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Abstract: Corticosteroids constitute an ideal treatment for various inflammatory and 

autoimmune disorders due to their anti-inflammatory and immunomodulatory actions. 

 However, corticosteroids have a considerable number of side effects, including hypertension, 

diabetes, lipid disorders, sleep apnea, osteoporosis, myopathy, and disorders of coagulation 

and fibrinolysis, which are components of Cushing’s syndrome (CS). Corticosteroid-induced 

side effects are dependent on the formulation, route, dose, and time of exposure. However, the 

underlying pathogenetic mechanisms have not been clearly defined. A large body of evidence 

supports the role of an imbalance between vasoconstriction and vasodilation with possible links 

to nitric oxide, prostanoids, angiotensin II, arginine vasopressin, endothelins, catecholamines, 

neuropeptide Y, and atrial natriuretic peptide. Increased oxidative stress, renin–angiotensin 

system activation, increased pressor response, metabolic syndrome, and sleep apnea appear to 

be pathogenetically involved as well. The ideal treatment is the withdrawal of corticosteroids, 

which is most often impossible due to the exacerbation of the underlying disease. Alternatively, 

a careful plan, including the proper selection of the formulation, time, and route, should be 

made, and each side effect should be treated properly. The focus of the research should be to 

develop synthetic corticosteroids with anti-inflammatory effects but fewer metabolic effects, 

which so far has been unsuccessful.
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Introduction
It is estimated that up to 0.5% of the US population are on chronic corticosteroid 

therapy for various inflammatory and autoimmune disorders.1,2 Annually, ∼10 million 

new prescriptions for oral corticosteroids are issued in the US. A minority of patients 

use corticosteroids without being aware of this, due to their use in the black market. 

 Corticosteroids have been used, along with hydroquinone and mercury, as ingredients 

in a variety of skin lightening (bleaching) cosmetics and toiletries that are widely used 

in African countries.3 Over-the-counter combination preparations of steroids with other 

drugs such as antifungals may lead to unsupervised and inappropriate use of topical 

corticosteroids.2,4,5 Cases of factitious Cushing’s syndrome (CS) from surreptitious use 

of corticosteroids have been described.6 Corticosteroids as an ingredient of a black 

market drug used by addicts to help them through the narcotic withdrawal stage were 

responsible for an outbreak of CS in Tehran in 2008.7

Corticosteroids have been the medication of choice in various disorders, based 

on their undoubted benefits from their anti-inflammatory and immunomodula-

tory actions. However, they are also complicated by a considerable number of side 
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effects, including CS. The clinical presentation of CS often 

strikes with the use of high doses of corticosteroids.1,2 

Symptoms include central obesity, plethora, easy bruis-

ing, thin skin, striae, myopathy, depression or psychosis, 

poor wound  healing, increased  incidence of infection, 

glaucoma and other  ocular disease, and hypertension (HT). 

Hirsutism and other  virilizing features are uncommon clini-

cal findings due to nonsignificant increases in androgens. 

Avascular necrosis and spinal epidural lipomatosis constitute 

a complication of corticosteroid-induced CS.1,2

All synthetic derivatives that are used clinically, including 

prednisone, prednisolone, methylprednisolone, dexametha-

sone (DX), betamethasone, and triamcinolone, have the 

potential for adverse effects and CS.2 Which of these agents 

is most likely to cause CS has not been fully clarified due 

to the complex interaction of many factors involved in this 

process.2 It appears that it is dependent on the formulation 

used, pharmacokinetics, affinity for the glucocorticoid 

receptor, biologic potency, duration of action, and different 

levels of sensitivity in individual patients.2 Oral corticosteroid 

therapy has been well correlated with CS, and most physi-

cians are aware of the dangers,  having always to balance the 

cost–effect ratio.2 According to accumulated data, topical, 

aerosol, inhaled, and injectable corticosteroid therapy may 

also have adverse effects, including CS.2,8–12 There have 

been several cases of children who received intralesional 

injections into keloid scars or other wounds (such as burns) 

