (36%)

Luminal B 62 (22%) 2 (3%) 46 (23%) 46 (23%)

Normal-like 17 (6%) 32(3%) 7 (4%) 10(5%)

ER Negative 77 (27%) 58 (100%) 44 (22%) 64 (32%)

Positive 209 (73%) 0 (0%) 156 (78%) 134 (68%)

Unknown 0 (0%) 0 (0%) 0 (0%) 0 (0%)

PR Negative 111 (39%) — 70 (35%) —

Positive 165 (58%) — 130 (65%) —

Unknown 10 (3%) 58 (100%) 0 (0%) 198 (100%)

doi:10.1371/journal.pone.0129610.t002
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Univariate analysis on HER2 tumors (Analysis (c) in Methods). Gene sets related to
interferon gamma signaling was the only gene set found negatively associated with distant
metastasis (Table 6). No gene sets were found to be positively correlated with distant
metastasis.

Univariate analysis on Basal tumors (Analysis (d)). Gene sets representing protein trans-
lation were the only sets significantly positively associated with metastasis (Table 7, Fig 4).

Univariate analysis on Luminal A tumors (Analysis (e)). Gene sets representing transla-
tion were negatively associated with distant metastasis (Table 6, Fig 5). One gene set represent-
ing Kinesins (thus possibly related to mitosis)were significantly positively associated with
metastasis (i.e. negatively associated with survival) (Table 7, Fig 5)

Univariate analysis on Luminal B tumors (Analysis (f)). Gene sets representing transla-
tion were negatively associated with distant metastasis (Table 6, Fig 6). Gene sets associated
with cell cycle (proliferation) dominated the sets significantly positively associated with metas-
tasis (i.e. negatively associated with survival) (Table 7, Fig 6).

III) Results of the leading edge analysis
Univariate analysis on the entire combined dataset. Genes encoding for various ribo-

somal proteins were commonly distributed among the leading edges of the gene sets signifi-
cantly associated with good prognosis, while genes encoding for replication proteins A1 and
A3, DNA directed polymerase and Cyclin dependent Kinase 2 were commonly distributed
among the leading edges of the significant gene sets associated with bad prognosis (Tables 8
and 9).

Fig 3. Enrichment Map visualization of DMFS-associated gene sets on Univariate analysis in the
Combined Dataset.Red nodes represent gene sets positively associated with metastasis. Blue nodes
represent gene sets negatively associated with metastasis. Two nodes are connected by edges (solid green
lines) only if the overlap coefficient between the nodes is greater than 0.5, and the edge thickness increases
with increased Overlap coefficient.

doi:10.1371/journal.pone.0129610.g003
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Multivariate analysis on the entire combined dataset. Genes encoding for various types
of collagens, fibrillin 1 and laminins were commonly distributed among the leading edges of
the significant gene sets associated with bad prognosis (Table 9).

Univariate analysis on HER2 tumors. Since only one gene set was found significant in
our analysis, a leading edge analysis could not be done on HER2 tumors.

Univariate analysis on the Basal tumors. Genes encoding for various ribosomal proteins
were commonly distributed among the leading edges of the significant gene sets associated
with bad prognosis (Table 9).

Univariate analysis on the Luminal A tumors. Genes encoding for various ribosomal
proteins were commonly distributed among the leading edges of the significant gene sets asso-
ciated with good prognosis (Table 8). Only one gene set (Reactome_Kinesins) was found sig-
nificantly associated with bad prognosis in Luminal A tumors; hence a leading edge analysis
could not be done for bad prognosis gene sets in Luminal A tumors.

Univariate analysis on Luminal B tumors. Genes encoding for various ribosomal pro-
teins were commonly distributed among the leading edges of the gene sets significantly associ-
ated with good prognosis, while genes encoding for proteins involved in cell division
(including cyclins, cyclin dependent kinases, proteasomes and replication factors) were com-
monly distributed among the leading edges of the significant gene sets associated with bad
prognosis (Tables 8 and 9).

IV) Results of the GSEA performed for the relationship between the
AURKAmodule score and the other gene sets
In each data series, as well as in the combined dataset, a strong negative association was
found between the AURKA module score and the gene sets related to the extracellular matrix
(Table 10). The association of the gene sets representing translation did not reach statistical sig-
nificance (FWER� 0.05), though they were consistently expressed in a direction opposite to
that of the AURKA score.

Discussion
Most studies done on microarray data in breast cancer have found Cell cycle-related genes to
have prognostic importance in breast cancer[9–14,58]; some studies have found the impor-
tance of immune related networks[9,16,19] and RNA splicing[9]. However, the prognostic
importance of many processes may have been missed because: i) the aim of many of the studies
was to find a gene signature predictive of outcome, and not the important cellular pathways
and processes[15–22], and, ii) other studies only studied a few processes[12,59]; or did not
include gene sets from many databases[23].

Table 5. Gene sets positively associated with distant metastasis (bad prognosis) after adjustment for proliferation using the AURKAmodule
score in the combined dataset.

Name of gene set Pathway/Term to which the gene set
belongs or is a subset of

Name of curating
database

ES NES p-val FWER

PID_INTEGRIN1_PATHWAY Beta 1 integrin cel surface interactions Protein Interaction
Database

0.573 2.105 <0.001 0.0163

PROTEINACEOUS_EXTRACELLULAR_MATRIX Cellular component; Extracellular region;
Extracellular region part;Extracellular matrix

Gene Ontology 0.528 2.069 <0.001 0.0335

(ES = Enrichment Score, NES = Normalized Enrichment Score, p-val = unadjusted p-value, FWER = Family Wise Error Rate-adjusted p-value)

doi:10.1371/journal.pone.0129610.t005
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Table 6. Gene sets negatively associated with distant metastasis (good prognosis) in the different subtypes of breast cancer.

Subtype Name of gene set Pathway/Term to which the gene set
belongs or is a subset of

Name of
curating
database

ES NES p-val FWER

HER2 REACTOME_
INTERFERON_GAMMA_SIGNALING

Immune System;
Cytokine signalling in
immune system; Interferon signalling

Reactome -0.575 -2.15 <0.0001 0.0414

Luminal
B

REACTOME_PEPTIDE_
CHAIN_ELONGATION

Gene Expression; Translation;
Eukaryotic translation elongation

Reactome -0.751 -2.688 <0.0001 <0.0001

KEGG_RIBOSOME Genetic Information Processing;
Translation

KEGG -0.742 -2.669 <0.0001 <0.0001

REACTOME_3_UTR_
MEDIATED_TRANSLATIONAL_REGULATION

3” UTR Mediated Translational
regulation

Reactome -0.690 -2.563 <0.0001 <0.0001

STRUCTURAL_
CONSTITUENT_OF_RIBOSOME

Molecular function; Structural Molecular
activity

Gene Ontology -0.720 -2.537 <0.0001 <0.0001

REACTOME_NONSENSE_MEDIATED_
DECAY_ENHANCED_BY_THE_EXON_
JUNCTION_COMPLEX

Gene Expression; Nonsense mediated
decay

Reactome -0.640 -2.394 <0.0001 <0.0001

REACTOME_SRP_DEPENDENT_
COTRANSLATIONAL_PROTEIN_
TARGETING_TO_MEMBRANE

Gene Expression; Translation Reactome -0.610 -2.293 <0.0001 0.0001

REACTOME_TRANSLATION Gene Expression; Translation Reactome -0.576 -2.271 <0.0001 0.0001

