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Recent discoveries have underscored the cross-talk between intestinal microbes and their hosts. Notably,
intestinal microbiota impacts the development, physiological function and social behavior of hosts. This
influence usually revolves around the microbiota-gut-brain axis (MGBA). In this review, we firstly outline
the impacts of the host on colonization of intestinal microorganisms, and then highlight the influence of
intestinal microbiota on hosts focusing on short-chain fatty acid (SCFA) and tryptophan metabolite-
mediated MGBA. We also discuss the intervention of intestinal microbial metabolism by dietary sup-
plements, which may provide new strategies for improving the welfare and production of pigs. Overall,
we summarize a state-of-the-art theory that gut microbiome affects brain functions via metabolites from
dietary macronutrients.

© 2021, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As an active player in host physiology, intestinal microbiota
affects functions of the intestine and surrounding organs.
Notably, through host-microbe dialogues, especially along the
microbiota-gut-brain axis (MGBA), gut microbiome is involved in
brain function and behavior through microbial metabolites
(Gheorghe et al., 2019). For example, short-chain fatty acids
(SCFA) fermented from dietary fiber in the colon directly or
indirectly regulate brain function owing to their properties of
neuroactivity and their impacts on cellular signaling pathways
(Clarke et al., 2014; Stilling et al., 2016). Another example in the
lexicon of host-microbial cross-talk is tryptophan because of the
important physiological implications of microbial metabolism of
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tryptophan both in the gut and brain (Lee et al., 2015; Roager
and Licht, 2018). As meat quality and product safety are the
priority of the swine industry, the health and welfare of pigs are
of universal importance for all swine producers (Lyte and Lyte,
2019). Interestingly, a stable and diverse flora structure is
essential for the health and welfare of pigs. Here, with especial
focusing on the information from pigs, we reviewed the estab-
lishment of intestinal microbes and their effects on hosts,
highlighting dietary fiber and tryptophan metabolite-mediated
MGBA. We propose a strategy to modify the microbiome
through dietary intervention to enhance growth performance
and well-being of pigs.
2. Variations in gut microbiota: factors from the host

Gut microbiota performs various functions in hosts, including
nutrient metabolism, immunomodulation and protection against
pathogens. Intestinal flora begins to colonize early in life, and its
composition and distribution has a strong spatiotemporal speci-
ficity. In adulthood, the symbiotic core microbiota remains rela-
tively stable, but differs between individuals. Although it is difficult
to define the optimal composition of gut microbiota, the balance of
host-microorganism is essential for metabolic and immune func-
tions and prevention of intestinal diseases.
uction and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is
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2.1. Physiological stage

Mammals were traditionally regarded as sterile during the fetal
period, which has been questioned over recent years (Perez-Munoz
et al., 2017). Analysis of meconium samples collected within 6 h
after farrowing indicates that microbiome acquisition likely begins
in utero, and meconium microbiome is likely to be vertically
transmitted from the sows (Wang et al., 2019b). Another compel-
ling study also provides evidence of bacterial colonization during
the human fetal period (Collado and Segata, 2020). Although these
studies provide evidence of the origin of intestinal microbiome,
whether mammals are germ-free in fetal period is in debate, and
the biological impact of intra-uterine microbial colonization on
host development remains to be uncovered.

In contrast to the situation in the fetal period, it is widely
accepted that gut microbe colonizes in neonates in an orderly
manner after they are exposed to a wide variety of microorgan-
isms (Von Mutius, 2017). Aerobic and facultative anaerobes such
as Enterobacter, Enterococcus and Staphylococcus are first colonized
in the intestine (Li et al., 2018; Huang et al., 2019). With the
consumption of oxygen, the micro-environment of the gut grad-
ually changes into an anaerobic state, which provides unique
conditions for the colonization of specific anaerobes (Heinritz
et al., 2013). During lactation, Lactobacillus and Streptococcus are
dominant in the small intestine of piglets, but the intestinal
environment changes abruptly after weaning, resulting in recon-
struction of the microflora. For example, there is a clear difference
in the a diversity of gut microbiota during weaning, and the a
diversity increases even further after feeding a plant diet (Frese
et al., 2015).