and developed CS that persisted for a long time (up to 

9 months).13 Cases of CS have also been reported in patients 

under treatment with paraspinal depot injections.14 Additional 

unusual cases include CS induced by serial occipital nerve 

blocks containing triamcinolone.15 Corticosteroid-related 

side effects including CS are common in patients with 

cystic fibrosis or HIV infection, which need combined treat-

ments including budesonide and itraconazole or fluticasone 

propionate and ritonavir.11,12,16,17

Another critical determinant of the corticosteroid-induced 

side effects including CS is the dosage needed to control 

the disease. High doses of corticosteroids even for a short 

time or long-term use of agents with lower potency and 

short half-lives (hydrocortisone and cortisone) have been 

associated with CS. However, the prediction of dosages at 

which CS will develop is a complicated phenomenon that 

depends on a variety of factors.1,2 Thus, the cost–effect ratio 

has to be estimated in each case, and a careful plan should 

be made before starting treatment with corticosteroids. 

This review will discuss the critical determinants and 

underlying pathogenetic mechanisms of CS associated with 

corticosteroids.

Morbidities associated  
with corticosteroid-related CS
Corticosteroid-induced CS and HT
HT is a prominent feature in patients with corticosteroid-

induced CS, occurring in up to 20% of cases, and is dose 

dependent.1,2,18,19 A variety of mechanisms has been proposed 

to explain its pathogenesis.18,19

A large body of evidence supports the theory that 

corticosteroids induce an imbalance between vasoconstriction 

and vasodilation, favoring vasoconstriction, resulting in 

HT.18,19 According to in vitro, in vivo, and also human data, 

increased vasoconstriction is in large part mediated by 

increased endothelin-1 synthesis and secretion.20–22  Increased 

cytosolic calcium levels  downregulate the expression of 

the Na–Ca exchanger and increased erythropoeitin levels 

have also been pathogenetically involved in corticosteroid-

induced vasoconstriction and HT.23,24  Accumulating data 

suggest that increased sympathetic activity, reflected in the 

increased synthesis of  catecholamines and a1β-adrenergic 

receptor expression, is an important underlying pathogenetic 

mechanism as well.18,19 The increased synthesis of cat-

echolamines is due to increased expression and activity of 

various enzymes involved in the catecholamine biosynthesis, 

including tyrosine hydroxylase and phenylethanolamine 

N-methyltransferase. Elevated epinephrine and norepineph-

rine levels in plasma and adrenal medulla and increased 

expression and activity of tyrosine hydroxylase have been 

found in hypertensive rats treated with subcutaneous 

injections of dexamethasone (DX; 1 mg/kg/day for 2 days).25 

Elevated levels of plasma dopamine and epinephrine 

have been found in humans treated with a single dose of 

2 mg DX.26 In both studies, the observed effects were blocked 

by the administration of alpha-methyl-p-tyrosine, an inhibitor 

of tyrosine hydroxylase.25,26 Increased activity of phenyle-

thanolamine N-methyltransferase has been found in both 

intact and adrenalectomized rats treated with subcutaneous 

injections of DX (1 mg/kg/day for 12–14 days).27,28 In 

 addition, in vitro, in vivo, and human studies suggest 

that  corticosteroids alter the availability of α1-adrenergic 

receptors in vascular smooth muscles, leading to increased 

vascular reactivity, pressor responsiveness, and HT.29–31

Increased corticosteroid-induced vasoconstriction and 

thus HT are also mediated through enhanced synthesis and 

action of vasoactive substances and their receptors, including 
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neuropeptide Y (NPY), arginine vasopressin (AVP), and 

atrial natriuretic peptide (ANP).19,20 Increased corticosteroid-

induced NPY gene expression and tissue content in 

neuroendocrine tissue and cell lines have been associated 

with vasoconstriction.32 Coadministration of AVP and DX 

(1.8 mg/kg/week for 2 weeks) to normotensive rats resulted 

in dose-dependent increases in mean arterial pressure, which 

can be reversed by the administration of d(CH2)5Tyr(Me)