REACTOME_INFLUENZA_
VIRAL_RNA_TRANSCRIPTION_AND_
REPLICATION

Disease; Influenza Infection; Influenza
Life Cycle

Reactome -0.608 -2.263 <0.0001 0.0003

REACTOME_FORMATION_
OF_THE_TERNARY_COMPLEX_AND_
SUBSEQUENTLY_THE_43S_COMPLEX

Gene Expression; Translation;
Eukaryotic translation initiation; CAP
dependent translation initiation;

Reactome -0.689 -2.243 <0.0001 0.0003

REACTOME_ACTIVATION_OF_
THE_MRNA_UPON_BINDING_OF_THE_
CAP_BINDING_COMPLEX_AND_EIFS_
AND_SUBSEQUENT_BINDING_TO_43S

Gene Expression; Translation;
Eukaryotic translation initiation; CAP
dependent translation initiation

Reactome -0.665 -2.220 <0.0001 0.0009

Luminal
A

REACTOME_PEPTIDE_
CHAIN_ELONGATION

Gene Expression; Translation;
Eukaryotic translation elongation

Reactome -0.712 -2.757 <0.0001 <0.0001

REACTOME_3_UTR_
MEDIATED_TRANSLATIONAL_REGULATION

3” UTR Mediated Translational
regulation

Reactome -0.674 -2.716 <0.0001 <0.0001

STRUCTURAL_CONSTITUENT_
OF_RIBOSOME

Molecular function; Structural Molecular
activity

Gene Ontology -0.704 -2.672 <0.0001 <0.0001

KEGG_RIBOSOME Genetic Information Processing;
Translation

KEGG -0.682 -2.635 <0.0001 <0.0001

REACTOME_INFLUENZA_VIRAL_
RNA_TRANSCRIPTION_AND_REPLICATION

Disease; Influenza Infection; Influenza
Life Cycle

Reactome -0.634 -2.537 <0.0001 <0.0001

REACTOME_NONSENSE_MEDIATED_
DECAY_ENHANCED_BY_THE_EXON_
JUNCTION_COMPLEX

Gene Expression; Nonsense mediated
decay

Reactome -0.622 -2.506 <0.0001 <0.0001

REACTOME_TRANSLATION Gene Expression; Translation Reactome -0.557 -2.366 <0.0001 0.0003

REACTOME_SRP_DEPENDENT_
COTRANSLATIONAL_PROTEIN_
TARGETING_TO_MEMBRANE

Gene Expression; Translation Reactome -0.556 -2.247 <0.0001 0.0028

REACTOME_FORMATION_OF_
THE_TERNARY_COMPLEX_
AND_SUBSEQUENTLY_THE_
43S_COMPLEX

Gene Expression; Translation;
Eukaryotic translation initiation; CAP
dependent translation initiation;

Reactome -0.611 -2.139 <0.0001 0.0202

REACTOME_ACTIVATION_OF_
THE_MRNA_UPON_BINDING_OF_
THE_CAP_BINDING_COMPLEX_
AND_EIFS_AND_SUBSEQUENT_
BINDING_TO_43S

Gene Expression; Translation;
Eukaryotic translation initiation; CAP
dependent translation initiation

Reactome -0.595 -2.133 <0.0001 0.0227

(ES = Enrichment Score, NES = Normalized Enrichment Score, p-val = unadjusted p-value, FWER = Family Wise Error Rate-adjusted p-value)

doi:10.1371/journal.pone.0129610.t006
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In contrast to the above studies, the present study focused on biological pathways and pro-
cesses. Different datasets were combined to make the results more robust, with adjustment
for study-specific differences being made by random effects models. Furthermore, batch effects
were also treated as random effects, in order to adjust for any potential confounding effects
thereof. The aim of the present study was to find processes and pathways associated with dis-
tant metastasis in the different molecular subtypes of breast cancer, as well as those processes
associated with DMFS which were important in breast cancer taken as a whole.

The important pathways and processes were estimated from the entire list of genes ranked
in order of their prognostic strength in each molecular subtype as well as overall breast cancer
cases analyzed. In order not to miss out any important processes from the analysis, multiple
gene sets were tested. These gene sets represent biological processes curated by multiple inde-
pendent reliable sources, as mentioned in Methods above.

Table 7. Gene Sets positively associated with distant metastasis (bad prognosis) in the different subtypes of breast cancer.

Subtype Name of gene set Pathway/Term to which the gene set belongs or is a
subset of

Name of curating
database

ES NES p-val FWER

Basal REACTOME_PEPTIDE_
CHAIN_ELONGATION

Gene Expression; Translation; Eukaryotic translation
elongation

Reactome 0.828 3.073 <0.0001 <0.0001

REACTOME_3_UTR_MEDIATED_
TRANSLATIONAL_REGULATION

3” UTR Mediated Translational regulation Reactome 0.795 3.066 <0.0001 <0.0001

KEGG_RIBOSOME Genetic Information Processing; Translation KEGG 0.819 3.038 <0.0001 <0.0001

REACTOME_INFLUENZA_VIRAL_RNA_
TRANSCRIPTION_AND_REPLICATION

Disease; Influenza Infection; Influenza Life Cycle Reactome 0.770 2.965 <0.0001 <0.0001

REACTOME_NONSENSE_MEDIATED_
DECAY_ENHANCED_BY_THE_EXON_
JUNCTION_COMPLEX

Gene Expression; Nonsense mediated decay Reactome 0.752 2.938 <0.0001 <0.0001

STRUCTURAL_CONSTITUENT_
OF_RIBOSOME

Molecular function; Structural Molecular activity Gene Ontology 0.795 2.907 <0.0001 <0.0001

REACTOME_SRP_DEPENDENT_
COTRANSLATIONAL_PROTEIN_
TARGETING_TO_MEMBRANE

Gene Expression; Translation Reactome 0.734 2.858 <0.0001 <0.0001

REACTOME_TRANSLATION Gene Expression; Translation Reactome 0.688 2.820 <0.0001 <0.0001

REACTOME_INFLUENZA_LIFE_CYCLE Disease; Influenza Infection; Reactome 0.693 2.812 <0.0001 <0.0001

REACTOME_ACTIVATION_OF_
THE_MRNA_UPON_BINDING_OF_
THE_CAP_BINDING_COMPLEX_AND_
EIFS_AND_SUBSEQUENT_
BINDING_TO_43S

Gene Expression; Translation; Eukaryotic translation
initiation; CAP dependent translation initiation

Reactome 0.729 2.512 <0.0001 <0.0001

REACTOME_FORMATION_OF_
THE_TERNARY_COMPLEX_AND_
SUBSEQUENTLY_THE_43S_COMPLEX

Gene Expression; Translation; Eukaryotic translation
initiation; CAP dependent translation initiation;