Besides diversity, there is a significant alteration in the fecal
microbiota composition during weaning. Gut microbial commu-
nities include Firmicutes, Bacteroidetes, Proteobacteria, Spiro-
chaetes and Tenericutes at the phylum level, which are 54.00%,
38.70%, 4.20%, 0.70% and 0.20%, respectively, at the pre-weaning
period, and are 35.80%, 59.60%, 1.00%, 2.00% and 1.00%, respec-
tively, at the post-weaning period (Pajarillo et al., 2014). In each
situation, and even in growing-finishing pigs, the most abundant
phyla are Firmicutes and Bacteroidetes, which account for more
than 90% of the community (Kim et al., 2012; Kim and Isaacson,
2015). At the family level, relative abundances of Bacteroidaceae
and Enterobacteriaceae decline gradually, but Veillonellaceae,
Prevotellaceae, Lactobacillaceae and Ruminococcaceae increase
in weaned piglets (Alain et al., 2014). At the genus level, weaning
is associating with the reduction in Bacteroides, and increases in
Lactobacillus and Prevotella (Guevarra et al., 2018). The possible
reason is that Bacteroides use the monosaccharides and oligo-
saccharides in breast milk, and Prevotella degrades plant poly-
saccharides in plant diets (Lamendella et al., 2011). After
weaning, the changes of intestinal microflora continue until the
market (Wang et al., 2019b). Collectively, the intestinal tract of
newborns rapidly changes from a basically sterile state to a dense
microbial population, and eventually to a relatively stable,
established microbial community (Alain et al., 2014).

2.2. Intestinal environment

The intestinal environment is one of the strongest determining
factors for microbial colonization (Parker et al., 2018). The gut tract
is composed of a series of connected specialized segments with
certain amounts of physiological pressures that affect bacterial
colonization. Microbial communities of different niches of swine
intestine have spatial heterogeneity (Looft et al., 2014; Donaldson
et al., 2016) due to local environmental variations (Espey, 2013;
Tropini et al., 2017; Zhang et al., 2018).
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Owning to the rapid transformation of luminal contents and
presence of digestion enzymes, the proximal small intestine is not
suitable for bacterial colonization (Donaldson et al., 2016). Thus,
there are relatively low numbers of bacteria, and the most abun-
dant genera are Lactobacillus (45.79% and 36.75%, respectively) and
Clostridium (25.64% and 29.67%, respectively) in the duodenum and
jejunum. Bacterial growth in the distal ileum is possible owning to
the neutral pH value, reduced oxygen availability, and lowered
concentrations of compounds that challenge microbial growth.
Streptococcus (17.73%) and the unspecified genera of the Clos-
tridiaceae family (17.10%) are the most abundant genera in the
ileum. In the colon, the most dominant genus is Prevotella, repre-
senting 40.90% and 34.99% in the proximal and distal parts
respectively (Zhang et al., 2018).

Differences inmicrobial distribution are not only reflected in the
longitudinal structure of the digestive tract, but in the direction of
axial (Zhang et al., 2018). This is due to the response of microbial
populations to different physicochemical conditions (Stearns et al.,
2011). For example, an oxygen-abundant micro-environment is
created in mucosa because of the diffusion of oxygen from the
epithelial capillary to intestinal mucosa (Albenberg et al., 2014),
thus, microaerophilic Helicobacteraceae and Campylobacteraceae
are enriched, whereas obligate anaerobic bacteria from Pre-
votellaceae, Lachnospiraceae, Ruminococcaceae, and Veillonella-
ceae are abundant in the lumen of the cecum (Kelly et al., 2017;
Zhang et al., 2018). Although it is accepted that intestinal microbes
have the characteristics of compartmentalization in composition
and function, there are various unanswered questions. For example,
it is interesting to know whether the flora colonized in different
ecological niches communicate and interact with each other.