AVP, an AVP-V1 receptor antagonist, suggesting the role 

of the V1aAVP receptor in DX-induced HT.31,33,34 Increased 

expression of atrial, ventricular, pulmonary ANP genes 

and plasma ANP levels have been found in both intact and 

adrenalectomized rats treated with DX (1 and 4 mg/kg/day 

for 2 days).31,35 Higher ANP levels have been observed in 

atrial slices and extracts obtained from rats treated with DX 

(intraperitoneally, 0.1 mg/kg/day for 4 days).36,37

Another interesting issue is the role of renin–angiotensin 

system activation in the development of corticosteroid-

induced HT.18,19 Corticosteroids act directly at the liver 

site, enhancing the synthesis of the plasma renin  substrate 

(angiotensinogen).31,38 Experimental studies using 

saralasin, an angiotensin antagonist, and SQ14225, an 

angiotensin-converting enzyme, partly prevented HT in rats 

treated with DX (0.17–0.27 mg/kg/day), suggesting the partial 

contribution of angiotensin II in terms of increased synthesis 

or sensitivity in the development of DX-induced HT.38

A large body of evidence supports the theory that apart 

from the increased corticosteroid-induced synthesis and 

secretion of vasoactive substances, an increased sensitivity 

and reactivity of various tissues to their action, reflected 

in increased vascular pressor responsiveness, has also 

been observed.31,39–41 A reduced threshold and increased 

maximal response to norepinephrine has been observed in 

rat mesenteric vasculatures isolated from hypertensive rats 

treated with DX orally (7–9.5 mg/kg/day for 28 days).42,43

AVP, but not norepinephrine or angiotensin II infusion, 

elicited increased pressor response in DX-induced hyper-

tensive rats (257 mg/kg/day for 2 weeks).33 Infusion of 

angiotensin II in humans treated with DX (orally, 3 mg/day) 

resulted in increased forearm vascular resistance.39,44 These 

effects seem to be mediated through changes in the activity 

of sodium/potassium pump45 and function of glucocorticoid46 

and mineralocorticoid47 receptors as well. Administration of 

angiotensin II and AVP in DX-treated experimental animals 

was accompanied by a reduction in the threshold of the inosi-

tol triphosphate production and HT, an effect that was blocked 

by the administration of a specific glucocorticoid receptor 

antagonist RU38486 but not spironolactone or RU28318, 

type I mineralocorticoid receptor antagonists.46,48 DX-induced 

stimulation of vascular angiotensin II type 1 receptor has also 

been observed and linked to HT.47  Furthermore, corticos-

teroids seem to induce HT by binding to mineralocorticoid 

receptors.49 It has been supported that although corticosteroids 

activate both mineralocorticoid and glucocorticoid receptors, 

they exhibit a higher affinity for glucocorticoid receptors than 

with mineralocorticoid receptors.50

On the other hand, corticosteroids negatively affect various 

vasodilatory systems.18,19 Corticosteroid-induced HT has been 

associated with nitric oxide (NO) deficiency through a range 

of negative influences on the NO biosynthetic pathways, 

involving i) alteration in the activity and expression of NO 

synthase, ii) decreased availability of tetrahydrobiopterin 

(BH4), and iii) decreased NO precursor l-arginine.51–53 NO 

deficiency might also be the result of NO interaction with 

excess superoxide to form a powerful oxidant, peroxynitrite, 

which leads to NO inactivation and deficit.54,55

According to experimental data, corticosteroids seem 

to negatively affect the production of other vasodilatory 

substances as well, such as prostacyclin, prostaglandin E2 

(PGE2), and kallikrein.56–58

The end result of the afore mentioned alterations is 

hemodynamic changes in various vascular beds. A large dose 

of oral DX (0.5 mg/kg/day) in dogs was accompanied by a 

reduction in cardiac output and an increase in  calculated total 

peripheral resistance.31 In humans, oral DX (1 mg three times 

daily for 7 days) increased mean and total peripheral vascular 

resistance without affecting the cardiac output.39 Limited stud-

ies support an effect of DX on the regional hemodynamics 

as well. Intravenous 24 h infusion of DX (125 mg/kg/h) 