Reactome 0.739 2.476 <0.0001 0.0001

REACTOME_METABOLISM_OF_MRNA Metabolism of mRNA Reactome 0.546 2.366 <0.0001 0.0002

REACTOME_METABOLISM_OF_RNA Reactome 0.499 2.217 <0.0001 0.0030

Luminal
B

REACTOME_DNA_REPLICATION DNA Replication Reactome 0.486 2.140 <0.0001 0.0115

REACTOME_G1_S_TRANSITION Cell cycle Reactome 0.519 2.128 <0.0001 0.0135

REACTOME_CELL_CYCLE_MITOTIC Cell cycle Reactome 0.448 2.082 <0.0001 0.0339

REACTOME_S_PHASE Cell cycle; Cell Cycle Mitotic Reactome 0.510 2.068 <0.0001 0.0417

Luminal
A

REACTOME_KINESINS Hemostasis Reactome 0.800 2.073 <0.0001 0.0096

(ES = Enrichment Score, NES = Normalized Enrichment Score, p-val = unadjusted p-value, FWER = Family Wise Error Rate-adjusted p-value)

doi:10.1371/journal.pone.0129610.t007

Prognostic Importance of Translation in Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0129610 June 16, 2015 13 / 24



The appropriate design in the present case is a time-to-event analysis. Of the many gene set
analysis implementations, we had to select one which could make sense of a time-to-event
analysis and yet adjust for batch effects. Therefore it was felt suitable to perform mixed-
effects Cox regression on each gene after adjustment for Centre and batch effects as a random
variable, and then analyze the ranked list of the Cox regression coefficients.

A pre-ranked Gene Set Enrichment analysis (GSEA)[39,40] was preferred to analyze the
ranked list, since the alternative(over-representation analysis[60] using the hypergeometric

Fig 4. Enrichment Map visualization of DMFS-associated gene sets in the Basal Subtype.Red nodes
represent gene sets positively associated with metastasis. Blue nodes represent gene sets negatively
associated with metastasis (none present in this figure). Two nodes are connected by edges (solid green
lines) only if the overlap coefficient between the nodes is greater than 0.5, and the edge thickness increases
with increased Overlap coefficient.

doi:10.1371/journal.pone.0129610.g004

Fig 5. Enrichment Map visualization of DMFS-associated gene sets in the Luminal A Subtype.

doi:10.1371/journal.pone.0129610.g005
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test) is limited by an arbitrary cut-off [61]value for gene selection and the statistical significance
is also related to the size of the gene-set in the analysis. It may be noted that the standard GSEA
currently lacks the software implementation for adjusting for batch effects, as well as being
incapable of performing time-to event analysis.

To counteract the false positives, a strict criterion for significance was adopted by keeping
the Family-wise Error Rate (FWER)�0.05. Pre-ranked GSEA results use gene set permutation
rather than the more stringent phenotype permutation used by standard GSEA. The GSEA
User Guide[62] suggests a cut-off of False Detection Rate (FDR) of 0.05 for analyses done with
gene set permutation. This study consists of multiple independent analyses, which necessitate a
stringent cut off to exclude false positives. An FDR of 0.05 means that in any given single analy-
sis, the total number of false positives would be 5%; however, an FWER�0.05 means that in
any given single analysis, the probability of having even one single false positive is not more
than 5%. Therefore, we have used this more stringent threshold than suggested by the GSEA
user guide. An even stricter cut off may have resulted in missing out many significant gene sets.
To make the results of the pre-ranked GSEA robust, ten thousand permutations were used for
finding the prognostically important gene sets. However, for the standard GSEA used to find
gene sets associated with the AURKAmodule score, we were more interested in the general
direction of association in each of the four data series, hence the standard recommended one
thousand permutations were thought to confer sufficient robustness to the results.

Probably the most striking aspect of the results is the association of genes involved in pro-
tein translation with distant metastasis in breast cancer. Although the importance of protein
translation in the molecular biology of cancers is well known, the association of this process
with the prognosis of breast cancers is under appreciated. To our knowledge, this is possibly
the first study to report on the prognostic importance of gene sets related to protein translation
in breast cancer subtypes. On univariate analysis of the entire dataset, gene sets representing
protein translation and the immune system were the only gene sets positively associated with
survival (negatively associated with metastasis, i.e. having a good prognosis). As expected, gene
sets representing cell cycle (or proliferation) were found to be negatively associated with sur-
vival in this analysis The leading edges of the significant translation-related gene sets in the
different analyses were predominantly populated by genes encoding for ribosomal proteins.

Fig 6. Enrichment Map visualization of DMFS-associated gene sets in the Luminal B Subtype. Red
nodes represent gene sets positively associated with metastasis. Blue nodes represent gene sets negatively
associated with metastasis. Two nodes are connected by edges (solid green lines) only if the overlap
coefficient between the nodes is greater than 0.5, and the edge thickness increases with increased Overlap
coefficient.

doi:10.1371/journal.pone.0129610.g006
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On adjustment for proliferation in the multivariate analysis, protein translation ceased to
retain its significance. On first impression, it may seem that the association of protein translation
with DMFS is spurious. However, on univariate analysis of the individual molecular sub-types, it
was found that these gene sets were associated with DMFS in the Luminal A and Basal sub-types,
even though in such analyses proliferation-related gene sets were not found to be associated with

Table 8. Genes which are found in a large number of leading edges of significant gene sets negatively associated with distant metastasis (good
prognosis) for each analysis.

Analysis Entrez
Gene ID

Symbol Gene name Cytogenetic
location

Proportion of the leading edges
the gene is found

Univariate 6191 RPS4X ribosomal protein S4, X-linked Xq13.1 10/10

6193 RPS5 ribosomal protein S5 19q13.4 10/10

6194 RPS6 ribosomal protein S6 9p21 10/10

6202 RPS8 ribosomal protein S8 1p34.1-p32 10/10

6203 RPS9 ribosomal protein S9 19q13.4 10/10

6209 RPS15 ribosomal protein S15 19p13.3 10/10

6210 RPS15A ribosomal protein S15a 16p 10/10

6217 RPS16 ribosomal protein S16 19q13.1 10/10

6223 RPS19 ribosomal protein S19 19q13.2 10/10

6229 RPS24 ribosomal protein S24 10q22 10/10

6230 RPS25 ribosomal protein S25 11q23.3 10/10

6234 RPS28 ribosomal protein S28 19p13.2 10/10

Luminal A 6191 RPS4X ribosomal protein S4, X-linked Xq13.1 10/10

6193 RPS5 ribosomal protein S5 19q13.4 10/10

6194 RPS6 ribosomal protein S6 9p21 10/10

6203 RPS9 ribosomal protein S9 19q13.4 10/10

6209 RPS15 ribosomal protein S15 19p13.3 10/10

6217 RPS16 ribosomal protein S16 19q13.1 10/10

6223 RPS19 ribosomal protein S19 19q13.2 10/10

6229 RPS24 ribosomal protein S24 10q22 10/10

6230 RPS25 ribosomal protein S25 11q23.3 10/10

6234 RPS28 ribosomal protein S28 19p13.2 10/10

6235 RPS29 ribosomal protein S29 14q 10/10

Luminal B 2197 FAU Finkel-Biskis-Reilly murine sarcoma virus
(FBR-MuSV) ubiquitously expressed