2.3. Dietary factors

Besides host genotype, immune status and intestinal environ-
ment, diet also affects gut microbiota (David et al., 2014; Goodrich
et al., 2014; Carmody et al., 2015; Pereira and Berry, 2017;
Rothschild et al., 2018). Alterations in diet, like carbohydrates and
proteins, cause rapid changes in gut microbial profiles (David et al.,
2014). Although it cannot be digested by animal endogenous
digestive enzymes (Raninen et al., 2011), dietary fiber regulates the
abundance of the microbial community (Jha and Berrocoso, 2015;
Liu et al., 2018; Tan et al., 2018; Wang et al., 2018a), and maintains
the homeostasis of the intestinal environment (Tian et al., 2017;
Luo et al., 2018; Che et al., 2019). Thus, there is a growing interest in
the usage of fiber in feed to optimize the intestinal health of pigs,
however, it should be noted that the effects of dietary fiber with
different sources, types and levels differ.

The quantity and quality of protein also have direct effects on
intestinal microbiota (Fan et al., 2015; Singh et al., 2017). Diets that
contain high levels of protein result in longer intestinal transit time
and higher microbiota diversity (Macfarlane et al., 1986). Low-
protein diets affect pig microbiota by increasing Lachnospiraceae,
Prevotellaceae, and Veillonellaceae (Chen et al., 2018; Qiu et al.,
2018), while decreasing ammonia, which is one kind of microbial
metabolite (Luo et al., 2015).

3. Local effects of major microbial metabolites

Since the intestinal microbiota in pigs currently includes
9,623,520 non-redundant genes (Xiao et al., 2016; Wang et al.,
2019a), it is regarded as a second genome with functions that the
host cannot perform in most situations (Backhed et al., 2005;
Guevarra et al., 2019). Gut microbiota is pivotal for the health and
well-being of animals (Stokes, 2017), which is largely dependent on
microbial metabolism (Human Microbiome Project, 2012). The
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well-known metabolites in the colon are SCFA from dietary fiber
fermentation, including acetate, propionate and butyrate (Pascale
et al., 2018; Koh et al., 2016; Oliphant and Allen-Vercoe, 2019).
Interestingly, the chemical structure of the fermentable fibers de-
termines the production of SCFA, for example inulin is propioni-
genic, and resistant starches are more butyrogenic (Rastelli et al.,
2019). SCFA have lots of effects in gut functions. Mechanistically,
SCFA are rapidly transported by monocarboxylate transporters
(MCT) to enter the citric acid cycle (Dalile et al., 2019). Other
possible mechanisms include G protein-coupled receptors (GPR)-
mediated cellular signaling and histone deacetylase (HDAC)-
mediated epigenetic modifications (Yang et al., 2018). SCFA are also
transported into portal circulation as an energy substrate for he-
patocytes (Schonfeld and Wojtczak, 2016) and into the circulatory
system (Dalile et al., 2019) to perform microbiota-gut-brain cross-
talk (Sarkar et al., 2016).

In contrast to carbohydrate metabolism by the gut microbiota,
proteolysis is less extensively researched. It should be noted that
microbial fermentation of proteins produces a variety of metabo-
lites, which are generally considered to be harmful to intestinal
integrity and metabolism (Nyangale et al., 2012; Zhao et al., 2018).
For example, the microbial metabolite of histidine, imidazole pro-
pionate, has been shown to be a major risk factor for insulin
resistance and type 2 diabetes (Koh et al., 2018). However, micro-
bial metabolites from tryptophan have benefits for health (Agus
et al., 2018). Tryptophan is mainly metabolized through the
kynurenine pathway, 5-hydroxytryptamine (5-HT) pathway and
indole/aryl hydrocarbon receptor (AHR) pathway (Alkhalaf and
Ryan, 2015; Agus et al., 2018). Although most of tryptophan
ingested is digested and absorbed in the small intestine, tryptophan
reaches the colon (Morales et al., 2016; Yao et al., 2016) to be
degraded by a series of symbiotic bacteria into effective immune-
modulating products (Islam et al., 2017).