increased the mean arterial pressure, and decreased renal and 

mesenteric blood flow and conductance.59 However, it remains 

unclear whether this is a coexisting feature or a pathogenic 

mechanism of corticosteroid-induced HT.

Coexisting metabolic abnormalities appear to  mediate 

and accentuate the corticosteroid-induced HT. Obesity 

is associated with a reduction in urine sodium excretion, 

increased plasma and extracellular fluid volume, and HT.18,19 

Insulin resistance leads to sodium and water retention, 

increased sympathoadrenal system activity, local renin–

angiotensin system  activation, vascular hypertrophy, increased 

vascular resistance, and HT.18,19 Sleep apnea has also been 

associated with HT through increased sympathetic tone 

during hypoxemic episodes, insulin resistance, and diabetic 

autonomic neuropathy.18,19
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It seems that corticosteroids regulate blood pressure 

by exerting their effects at the central nervous system as 

well. Subcutaneous tritium-labeled DX administration in 

rats resulted in localization of radioisotope in the thalamus 

(lateral nucleus), hypothalamus (arcuate, ventromedial, 

periventricular, and paraventricular nuclei), and cell bodies 

of locus ceruleus, area postrema, and nucleus tractus solitarii, 

indicating that systemically administered DX passes to the 

brain and cerebrospinal fluid.60–62 An interesting theory 

has been developed suggesting that corticosteroids induce 

central nervous system activation and HT, but this has to be 

further evaluated.62 This effect might be mediated through 

direct interaction of corticosteroids with γ-aminobutyric acid 

type A and B receptors and nontranscriptional activation of 

phosphatidylinositol 3-kinase/protein kinase Akt pathway, 

possibly mediated by the glucocorticoid receptor.

Corticosteroid-induced CS  
and osteoporosis
Osteoporosis constitutes an important component of 

corticosteroid-induced CS in children and adults.1,2 Bone 

loss appears to be fastest in the first 6 months of therapy and 

persists at a slower rate thereafter, resulting in osteopenia 

and osteoporosis. Trabecular bone and the cortical rim 

of vertebral bodies appear to be more susceptible to the 

effects of corticosteroids, improving rapidly after their 

withdrawal. In addition, fractures may occur in 30%–50% of 

 corticosteroid-treated patients independently of bone mineral 

density differences.63,64 Long-term use of corticosteroids 

in asthmatic patients has been associated with increased 

rib and vertebral fractures.65 A retrospective cohort study 

of 244,235 adults on oral corticosteroids documented a 

dose- dependent increase in nonvertebral, hip, forearm, and 

vertebral  fractures, occurring even with low doses of cor-

ticosteroids (2.5 mg/day).66 A meta-analysis of 42,500 men 

and women from seven prospective cohorts showed that 

current or prior corticosteroid use has been associated with 

increased fracture risk.67 There is a large body of evidence 

indicating that inhaled corticosteroids negatively affect 

bone metabolism, as well as when they are taken orally.68,69 

However, the percentage of bone loss and the real fracture 

risk attributed to corticosteroids is difficult to be estimated 

in those patients, due to the multifactorial origin of altered 

bone metabolism.