11q13 10/10

6188 RPS3 ribosomal protein S3 11q13.3-q13.5 10/10

6191 RPS4X ribosomal protein S4, X-linked Xq13.1 10/10

6192 RPS4Y1 ribosomal protein S4, Y-linked 1 Yp11.3 10/10

6194 RPS6 ribosomal protein S6 9p21 10/10

6201 RPS7 ribosomal protein S7 2p25 10/10

6202 RPS8 ribosomal protein S8 1p34.1-p32 10/10

6203 RPS9 ribosomal protein S9 19q13.4 10/10

6206 RPS12 ribosomal protein S12 6q23.2 10/10

6209 RPS15 ribosomal protein S15 19p13.3 10/10

6210 RPS15A ribosomal protein S15a 16p 10/10

6222 RPS18 ribosomal protein S18 6p21.3 10/10

6223 RPS19 ribosomal protein S19 19q13.2 10/10

6229 RPS24 ribosomal protein S24 10q22 10/10

6230 RPS25 ribosomal protein S25 11q23.3 10/10

6234 RPS28 ribosomal protein S28 19p13.2 10/10

doi:10.1371/journal.pone.0129610.t008
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Table 9. Genes which are found in a large number of leading edges of significant gene sets positively associatedwith distant metastasis (bad prog-
nosis) for each analysis.

Analysis Entrez Gene ID Symbol Gene name Cytogenetic location Proportion of the leading edges the gene is found

Univariate 1017 CDK2 cyclin-dependent kinase 2 12q13 15/25

6117 RPA1 replication protein A1, 70kDa 17p13.3 15/25

6119 RPA3 replication protein A3, 14kDa 7p22 15/25

5422 POLA1 polymerase (DNA directed), alpha 1, catalytic subunit Xp22.1-p21.3 13/25

5426 POLE polymerase (DNA directed), epsilon, catalytic subunit 12q24.3 13/25

Multivariate 1278 COL1A2 collagen, type I, alpha 2 7q22.1 2/2

1281 COL3A1 collagen, type III, alpha 1 2q31 2/2

1285 COL4A3 collagen, type IV, alpha 3 (Goodpasture antigen) 2q36-q37 2/2

1289 COL5A1 collagen, type V, alpha 1 9q34.2-q34.3 2/2

1290 COL5A2 collagen, type V, alpha 2 2q14-q32 2/2

1293 COL6A3 collagen, type VI, alpha 3 2q37 2/2

2200 FBN1 fibrillin 1 15q21.1 2/2

3910 LAMA4 laminin, alpha 4 6q21 2/2

3915 LAMC1 laminin, gamma 1 (formerly LAMB2) 1q31 2/2

80781 COL18A1 collagen, type XVIII, alpha 1 21q22.3 2/2

Basal 2197 FAU Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed 11q13 13/13

6188 RPS3 ribosomal protein S3 11q13.3-q13.5 13/13

6191 RPS4X ribosomal protein S4, X-linked Xq13.1 13/13

6194 RPS6 ribosomal protein S6 9p21 13/13

6203 RPS9 ribosomal protein S9 19q13.4 13/13

6204 RPS10 ribosomal protein S10 6p21.31 13/13

6206 RPS12 ribosomal protein S12 6q23.2 13/13

6209 RPS15 ribosomal protein S15 19p13.3 13/13

6222 RPS18 ribosomal protein S18 6p21.3 13/13

6228 RPS23 ribosomal protein S23 5q14.2 13/13

6229 RPS24 ribosomal protein S24 10q22 13/13

6232 RPS27 ribosomal protein S27 1q21 13/13

6235 RPS29 ribosomal protein S29 14q 13/13

Luminal B 990 CDC6 cell division cycle 6 17q21.3 4/4

1017 CDK2 cyclin-dependent kinase 2 12q13 4/4

1026 CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 6p21.2 4/4

4171 MCM2 minichromosome maintenance complex component 2 3q21 4/4

4172 MCM3 minichromosome maintenance complex component 3 6p12 4/4

4175 MCM6 minichromosome maintenance complex component 6 2q21 4/4

4998 ORC1 origin recognition complex, subunit 1 1p32 4/4

5000 ORC4 origin recognition complex, subunit 4 2q22-q23 4/4

5426 POLE polymerase (DNA directed), epsilon, catalytic subunit 12q24.3 4/4

5427 POLE2 polymerase (DNA directed), epsilon 2, accessory subunit 14q21-q22 4/4

5683 PSMA2 proteasome (prosome, macropain) subunit, alpha type, 2 7p13 4/4

5688 PSMA7 proteasome (prosome, macropain) subunit, alpha type, 7 20q13.33 4/4

5691 PSMB3 proteasome (prosome, macropain) subunit, beta type, 3 17q12 4/4

5692 PSMB4 proteasome (prosome, macropain) subunit, beta type, 4 1q21 4/4

5693 PSMB5 proteasome (prosome, macropain) subunit, beta type, 5 14q11.2 4/4

5694 PSMB6 proteasome (prosome, macropain) subunit, beta type, 6 17p13 4/4

5700 PSMC1 proteasome (prosome, macropain) 26S subunit, ATPase, 1 14q32.11 4/4

5704 PSMC4 proteasome (prosome, macropain) 26S subunit, ATPase, 4 19q13.11-q13.13 4/4

5705 PSMC5 proteasome (prosome, macropain) 26S subunit, ATPase, 5 17q23.3 4/4

5706 PSMC6 proteasome (prosome, macropain) 26S subunit, ATPase, 6 14q22.1 4/4

5708 PSMD2 proteasome (prosome, macropain) 26S subunit, non-ATPase, 2 3q27.1 4/4

5709 PSMD3 proteasome (prosome, macropain) 26S subunit, non-ATPase, 3 17q21.1 4/4

5710 PSMD4 proteasome (prosome, macropain) 26S subunit, non-ATPase, 4 1q21.3 4/4

5713 PSMD7 proteasome (prosome, macropain) 26S subunit, non-ATPase, 7 16q22.3 4/4

5717 PSMD11 proteasome (prosome, macropain) 26S subunit, non-ATPase, 11 17q11.2 4/4

5718 PSMD12 proteasome (prosome, macropain) 26S subunit, non-ATPase, 12 17q24.2 4/4

6119 RPA3 replication protein A3, 14kDa 7p22 4/4

6233 RPS27A ribosomal protein S27a 2p16 4/4

8318 CDC45 cell division cycle 45 22q11.21 4/4

8900 CCNA1 cyclin A1 13q12.3-q13 4/4

10213 PSMD14 proteasome (prosome, macropain) 26S subunit, non-ATPase, 14 2q24.2 4/4

23594 ORC6 origin recognition complex, subunit 6 16q12 4/4

doi:10.1371/journal.pone.0129610.t009
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DMFS (Tables 6 and 7). Thus, protein translation seems to have an association independent of
cellular proliferation with survival in certain molecular sub-types of breast cancer.