Indole is a major tryptophan metabolite that is metabolized by
many species of Bacteroides and Enterobacteriaceae (Roager and
Licht, 2018). The function of indole includes affecting the integrity
of intestinal epithelial barrier (Bansal et al., 2010), regulating in-
testinal immunity (Lamas et al., 2016), preventing death after
chemical colitis (Shimada et al., 2013), as well as affecting lifespan
of the host (Sonowal et al., 2017). Tryptamine is a neurotransmitter
that activates the 5-HT4 receptor expressed in colon epithelial cells
to control colonic transport (Bhattarai et al., 2018; Cryan et al.,
2018). Tryptamine also enhances immune surveillance and in-
hibits the expression of pro-inflammatory cytokines (Tourino et al.,
2013; Islam et al., 2017). Indole 3-propionate affects host intestinal
inflammation (de Mello et al., 2017; Tuomainen et al., 2018),
glucose metabolism, gut barrier and immune response (Zhang and
Davies, 2016; Dodd et al., 2017).

4. Indirect effects of major microbial metabolites:
microbiota-gut-brain axis

Currently, the MGBA has been well-established, and the
microbiota is an important regulator in this axis (Cryan et al., 2019).
Metabolites of intestinal flora impact brain function via the vagus
nerve, bloodebrain barrier (BBB) and immune system (Fig. 1)
(Borre et al., 2014; Forsythe et al., 2014; Erny et al., 2015; O'Mahony
et al., 2015; Dalile et al., 2019; Silva et al., 2020).

4.1. Vagus nerve

The vagus nerve contains sympathetic and parasympathetic
nerves, including about 80% of the afferent nerve fibers and 20%
of the efferent nerve fibers (Napadow et al., 2012). This
anatomical structure makes the vagus nerve a bridge between
19
the intestine and central nervous system (CNS) (Bonaz et al.,
2018). Vagal nerve fibers express receptors of 5-
hydroxytryptamine and free fatty acid receptors (FFAR) (Nohr
et al., 2013, 2015), resulting in ideally transmitted signals from
the gut to the brain (Bonaz et al., 2018). Notably, gut microbes,
such as Bifidobacterium longum NCC3001, Lactobacillus rhamnosus
JB-1 and Lactobacillus reuteri, fail to affect brain functions after
vagotomy (Bercik et al., 2011; Bravo et al., 2011; Poutahidis et al.,
2013; Buffington et al., 2016; Sherwin et al., 2019), suggesting
that the vagus nerve plays an important role in gut microbiota-
brain cross-talk (Fulling et al., 2019). However, not all commu-
nication signals between microorganisms and the brain are
mediated by the vagus nerve (Mayer et al., 2015). The anxiety
behavior of mice caused by mild gastrointestinal infection is still
obvious after vagotomy, indicating that the vagus nerve is not the
only way of mediating the anxiety caused by gastrointestinal
infection (Chu et al., 2019).

4.2. Blood brain barrier

The BBB is a kind of semi-permeable structure segregating
peripheral blood from the brain (Rustenhoven and Kipnis,
2019). As MCT expressed in endothelial cells of BBB, SCFA
may go through the BBB (Vijay and Morris, 2014; Perez-
Escuredo et al., 2016; Dalile et al., 2019). Besides crossing the
BBB, SCFA appear to be strategic in maintaining the integrity of
the BBB. For example, germ-free mice exhibit low expression of
tight junction proteins, resulting in increased permeability of
the BBB (Braniste et al., 2014). Notably, the integrity of the BBB
can be restored by replanting complex flora or a single bacte-
rium that produces pro SCFA (Braniste et al., 2014). Similarly,
propionate treatment alleviates the permeability of cerebral
vascular endothelial cells after exposure to lipopolysaccharide
(Hoyles et al., 2018).