Corticosteroids negatively affect calcium metabolism and 

bone remodeling, leading to decreased bone formation and 

increased bone resorption. Corticosteroids decrease intes-

tinal calcium absorption and renal tubular reabsorption of 

calcium, resulting in hypercalciuria, secondary hyperparathy-

roidism, and increased bone resorption.63,64 Corticosteroids 

have a negative impact on osteoblastogenesis as well by 

reducing synthesis of type 1 collagen and insulin-like growth 

factor, altering the binding and thus the anabolic effects of 

transforming growth factor-β, inhibiting Wnt signaling, 

and inducing apoptosis of osteoblasts and osteocytes.63,64 

Decreased activity of type 1-11β-hydroxysteroid dehydro-

genase and increased activity of type 2-11β-hydroxysteroid 

dehydrogenase by circulating inflammatory cytokines, the 

antagonistic effect of corticosteroids on parathormone and 

testosterone, seem to represent underlying pathogenetic 

mechanisms. On the other hand, corticosteroids stimu-

late osteoclast proliferation by suppressing synthesis of 

osteoprotegerin, stimulating production of the receptor 

activator of nuclear factor κB and decreasing estrogen and 

androgen production, leading to increased osteoclastic bone 

resorption.63,64,70–72

Corticosteroid-induced CS and disorders 
of the coagulation/fibrinolysis system
Thromboembolic disease is an important and serious 

complication in patients with CS, as it is associated with 

increased morbidity and mortality.1,2,73 Small clinical studies in 

patients with CS have shown an activation of the coagulation 

system reflected in higher levels of plasma von Willebrand 

factor VIII, factor IX, and factor XII; decreased fibrinolytic 

activity reflected in lower levels of PAI-1, tPA, or euglobulin 

clot lysis time; and increased levels of factors XII, XI, IX, 

and VIII plasminogen and a 2-antiplasmin.74,75 These effects 

have been closely related to corticosteroids, as they were fully 

reversed after surgical treatment. In a similar way, exog-

enous corticosteroids cause disorders in the coagulation and 

 fibrinolytic systems, reflected in increased synthesis/secretion 

of PAI-1, and increased levels of thrombin–antithrombin 

complex increased plasma factor VII, factor VIII, factor XI, 

and fibrinogen levels.76–78

Corticosteroid-induced CS  
and muscloskeletal disorders
Myopathy seems to be a common feature in CS, clinically 

expressed as the inability to rise from a crouching position, 

due to the adverse effects of corticosteroids on the proximal 

muscles of the lower limb and the shoulder girdle.1,2,79 

Corticosteroids affect type 2B or ‘phasic’ muscle fibers 

(fast twitch) causing atrophy (but not necrosis), resulting in 

reduced muscle protein synthesis. This effect is mediated 

through increased oxidative phosphorylation, inhibition 
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of protein synthesis, and impairment of muscle membrane 

excitability.79

The acute form of myopathy involves proximal and  distal 

muscle weakness, is positively correlated with elevated serum 

creatinine phosphokinase levels, is an indicator of focal and 

diffuse muscle necrosis, is mediated by hypokalemia, or consti-

tutes the end result of a direct effect of corticosteroids on skel-

etal muscle. This type of myopathy may take between 6 weeks 

and several months to resolve, even after the  discontinuation of 

corticosteroids. The chronic form is more insidious in onset, 

primarily involves proximal muscle groups, and is character-

ized by typically normal or only slightly elevated creatinine 

phosphokinase levels with no evidence of focal or diffuse 

muscle necrosis. Although there is no direct correlation with 

dosage, patients who receive even small amounts of prednisone 

(ie, 10 mg/day) can develop myopathy.80,81

Corticosteroid-induced CS  
and metabolic syndrome
Impaired glucose tolerance, diabetes, dyslipidemia, and 