It was interesting to note that the direction of association of gene sets related to protein
translation with metastasis was different in the different sub-types. In the Luminal A and B
tumors, protein translation was found to be negatively associated with metastasis (good prog-
nosis), but in the Basal subtype, it was found to be positively associated with the same (poor
prognosis). This was corroborated by the high degree of overlap of the leading edge genes
which were associated with favorable prognosis in Luminal A and B tumors, while being asso-
ciated with a poor prognosis in Basal tumors.

Why translation should have differing prognostic effects in different sub-types is unclear.
We offer a provisional hypothesis that the prognostic effect of translation might be related to
the deranged proteins in the cells. Increased protein translation in Basal tumors might imply
greater translation of mutated proteins which cause further dysregulation of growth (leading to
a worse prognosis); while increased protein translation in the Luminal tumors might imply an
increased expression of normal proteins which tends the cells towards homeostasis (leading to
a better prognosis). Thus, different protein translation derangement mechanisms may confer
different prognostic significance in the various breast cancer subtypes.

To our knowledge, ours is the first study to link protein translation as a process/pathway to
clinical outcomes in breast cancer. However, since ours is an exploratory analysis, our findings
need to be confirmed on larger datasets. However, such a novel finding is intriguing and may
well give us insights about the oncobiology and natural history of breast cancer and its sub-types.

The different molecular subtypes have different expressions of proliferation-related genes,
as a result of which the range of expression of these genes are reduced in the different subtypes.
Therefore, it is not surprising that, in our study, cell cycle has a relatively lower prognostic impor-
tance in many of the individual molecular subtypes, as compared to analysis on the entire breast
cancer cases. Even then, proliferation retained its prime position in Luminal B tumors. A gene set
representing Kinesins also attained significance in Luminal A tumors. The genes in the leading
edge of this gene set are all kinesins which play an important role in mitosis.

Only a few studies have found the extracellular matrix (ECM) to be of prognostic importance
in breast cancer[9,63,64]. One study[9] found that a module made of ECM genes was related to a
prognostic gene signature. However, the above mentioned study finally selected Proliferation,
Immune Response and RNA splicing as the main cellular events predictive of outcome in breast
cancer. Some proteins related to ECMwere identified as having prognostic importance in breast
cancer by network analysis[63]; even then, the importance of the ECMwas understated. Only
one study [64] found gene sets related to ECM to be of primary importance.

In our study, the ECM-related gene sets did not show prognostic association with breast
cancer on any univariate analysis. However, when adjusted for proliferation (in the multivari-
ate analysis), there was a positive association between the ECM-related gene sets and metasta-
sis, underscoring a negative prognostic significance of the expression of ECM-related genes in
breast cancer. This was bolstered by the finding of collagen-related genes being over-repre-
sented in the 'leading edge' analysis performed separately.

We investigated as to why the prognostic effect of ECM-related genes remained hidden in the
univariate analysis, while being apparent in the multivariate setting. Considering that the ECM-
related gene sets showed association with metastasis after adjustment for proliferation (Table 5),
we hypothesized that there could be suppression of the effect of ECM-related genes due to associ-
ation of their expression with proliferation-related genes. To test this hypothesis, standard GSEA
was performed to assess the relationship between the proliferation-related AURKAmodule
score and all the gene sets in individual data series. This analysis confirmed a strong negative
association between the AURKA score and the ECM gene sets, i.e. increased expression
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of ECM-related genes is associated with decreased expression of the proliferation-related genes,
and vice versa (Table 10). Since proliferation is known to be one of the strongest markers of poor
prognosis, hence the decreased expression of proliferation-related genes might mask the poor prog-
nostic association of the increased expression of ECM-related genes, thus explaining our seem-
ingly paradoxical results. This negative correlation between the expression of ECM-related genes
and proliferation may also be a possible explanation for the prognostic non-significance of ECM-
related genes in other studies which were not adjusted for proliferation. The overexpression of
ECM and integrins being associated with poor prognosis (Table 5) makes biological sense, as
they represent a part of the molecular mechanism of metastasis as is presently known[65].

A few caveats while interpreting the results have to be made: i) The study consisted of sys-
temically untreated node negative females pooled from various studies which differed in their
time periods from the 1980s through the 2000s. This has the advantage of having a more
homogeneous cohort compared to random datasets having a variety of systemic treatments
which would have complicated the analysis greatly. However, this criterion may itself lead to a
dataset consisting of a biased population.

After combining data from the four series, 499 patients had ER positive tumors, while 295
had PR positive tumors–the data series did not allow for an interpretation whether these were
mutually exclusive or overlapping in some way. However, despite being hormone receptor pos-
itive, none received any adjuvant hormonal therapy, the reasons for the exclusion from sys-
temic treatment being unknown. Similarly, there were 325 patients who had T2 or larger
tumors, but who, for unknown reasons, did not receive chemotherapy. We do not know
whether the characteristic of the patients which led to their exclusion from systemic therapy
would be a confounding variable in itself, as well as the possibility that since they did not
receive any systemic therapy that itself could have affected their metastasis free survival in any
way. It is certainly probable that the characteristics of patients and tumors (for instance, prefer-
ential evolutionary clonal selection[66]) in the different datasets changed with time as systemic
treatment became more prevalent and few patients were recommended no systemic treatment.

ii) Since the population consisted of patients who were systemically untreated, the present
study gives a good picture of the natural history of breast cancer unmodified by any systemic
iatrogenic factor. However, the very same characteristic causes it to be unsuitable for the for-
mation of a prognostic gene signature; prognosis being a much more complex end process,
having highly multi-factorial stochastic and causal elements to it. At present, breast cancer
patients are given a variety of treatments, and the responsiveness of these treatments may
themselves be associated with gene expression[27–30].

iii) A third limitation of the study concerns the relatively small sample size of this study.
Despite combining four large studies in the database, our study had 742 patients, and relatively
little number of events of interest (i.e. distant metastases) had occurred at the time of data cen-
soring. At the time of data censoring, a total of 200 events of interest had occurred– 52, 34, 47
and 59 for the Basal, HER2, Luminal A and Luminal B tumors respectively–which we feel
might represent a complex interplay between differences in tumor biology and changing pat-
terns of survival over the last few decades.

Conclusion
This study, in addition to confirming the known prognostic role of proliferation in breast can-
cer, to the best of our knowledge, reports for the first time, the hitherto unappreciated prognos-
tic effect of translation in breast cancer and its various molecular sub-types. It also shows the
opposing prognostic association of the translation associated genes in the various breast cancer
subtypes. Finally, the study highlights the independent prognostic significance of the genes
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related to integrin1 pathway and the extracellular matrix. This is possibly the first study to
demonstrate the confounding effect of proliferation. Importantly, this study showed how the
significant prognostic effects of biologically meaningful pathways and processes may be hidden
by their association with a prognostically strong confounder (proliferation).

