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ABSTRACT: Methamphetamine (MA) can cross the placenta in pregnant

. . . ‘e
women and cause placental abruption and developmental alterations in
offspring. Previous studies have found prenatal MA exposure effects on the (
social and cognitive performance of children. Recent studies reported some J
alterations in structural and functional magnetic resonance imaging (MRI) of . ,
lost affected regions
prenatal MA-exposed offspring. In this study, we aimed to investigate the effect Fotal S

of prenatal MA exposure on brain development using recently published cosdae 7\ K ‘/

structural, metabolic, and functional MRI studies. According to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)  ‘romeltaopee Putamen A
guidelines, we searched PubMed and SCOPUS databases for articles that B s
used each brain imaging modality in prenatal MA-exposed children. Seventeen
studies were included in this study. We investigated brain imaging alterations
using 17 articles with four different modalities, including structural MRI,
diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), and
functional MRI (fMRI). The participants’ age range was from infancy to 1S years. Our findings demonstrated that prenatal MA
exposure is associated with macrostructural, microstructural, metabolic, and functional deficits in both cortical and subcortical areas.
However, the most affected regions were the striatum, frontal lobe, thalamus and the limbic system, and white matter (WM) fibers
connecting these regions. The findings from our study might have valuable implications for targeted treatment of neurocognitive and
behavioral deficits in children with prenatal MA exposure. Even so, our results should be interpreted cautiously due to the
heterogeneity of the included studies in terms of study populations and methods of analysis.

Striatum

Pallidum —=——_
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B INTRODUCTION exposed neonates may have lower education and socio-
economic status and higher rates of unemployment. Moreover,
simultaneous usage of alcohol, nicotine, and marijuana makes
it hard to investigate specific MA-related alterations.'”""

MA can cross the placenta and cause placental inefliciency
and abruption, deterioration of intrauterine growth, and
preterm birth.'"’ Previous studies have found detrimental
effects of prenatal MA exposure on children. In particular,
offspring can suffer from withdrawal syndrome at birth and a
significant number of complications as they grow up, including
increased cognitive impairments, stress, lethargy, and difficul-
ties in executive function and working memory accom(?anied
by poor motor skills and psychomotor adjustment.'*"

Methamphetamine (MA), contracted from N-methylamphet-
amine, is a potent psychostimulant that belongs to the
substituted phenethylamine and substituted amphetamine
chemical classes, many of which are formed by a phenyl ring
connected to an amino group by a two-carbon side chain." It
targets the dopamine transporter (DAT) in the brain and thus
increases extracellular dopamine and alters neuronal activity in
the reward system.” Moreover, it has indirect agonist
properties on serotonin and noradrenaline receptors, alters
glutamate3 and GABA® brain levels, and inhibits some
neurotransmitter clegradations.5 It can be used via oral, nasal,
rectal, or intravenous routes. Its acute consumption can cause
euphoria, high energy levels, and alertness, along with an
increase in libido and sexual pleasure.”” MA is abused as a
highly addictive stimulant in various populations from young
men to pregnant women.® The number of pregnant women
abusing MA increased over the past decades, and its effects on ;:;;\\,'
neonates are not still completely known.” Epidemiological
investigations have shown that primary caretakers of MA-
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Recent studies highlighted probable brain alterations in
children associated with prenatal MA exposure."'”'®
Structural magnetic resonance imaging (MRI), diffusion tensor
imaging (DTI), magnetic resonance spectroscopy (MRS), and
functional MRI (fMRI) have shown a range of macrostructural,
microstructural, metabolic, and functional changes associated
with prenatal MA exposure. Morphologic and structural
alterations can be detected with structural MRI studies.
Differently, DTI describes alterations in brain microstructure
employing different aspects of water molecule diffusion. For
instance, water diffusion in a tissue is restricted due to some
local structures, such as the cell membrane and myelin sheath,
causing unequal diffusion in different directions or anisotropy.
On the basis of the patterns of water diffusion and the extent of
diffusion restriction in some directions, the orientation and
microstructural features of white matter (WM) fibers within a
voxel can be determined."” Fractional anisotropy (FA) is a
measure of anisotropy that depends on the number and density
of axons in a voxel and represents the microstructural
coherence of WM fibers.”” The FA value is sensitive to any
change in extracellular or intracellular liquid content,
inflammation, axonal loss, gliosis, and demyelination, most of
which present with a decreased FA; mean diffusivity (MD)
measures diffusion of water in all directions within a voxel.
Thus, increased MD represents the freedom of diffusion as a
result of increased extracellular spaces due to axonal
degeneration or demyelination; axial and radial diffusivity
(AD and RD) are measures of water diffusivity parallel and
perpendicular to WM tracts, respectively, where increased AD
represents axonal degeneration and increased RD reflects
demyelination.”' ~>> MRS provides valuable insight into the
biochemistry of different brain regions by assessing several
markers of neuronal and glial integrity, such as N-
acetylaspartate, creatine, choline, glutamine, and glutamate.**
Finally, fMRI assesses the alterations in brain activity or
connectivity by employing the blood-oxygen level dependent
(BOLD) signal as a proxy of neural function.'®*®