fatty liver disease are common findings in patients treated 

with corticosteroids.82–84 Not only experimental but also 

human data support the theory of corticosteroids having 

an effect on various sites involved in protein, lipid, and 

glucose metabolism, including skeletal muscle, liver, and 

adipose tissue. Corticosteroids induce insulin resistance 

in skeletal muscle by directly interfering with the insulin 

signaling cascade. Decreased glucogen synthesis rates and 

glycogen synthase concentration and activity have been 

found in skeletal muscle biopsies of healthy subjects on 

4 mg DX for 4 days85 and patients on long-term treatment 

with high doses of corticosteroids following renal trans-

plantation.86 Skeletal muscle insulin resistance is further 

aggravated by corticosteroid-induced protein catabolism 

with concomitant atrophy-related decrease in total muscle 

area and elevated circulating aminoacids,87 which negatively 

affect insulin signaling,88 glucose uptake, and glycogen 

synthesis in muscle.89 In addition, corticosteroids induce 

whole body lipolysis,89 resulting in increased plasma levels 

of free fatty acids and triglycerides90,91 with deleterious 

effects in skeletal muscle insulin sensitivity and glucose 

uptake. Corticosteroids induce hepatic insulin resistance 

as well, directly by interference with insulin signaling and 

indirectly by elevating free fatty acid and triglyceride supply 

to the liver.92 Thus, increased endogenous glucose production 

has been observed, especially in the postprandial state, as 

was demonstrated in healthy subjects following short-term 

exposure to corticosteroids.84,93,94 Corticosteroids increase 

body fat content and alter body fat distribution by regulating 

hormone sensitive lipase and lipoprotein lipase activity.95 In 

addition, corticosteroids modulate adipose tissue  biology 

by altering the secretion of adipokines either directly or 

through insulin resistance.96 In addition to inducing insulin 

resistance,  corticosteroids might exert an inhibitory effect 

on β cells, which is dependent on duration of exposure, 

dosage, and susceptibility of the population exposed. 

A prolonged exposure (2–5 days) of healthy subjects to high 

doses of corticosteroids resulted in fasting hyperinsulinemia 

and increased insulin secretion, possibly to compensate for 

the corticosteroid-induced insulin resistance.97–99 However, 

in a susceptible population, such as people with a reduced 

insulin sensitivity before treatment, people who are healthy 

first-degree relatives of patients with diabetes, and obese 

women, this compensation failed, resulting in β cell failure 

and diabetes.88,98–100 Thus, corticosteroids induce insulin 

resistance, impaired glucose metabolism, obesity, and central 

obesity, all of which are components of metabolic syndrome, 

which has been associated with increased morbidity and 

mortality from cardiovascular disease.

Corticosteroid-induced CS  
and cardiovascular disease
Patients with corticosteroid-induced CS exhibit increased 

cardiovascular morbidity and mortality.1,2,101–103 Increased 

mortality from cardiovascular disease has been reported 

in patients with asthma, chronic obstructive pulmonary 

disease, inflammatory arthritis, and giant cell arteritis.104–106 

A population-based study showed that patients who were 

exposed to systematic corticosteroids in a dose greater 

than the equivalent of 7.5 mg of prednisolone daily had 

substantially higher rates of cardiovascular disease dur-

ing 1–5 years of follow-up, namely myocardial infarction, 

heart failure, and cerebrovascular disease.102,103 It has to be 

mentioned that this association was not evident in patients 

treated with low doses or ‘nonsystemic’ (eg, topical and 

rectal) corticosteroids.

Corticosteroids appear to have a direct causal effect 

relationship with cardiovascular disease, which is dependent 

on the dose, duration, cumulative dose of exposure, and route 

of administration. Whether, and to what extent, the increased 

risk is mediated through the disease background for cardio-

vascular disease and the induction of several risk factors for 

cardiovascular disease and  represents a direct corticosteroid 

effect that is much higher than their anti-inflammatory and 

antiproliferative actions cannot be answered by the existing 

data.107,108
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Corticosteroid-induced CS and fetal 
programming
Much interest has been focused over the last 5 years on 