This study was undertaken as we felt that previous studies had methodological flaws, and no
one has yet reported any results by combining different series in a single large dataset using
a meta-analytic approach for the different breast cancer subtypes. The primary aim of this
study was to better understand the processes and pathways affecting prognosis in breast cancer,
and possibly identify novel pathways of interest for further analysis and hypothesis generation,
rather than making a predictive signature. Confirmatory studies, preferably on large datasets,
are needed to validate the findings of this study.
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S1 Fig. Boxplot of the entire microarray data before and after fRMA processing. The y-
axis of the data before pre-processing is plotted after log 2 transformation. Data after fRMA
preprocessing are log 2 transformed during pre-processing, hence no further log transforma-
tion is done.The different colors represent different data series (orange for GSE2034, blue for
GSE5327, yellow for GSE11121 and green for GSE7390).
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used in each analysis. In each analysis, Gene Expression was the fixed effects variable. In anal-
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(RE = Random effects).
(DOCX)

S2 Table. Summary of results obtained in the six analyses showing the association of vari-
ous gene sets with distant metastasis.
(DOCX)

Author Contributions
Conceived and designed the experiments: NC SS. Performed the experiments: NC. Analyzed
the data: NC SS. Contributed reagents/materials/analysis tools: NC. Wrote the paper: NC SS.

References
1. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human

breast tumours. Nature. 2000 Aug 17; 406(6797):747–52. PMID: 10963602

Prognostic Importance of Translation in Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0129610 June 16, 2015 21 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129610.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129610.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129610.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129610.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129610.s005
http://www.ncbi.nlm.nih.gov/pubmed/10963602


2. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of
breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A.
2001 Sep 11; 98(19):10869–74. PMID: 11553815

3. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast
tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003 Jul; 100
(14):8418–23. PMID: 12829800

4. Sørlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR, et al. Distinct molecular mechanisms
underlying clinically relevant subtypes of breast cancer: gene expression analyses across three differ-
ent platforms. BMCGenomics. 2006 Jan; 7(1):127.

5. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of
breast cancer based on intrinsic subtypes. J Clin Oncol. 2009 Mar 10; 27(8):1160–7. doi: 10.1200/JCO.
2008.18.1370 PMID: 19204204

6. Chanrion M, Fontaine H, Rodriguez C, Negre V, Bibeau F, Theillet C, et al. A newmolecular breast can-
cer subclass defined from a large scale real-time quantitative RT-PCR study. BMC Cancer. 2007 Jan; 7
(1):39.

7. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular
characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010 Jan; 12
(5):R68. doi: 10.1186/bcr2635 PMID: 20813035

8. Pusztai L, Mazouni C, Anderson K, Wu Y, SymmansWF. Molecular classification of breast cancer: Lim-
itations and potential. Oncologist. 2006; 11(8):868–77. PMID: 16951390

9. Reyal F, van Vliet MH, Armstrong NJ, Horlings HM, de Visser KE, Kok M, et al. A comprehensive analy-
sis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response
and RNA splicing modules in breast cancer. Breast Cancer Res. 2008 Jan; 10(6):R93. doi: 10.1186/
bcr2192 PMID: 19014521

10. Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, et al. Meta-analysis of gene
expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and
prognosis signatures. Breast Cancer Res. 2008 Jan; 10(4):R65. doi: 10.1186/bcr2124 PMID:
18662380

11. Venet D, Dumont JE, Detours V. Most random gene expression signatures are significantly associated
with breast cancer outcome. Rigoutsos I, editor. PLoS Comput Biol. Public Library of Science; 2011
Oct; 7(10):e1002240. doi: 10.1371/journal.pcbi.1002240 PMID: 22028643

12. Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, et al. Biological processes
associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res.
2008 Aug 15; 14(16):5158–65. doi: 10.1158/1078-0432.CCR-07-4756 PMID: 18698033

13. Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G. A comparative study of survival models for breast
cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics.
2008 Oct 1; 24(19):2200–8. doi: 10.1093/bioinformatics/btn374 PMID: 18635567

14. Chen J, Sam L, Huang Y, Lee Y, Li J, Liu Y, et al. Protein interaction network underpins concordant
prognosis among heterogeneous breast cancer signatures. J Biomed Inform. 2010 Jun; 43(3):385–96.
doi: 10.1016/j.jbi.2010.03.009 PMID: 20350617

15. Liu JC, Voisin V, Bader GD, Deng T, Pusztai L, SymmansWF, et al. Seventeen-gene signature from
enriched Her2/Neu mammary tumor-initiating cells predicts clinical outcome for human HER2+:ERα-
breast cancer. Proc Natl Acad Sci U S A. 2012 Apr 10; 109(15):5832–7. doi: 10.1073/pnas.
1201105109 PMID: 22460789

16. Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C. An immune response gene expression
module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol.
2007 Jan; 8(8):R157. PMID: 17683518

17. Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC. A multigene predictor of metastatic
outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer
Res. 2010 Jan; 12(5):R85. doi: 10.1186/bcr2753 PMID: 20946665

18. Staaf J, Ringnér M, Vallon-Christersson J, Jönsson G, Bendahl P-O, Holm K, et al. Identification of sub-
types in human epidermal growth factor receptor 2—positive breast cancer reveals a gene signature
prognostic of outcome. J Clin Oncol. 2010 Apr 10; 28(11):1813–20. doi: 10.1200/JCO.2009.22.8775
PMID: 20231686

19. Rody A, Holtrich U, Pusztai L, Liedtke C, Gaetje R, Ruckhaeberle E, et al. T-cell metagene predicts a
favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer
Res. 2009 Jan; 11(2):R15. doi: 10.1186/bcr2234 PMID: 19272155

20. Rody A, Karn T, Liedtke C, Pusztai L, Ruckhaeberle E, Hanker L, et al. A clinically relevant gene signa-
ture in triple negative and basal-like breast cancer. Breast Cancer Res. 2011 Jan; 13(5):R97. doi: 10.
1186/bcr3035 PMID: 21978456

Prognostic Importance of Translation in Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0129610 June 16, 2015 22 / 24

http://www.ncbi.nlm.nih.gov/pubmed/11553815
http://www.ncbi.nlm.nih.gov/pubmed/12829800
http://dx.doi.org/10.1200/JCO.2008.18.1370
http://dx.doi.org/10.1200/JCO.2008.18.1370
http://www.ncbi.nlm.nih.gov/pubmed/19204204
http://dx.doi.org/10.1186/bcr2635
http://www.ncbi.nlm.nih.gov/pubmed/20813035
http://www.ncbi.nlm.nih.gov/pubmed/16951390
http://dx.doi.org/10.1186/bcr2192
http://dx.doi.org/10.1186/bcr2192
http://www.ncbi.nlm.nih.gov/pubmed/19014521
http://dx.doi.org/10.1186/bcr2124
http://www.ncbi.nlm.nih.gov/pubmed/18662380
http://dx.doi.org/10.1371/journal.pcbi.1002240
http://www.ncbi.nlm.nih.gov/pubmed/22028643
http://dx.doi.org/10.1158/1078-0432.CCR-07-4756
http://www.ncbi.nlm.nih.gov/pubmed/18698033
http://dx.doi.org/10.1093/bioinformatics/btn374
http://www.ncbi.nlm.nih.gov/pubmed/18635567
http://dx.doi.org/10.1016/j.jbi.2010.03.009
http://www.ncbi.nlm.nih.gov/pubmed/20350617
http://dx.doi.org/10.1073/pnas.1201105109
http://dx.doi.org/10.1073/pnas.1201105109
http://www.ncbi.nlm.nih.gov/pubmed/22460789
http://www.ncbi.nlm.nih.gov/pubmed/17683518
http://dx.doi.org/10.1186/bcr2753
http://www.ncbi.nlm.nih.gov/pubmed/20946665
http://dx.doi.org/10.1200/JCO.2009.22.8775
http://www.ncbi.nlm.nih.gov/pubmed/20231686
http://dx.doi.org/10.1186/bcr2234
http://www.ncbi.nlm.nih.gov/pubmed/19272155
http://dx.doi.org/10.1186/bcr3035
http://dx.doi.org/10.1186/bcr3035
http://www.ncbi.nlm.nih.gov/pubmed/21978456