4.3. Immune system of central nervous system

The nervous immune system is related to a series of processes
including the development, function, aging and injury of the CNS
(Hickman et al., 2018). Microglia are the main neuroimmune cells
(Hong et al., 2016; Chu et al., 2019; Wilton et al., 2019). The
metabolism of gut microorganisms regulates the maturation as
well as function of microglia (Erny et al., 2015; Colpitts and
Kasper, 2017). Microglia from germ-free mice or antibiotic-
treated mice exhibit an immature phenotype compared with
microglia from normal mice (Reemst et al., 2016). Interestingly, in
both cases, oral administration of a mixture of the 3 major SCFA
are sufficient to promote the maturation of microglia (Reemst
et al., 2016), suggesting that SCFA regulate the homeostasis of
microglia. Similarly, germ-free mice with GPR43 deficiency also
show microglial defects (Erny et al., 2015), suggesting that SCFA
and GPR43 are required to maintain the homeostasis of micro-
glia. In addition, the alterations of intestinal microbial diversity
induced by antibiotics affect neuroinflammation and change the
morphology of microglia (Jang et al., 2018). Interestingly, sodium
butyrate reduces the activation of microglia and the secretion of
pro-inflammatory cytokines after lipopolysaccharide challenge
(Wang et al., 2018b; Yamawaki et al., 2018). Likewise, acetate
treatment reduces inflammatory responses in primary microglia
(Soliman et al., 2012). Indole is also increasingly considered to be
essential in the cross-talk of microbiota and a host, especially the
brain immune responses (Dodd et al., 2017; Agus et al., 2018). For
example, indole crosses the BBB and decreases pro-inflammatory
activities via activating AHR in astrocytes (Rothhammer et al.,
2016).



Fig. 1. Pathways that SCFA and tryptophan affect MGBA. Fermentation of dietary fiber and tryptophan by symbiotic gut microbes leads to the production of SCFA and indole
derivatives, respectively. SCFA bind the FFAR of vagal nerve fibers to transmit signals to the CNS. SCFA pass through the BBB via MCT and affect the integrity of the BBB. SCFA affect
the maturation and function microglia. Indole crosses the BBB and decreases pro-inflammatory responses by activating AHR in astrocytes. SCFA ¼ short-chain fatty acids;
MGBA ¼ microbiota-gut-brain axis; FFAR ¼ free fatty acid receptors; CNS ¼ central nervous system; BBB ¼ bloodebrain barrier; MCT ¼ monocarboxylate transporters; AHR ¼ aryl
hydrocarbon receptor.
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5. Summary and future directions

Under the modern intensive breeding model, pigs are usually
kept in barren environments, resulting in various psychological
problems. These psychological problems in pigs may lead to weight
loss, accumulation of subcutaneous fat and poor meat quality,
resulting in severe economic losses in swine production. Given that
the metabolites of tryptophan and dietary fiber regulate behavior
and CNS function, such as cognitive function, it could be fruitful to
alleviate the psychological problems in pigs with thesemetabolites.
However, cautious should be exercised when we apply this
knowledge to pigs because our current understanding of MGBA is
mainly derived from mouse models, and there are different phys-
iological and metabolical characteristics between mice and pigs.
Thus, a thorough understanding of the mechanism in which those
20
metabolites participate, and the complex gut-brain interaction,
especially in pigs, may help to propose new strategies for improving
swine health. Fortunately, our scientific community has conducted
seminal studies in this field. For example, intestinal perfusion with
mixed antibiotics and corn starch in fistula pigs affects the con-
centrations of aromatic amino acids, serotonin and dopamine in the
hypothalamus and regulates the expression of neurotransmitters in
the brain (Gao et al., 2018, 2019). In addition, dietary tryptophan
supplementation increases reproductive performance and milk
yield of sows (Miao et al., 2019), while reducing the time and times
of fighting among piglets, and the stress responses of weaned
piglets after mixed herd rearing (Koopmans et al., 2005). Dietary
fiber also affects the welfare and behavior of piglets (de Leeuw
et al., 2008; Superchi et al., 2017; Jiang et al., 2019). Overall, the
research on the interaction between the host and gut microbes
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allows us to see the huge regulatory potential of microbial me-
tabolites for host health.
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