the role of corticosteroids in fetal programming.1,2,109 The 

key mediators appear to be the hypothalamic–pituitary–

adrenal axis, the glucocorticoid receptor, and the expres-

sion of type 2-11β-hydroxysteroid dehydrogenase genes 

in a range of tissues. The administration of corticosteroids 

to mothers to promote maturation of organs in fetuses, to 

prevent a number of life-threatening complications of pre-

term birth, and to reduce the effects of congenital adrenal 

hyperplasia has undoubted short-term benefits and also 

potential  long-term adverse effects.109,110 A large body of 

experimental and human evidence supports the theory that 

corticosteroids appear to be involved in a dose-dependent 

manner in the fetal programming of adult diseases.111 

Corticosteroid-related fetal programming of adult HT is 

exerted through the effects on maturation of tissues involved 

in the control of blood pressure, such as glomerular number 

and kidney size, in the expression of catecholamine recep-

tors and second messenger systems in renal and vascular 

tissue, and by affecting growth factors and carbohydrate 

and fat homeostasis. In addition, corticosteroids potentiate 

vasoconstrictor effects on the  vasculature and regulate the 

synthesis of catecholamines, NO, and angiotensinogen.112,113 

HT is coupled to  tissue-specific increases in glucocorticoid 

receptor expression and downregulation of type 2-11β-

hydroxysteroid dehydrogenase activity in the placenta, 

kidney, and adrenal, increasing  sensitivity and overexposing 

organs to corticosteroids. Apart from inducing HT, corti-

costeroids are involved in the fetal programming of type 

2 diabetes, cardiovascular disease, other manifestations of 

the metabolic syndrome, several central nervous system 

functions, and psychiatric syndromes. However, the exact 

underlying pathogenetic mechanisms are still unclear and 

need to be further elucidated.

Exogenous vs endogenous 
corticosteroid-induced CS and HT
Although the clinical presentation of CS is quite similar 

from endogenous cortisol overproduction and exogenous 

corticosteroids, it also has some differences, mainly in 

the more striking clinical manifestations, due to the use 

of high doses of corticosteroids.1,2 CS as a result of the 

long-term usage of corticosteroids has less hirsutism and 

other virilizing features due to nonsignificant increases in 

androgens. In addition, HT is less profound in exogenous 

corticosteroid-induced CS compared with endogenous CS, 

depending on the form used. In contrast, avascular necrosis 

and spinal epidural lipomatosis occur primarily in the set-

ting of corticosteroid-induced CS.1,2 In addition, a kinetic 

difference has to be mentioned. In contrast to cortisol, 

most synthetic corticosteroids bind to albumin and not to 

cortisol-binding globulin or circulate as free steroids with 

a much higher affinity for the glucocorticoid receptor. With 

HT, both forms of CS exhibit some similarities and some 

differences.

In both forms of CS, the development of HT is rapid. 

Supraphysiological oral cortisol doses (80 and 200 mg/day) in 

humans can cause HT within 24 h, with peak blood pressure 

occurring at day 4 or 5 of treatment.114,115 In addition, subcu-

taneous DX (10 mg/day) in rats and oral DX (0.5 mg/kg/day) 