21. Sabatier R, Finetti P, Cervera N, Lambaudie E, Esterni B, Mamessier E, et al. A gene expression signa-
ture identifies two prognostic subgroups of basal breast cancer. Breast Cancer Res Treat. 2011 Apr;
126(2):407–20. doi: 10.1007/s10549-010-0897-9 PMID: 20490655

22. Griffith OL, Pepin F, Enache OM, Heiser LM, Collisson EA, Spellman PT, et al. A robust prognostic sig-
nature for hormone-positive node-negative breast cancer. GenomeMed. 2013 Jan; 5(10):92. doi: 10.
1186/gm496 PMID: 24112773

23. Sabatier R, Finetti P, Mamessier E, Raynaud S, Cervera N, Lambaudie E, et al. Kinome expression pro-
filing and prognosis of basal breast cancers. Mol Cancer. 2011 Jan; 10:86. doi: 10.1186/1476-4598-10-
86 PMID: 21777462

24. Hallett RM, Dvorkin-Gheva A, Bane A, Hassell JA. A gene signature for predicting outcome in patients
with basal-like breast cancer. Sci Rep. 2012 Jan; 2:227. doi: 10.1038/srep00227 PMID: 22355741

25. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, JohnsonWE, et al. Tackling the widespread
and critical impact of batch effects in high-throughput data. Nat Rev Genet. Nature Publishing Group, a
division of Macmillan Publishers Limited. All Rights Reserved.; 2010 Oct; 11(10):733–9. doi: 10.1038/
nrg2825 PMID: 20838408

26. Kupfer P, Guthke R, Pohlers D, Huber R, Koczan D, Kinne RW. Batch correction of microarray data
substantially improves the identification of genes differentially expressed in rheumatoid arthritis and
osteoarthritis. BMCMed Genomics. 2012 Jan; 5(1):23.

27. Mulligan JM, Hill LA, Deharo S, Irwin G, Boyle D, Keating KE, et al. Identification and validation of an
anthracycline/cyclophosphamide-based chemotherapy response assay in breast cancer. J Natl Cancer
Inst. 2014 Jan 1; 106(1):djt335. doi: 10.1093/jnci/djt335 PMID: 24402422

28. Dressman HK, Hans C, Bild A, Olson J a, Rosen E, MarcomPK, et al. Gene expression profiles of multi-
ple breast cancer phenotypes and response to neoadjuvant chemotherapy. Clin Cancer Res. 2006 Feb
1; 12(3 Pt 1):819–26. PMID: 16467094

29. Haibe-Kains B, Desmedt C, Di Leo A, Azambuja E, Larsimont D, Selleslags J, et al. Genome-wide
gene expression profiling to predict resistance to anthracyclines in breast cancer patients. Genomics
Data. 2013 Dec; 1:7–10.

30. Ma X-J, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, et al. A two-gene expression ratio predicts
clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004 Jun; 5(6):607–16.
PMID: 15193263

31. Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al. Gene-expression profiles to pre-
dict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005 Jan 19; 365
(9460):671–9. PMID: 15721472

32. Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, Nuyten D, et al. Lungmetastasis genes couple breast
tumor size andmetastatic spread. Proc Natl Acad Sci U S A. 2007 Apr 17; 104(16):6740–5. PMID: 17420468

33. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, et al. Strong time dependence of the
76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter
independent validation series. Clin Cancer Res. 2007 Jun 1; 13(11):3207–14. PMID: 17545524

34. Schmidt M, Böhm D, von Törne C, Steiner E, Puhl A, Pilch H, et al. The humoral immune system has a
key prognostic impact in node-negative breast cancer. Cancer Res. 2008 Jul 1; 68(13):5405–13. doi:
10.1158/0008-5472.CAN-07-5206 PMID: 18593943

35. Hahne F, Huber W, Gentleman R, Falcon S. Processing Affymetrix Expression Data. Bioconductor
Case Studies. New York, NY: Springer New York; 2008. p. 25–46.

36. McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis (fRMA). Biostatistics. 2010 Apr
1; 11(2):242–53. doi: 10.1093/biostatistics/kxp059 PMID: 20097884

37. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioin-
formatics. 2008 Jan; 9(1):559.

38. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. IEEE; 1974 Dec
1; 19(6):716–23.

39. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment
analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl
Acad Sci U S A. National Academy of Sciences; 2005; 102(43):15545–50. PMID: 16199517

40. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-respon-
sive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.
Nat Genet. 2003 Jul; 34(3):267–73. PMID: 12808457

41. Nishimura D. BioCarta. Biotech Softw Internet Rep. Mary Ann Liebert, Inc.; 2001 Jun 5; 2(3):117–20.

42. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-
scale molecular data sets. Nucleic Acids Res. 2012 Jan; 40(Database issue):D109–14. doi: 10.1093/
nar/gkr988 PMID: 22080510

Prognostic Importance of Translation in Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0129610 June 16, 2015 23 / 24

http://dx.doi.org/10.1007/s10549-010-0897-9
http://www.ncbi.nlm.nih.gov/pubmed/20490655
http://dx.doi.org/10.1186/gm496
http://dx.doi.org/10.1186/gm496
http://www.ncbi.nlm.nih.gov/pubmed/24112773
http://dx.doi.org/10.1186/1476-4598-10-86
http://dx.doi.org/10.1186/1476-4598-10-86
http://www.ncbi.nlm.nih.gov/pubmed/21777462
http://dx.doi.org/10.1038/srep00227
http://www.ncbi.nlm.nih.gov/pubmed/22355741
http://dx.doi.org/10.1038/nrg2825
http://dx.doi.org/10.1038/nrg2825
http://www.ncbi.nlm.nih.gov/pubmed/20838408
http://dx.doi.org/10.1093/jnci/djt335
http://www.ncbi.nlm.nih.gov/pubmed/24402422
http://www.ncbi.nlm.nih.gov/pubmed/16467094
http://www.ncbi.nlm.nih.gov/pubmed/15193263
http://www.ncbi.nlm.nih.gov/pubmed/15721472
http://www.ncbi.nlm.nih.gov/pubmed/17420468
http://www.ncbi.nlm.nih.gov/pubmed/17545524
http://dx.doi.org/10.1158/0008-5472.CAN-07-5206
http://www.ncbi.nlm.nih.gov/pubmed/18593943
http://dx.doi.org/10.1093/biostatistics/kxp059
http://www.ncbi.nlm.nih.gov/pubmed/20097884
http://www.ncbi.nlm.nih.gov/pubmed/16199517
http://www.ncbi.nlm.nih.gov/pubmed/12808457
http://dx.doi.org/10.1093/nar/gkr988
http://dx.doi.org/10.1093/nar/gkr988
http://www.ncbi.nlm.nih.gov/pubmed/22080510


43. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the
genome. Nucleic Acids Res. 2004 Jan 1; 32(Database issue):D277–80. PMID: 14681412

44. Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions,
pathways and biological processes. Nucleic Acids Res. 2011 Jan 9; 39(Database issue):D691–7. doi:
10.1093/nar/gkq1018 PMID: 21067998

45. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: the Pathway Interaction
Database. Nucleic Acids Res. 2009 Jan 1; 37(Database issue):D674–9. doi: 10.1093/nar/gkn653
PMID: 18832364

46. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. The Gene Ontology (GO) data-
base and informatics resource. Nucleic Acids Res. 2004 Jan 1; 32(Database issue):D258–61. PMID:
14681407

47. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unifi-
cation of biology. The Gene Ontology Consortium. Nat Genet. Nature America Inc.; 2000 May; 25
(1):25–9. PMID: 10802651

48. Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method
for gene-set enrichment visualization and interpretation. Ravasi T, editor. PLoS One. Public Library of
Science; 2010 Jan; 5(11):e13984. doi: 10.1371/journal.pone.0013984 PMID: 21085593

49. Darlington RB, Hayes AF. Combining independent p values: extensions of the Stouffer and binomial
methods. Psychol Methods. 2000 Dec; 5(4):496–515. PMID: 11194210

50. Gordon AY, Salzman P. Optimality of the Holm procedure among general step-downmultiple testing
procedures. Stat Probab Lett. 2008 Sep 15; 78(13):1878–84. PMID: 19759804

51. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2014.

52. Therneau T. coxme: Mixed Effects Cox Models. 2012.

53. Davis S, Meltzer P. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioCon-
ductor. Bioinformatics. 2007; 14:1846–7.

54. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—-analysis of Affymetrix GeneChip data at the probe
level. Bioinformatics. Oxford, UK: Oxford University Press; 2004; 20(3):307–15. PMID: 14960456

55. Haibe-Kains B, Schroeder M, Bontempi G, Sotiriou C, Quackenbush J. genefu: Relevant Functions for
Gene Expression Analysis, Especially in Breast Cancer. 2013.

56. Carlson M. hgu133a.db: Affymetrix Human Genome U133 Set annotation data (chip hgu133a).

57. GSEA Team, MSigDB Scientific Advisory Board. GSEA | MSigDB | MSigDB Collections [Internet].
2013 [cited 2014 Oct 1]. Available from: http://www.broadinstitute.org/gsea/msigdb/collections.jsp

58. ChengW-Y, Ou Yang T-H, Anastassiou D. Development of a prognostic model for breast cancer sur-
vival in an open challenge environment. Sci Transl Med. 2013 Apr 17; 5(181):181ra50. doi: 10.1126/
scitranslmed.3006112 PMID: 23596205

59. Al-Ejeh F, Simpson PT, Sanus JM, Klein K, Kalimutho M, Shi W, et al. Meta-analysis of the global gene
expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment
of aggressive breast cancer. Oncogenesis. Nature Publishing Group; 2014 Jan; 3(4):e100.

60. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehen-
sive functional analysis of large gene lists. Nucleic Acids Res. 2009 Jan 1; 37(1):1–13. doi: 10.1093/
nar/gkn923 PMID: 19033363

61. Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding chal-
lenges. PLoS Comput Biol. Public Library of Science; 2012 Jan 23; 8(2):e1002375. doi: 10.1371/
journal.pcbi.1002375 PMID: 22383865

62. GSEA Team, MSigDB Scientific Advisory Board. GSEA User Guide [Internet]. 2014 [cited 2014 Oct 1].
Available: http://www.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html

63. Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker T. Network-based classification of breast cancer metasta-
sis. Mol Syst Biol. EMBO and Nature Publishing Group; 2007 Jan 16; 3:140. PMID: 17940530

64. Woltmann A, Chen B, Lascorz J, Johansson R, Eyfjörd JE, Hamann U, et al. Systematic pathway
enrichment analysis of a genome-wide association study on breast cancer survival reveals an influence
of genes involved in cell adhesion and calcium signaling on the patients’ clinical outcome. PLoS One.
Public Library of Science; 2014 Jan 2; 9(6):e98229. doi: 10.1371/journal.pone.0098229 PMID:
24886783

65. Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis. Oncogene. 2003
Sep 29; 22(42):6524–36. PMID: 14528277

66. Greaves M, Maley CC. Clonal evolution in cancer. Nature. Nature Publishing Group; 2012 Jan 19; 481
(7381):306–13. doi: 10.1038/nature10762 PMID: 22258609

Prognostic Importance of Translation in Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0129610 June 16, 2015 24 / 24

http://www.ncbi.nlm.nih.gov/pubmed/14681412
http://dx.doi.org/10.1093/nar/gkq1018
http://www.ncbi.nlm.nih.gov/pubmed/21067998
http://dx.doi.org/10.1093/nar/gkn653
http://www.ncbi.nlm.nih.gov/pubmed/18832364
http://www.ncbi.nlm.nih.gov/pubmed/14681407
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://dx.doi.org/10.1371/journal.pone.0013984
http://www.ncbi.nlm.nih.gov/pubmed/21085593
http://www.ncbi.nlm.nih.gov/pubmed/11194210
http://www.ncbi.nlm.nih.gov/pubmed/19759804
http://www.ncbi.nlm.nih.gov/pubmed/14960456
http://www.broadinstitute.org/gsea/msigdb/collections.jsp
http://dx.doi.org/10.1126/scitranslmed.3006112
http://dx.doi.org/10.1126/scitranslmed.3006112
http://www.ncbi.nlm.nih.gov/pubmed/23596205
http://dx.doi.org/10.1093/nar/gkn923
http://dx.doi.org/10.1093/nar/gkn923
http://www.ncbi.nlm.nih.gov/pubmed/19033363
http://dx.doi.org/10.1371/journal.pcbi.1002375
http://dx.doi.org/10.1371/journal.pcbi.1002375
http://www.ncbi.nlm.nih.gov/pubmed/22383865
http://www.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html
http://www.ncbi.nlm.nih.gov/pubmed/17940530
http://dx.doi.org/10.1371/journal.pone.0098229
http://www.ncbi.nlm.nih.gov/pubmed/24886783
http://www.ncbi.nlm.nih.gov/pubmed/14528277
http://dx.doi.org/10.1038/nature10762
http://www.ncbi.nlm.nih.gov/pubmed/22258609