in dogs and humans (3 mg/day) increases blood pressure 

within 1–2 days.31 According to in vitro and in vivo studies, 

the same pattern is observed in endogenous CS as well.116,117 

HT, in both clinical entities, is independent of miner-

alocorticoid activity and sodium loading or retention.49,118 

However, in endogenous CS, sodium excess can magnify 

the  hypertensive response.119,120 Increased oxidative stress, 

reflected in increased superoxide production and elevated 

levels of plasma F2-isoprostanes, constitutes a common 

underlying disorder in both forms of CS and is prevented 

and reversed by antioxidants (folic acid, N-acetylcysteine, 

tempol, and apocynin) but not with BH4 or allopurinol.121–123 

In both conditions, HT has been associated with decreased 

NO bioavailability, reflected in decreased plasma reactive 

nitrogen intermediates (nitrate/nitrite).122,123

Although HT, in both forms of CS, is associated 

with increased oxidative stress and NO deficiency and 

inactivation, blood pressure response to treatments known 

to modify the synthesis of NO and superoxide seems to be 

 variable. l-Arginine treatment (500 mg/kg/day) increased 

plasma nitrate/nitrite concentrations but failed to prevent 

HT in corticosteroid-treated rats.53,121 In contrast, in endog-

enous CS, HT was prevented and partly reversed by l-argi-

nine treatment.124 Aspirin, an antioxidant and nonselective 

cyclooxygenase inhibitor, prevented and partly reversed HT 

related to endogenous but not exogenous CS.125 Vasopressin 

antagonism with an AVP-V1 receptor antagonist signifi-

cantly decreased mean arterial pressure in exogenous but 

not endogenous CS-related hypertensive rats.33 Both forms 

of HT exhibit a different response to glucocorticoid recep-

tor antagonism, suggesting a different degree of receptor 

activation in both situations. Thus, dehydroepiandroster-

one, an endogenous steroid with antiglucocorticoid activ-

ity, prevented corticosteroid-induced but not endogenous 
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cortisol-induced HT.31,126 In summary, it appears that HT 

due to endogenous or exogenous CS involves either differ-

ent pathophysiological mechanisms or different degree of 

perturbations of the same mechanisms.

Treatment
Patients with autoimmune or inflammatory disorders should 

be on long-term use of corticosteroids and may develop HT 

and other morbidities associated with corticosteroid-induced 

CS. The ideal treatment is the withdrawal of corticosteroids 

before the onset of comorbidities. However, this is practically 

impossible, as it is associated with exacerbation of the 

underlying disease. When possible, corticosteroids should be 

gradually withdrawn. The use of corticosteroids in low dos-

ages or on alternative days results in fewer metabolic effects 

and also helps in the prevention of corticosteroid-related 

pathology. Thus, each patient should be treated individually, 

following a careful, properly designed plan. In most cases, 

patients should be treated for corticosteroid-related morbidi-

ties. For HT, eplerenone, angiotensin receptor antagonists, 

and angiotensin-converting enzyme inhibitors are indicated. 

Weight loss is encouraged through changes in the life-

style. Medications that improve insulin resistance, such as 

biguanides and peroxisome proliferator-activated receptor 

agonists, should be added. Treatment of sleep apnea with 

a continuous positive airway pressure device appears to be 

generally effective in controlling not only apnea but also HT, 

insulin resistance, and increased risk for cardiovascular dis-

ease. Bisphosphonates are the first-line choice for prevention 

or treatment of osteoporosis, with teriparatide as the second-

line option; calcium and vitamin D supplements should be 

coprescribed in the majority of individuals. Muscle biopsy 

is recommended in patients who require long-term corti-

costeroid treatment and develop weakness during therapy. 

Phenytoin has been suggested for treatment of corticosteroid 

myopathy, but this still needs further research. In the absence 

of prospective randomized clinical trials, there is currently 

general agreement that patients with CS should be treated 

as having a prothrombotic disorder. However, future large 

prospective trials are needed to evaluate the type, intensity, 

and duration of thromboprophylaxis in patients with either 

endogenous CS or iatrogenic CS.

Conclusion
Corticosteroid-induced CS constitutes a major health prob-

lem with difficult handling. A careful plan for treatment, 

namely formulation, route, dose, and time of exposure, 

should be properly evaluated individually before patients start 

corticosteroids use. Corticosteroid-related complications 

should be treated properly, if evident, and prevention strategy 

involves changes in lifestyle and treatment with appropriate 

agents. The focus of the research should be on developing 

synthetic steroids with anti-inflammatory but fewer metabolic 

effects, which so far has been unsuccessful.
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