A better understanding of the structural, microstructural,
metabolic, and functional abnormalities in offspring associated
with prenatal MA exposure might contribute to the develop-
ment of more effective interventions for cognitive and
behavioral deficits in children exposed to prenatal MA use.
In this study, we aimed to investigate the effect of prenatal MA
exposure on brain development using recently published
structural, metabolic, and functional MRI studies.

B METHODS

We performed this systematic Review under the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines.26

Literature Search and Selection Criteria. To identify relevant
studies, PubMed and SCOPUS were searched for relevant articles,
published between the earliest record and June 1, 2021. The search
terms included “Prenatal exposure OR Perinatal OR Pregnancy OR
Maternal” AND “Diffusion Tensor Magnetic Resonance Imaging OR
Diffusion Tensor Imaging OR Functional Magnetic Resonance
Imaging OR Neuroimaging” AND “Methamphetamine OR Methyl-
amphetamine OR Deoxy ephedrine OR Hydrochloride” and
equivalent terms in each database. We also checked for additional
eligible studies by going through the reference list of the relevant
articles.

Studies were included if they (1) measured brain structure or
function using structural MRIL, DTI, H-MRS, and fMR], (2) compared
children born from mothers using MA with age- and gender-matched

2730

children born from healthy nonusing mothers, (3) were original peer-
reviewed studies, and (4) were in English. Studies on women with
severe medical or psychiatric comorbidities and/or women on
medications were excluded. We excluded case reports, case series,
letters, commentaries, abstracts, review articles, and in vivo and in
vitro studies. Data selection was in concordance with the PRISMA
guidelines.27 Two authors (M.M.A. and M.H.A.) independently
performed the eligibility assessment. In the case of disagreement, the
two authors discussed and resolved the conflict, and if they could not
reach an agreement, a third person intervened to make the final
decision. The PRISMA chart for this study is provided in Figure 1.
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Figure 1. PRISMA flow diagram for neuroimaging studies in prenatal
methamphetamine (MA) exposure.

Data Extraction. Two data extraction tables were designed to
extract the relevant information on studies included in this Review
(Tables 1 and 2). Data extraction was performed by one author and
checked by another author. If there was any disagreement, a third
person was asked to finalize the decision. The extracted demographic
and social/habitual details of the mothers and offspring included age,
sex, gestational age, head circumference, and special characteristics or
exclusion criteria of offspring and age, education, depression, and
amount and frequency of methamphetamine, alcohol, nicotine/
tobacco, and marijuana use of the mothers during pregnancy. Type of
brain imaging, analysis method and toolbox, key imaging findings, and
cognitive and behavioral characteristics of the children were extracted
in Table 2.

B RESULTS AND DISCUSSION

Overview of the Included Studies. This Review aimed
to summarize and discuss recent findings regarding alterations
in brain imaging of offspring with prenatal exposure to MA.
Our search resulted in 206 nonduplicate papers, which were
screened for eligibility. After full-text screening, a total of 17
studies were selected. The studies employed four different
imaging modalities, including structural MRI (n = 6), DTI (n =
6), MRS (n = 2), and fMRI (n = 3). However, it should be
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noted that some studies reported findings for the same study
population using different modalities or analyses. In this
regard, three structural MRI, DTI, and structural connectivity
studies by Roos et al. in 2014,** 2015,"° and 2020°° were
conducted on the same cohort of 6—7 year-old children. Three
structural MRI and DTI investigations by Warton et al. in
2018,%° 2018,>! and 2020°" were carried out on infants from a
larger prospective longitudinal study of prenatal alcohol and
drug exposure on infant development in South Africa. Lastly,
two fMRI studies by Roussotte et al. in 2011'® and 2012
were performed on the same groups of children.

The demographic and social/habitual characteristics of the
mothers and offspring are presented in Table 1. The mean age
of the participants varied significantly across studies with a
range from infancy to 15 years. Of the 17 studies, four were
conducted on infants and the rest were carried out on
preschool and school children. Most of the included studies
reported that mothers and offspring in MA-exposed and
control groups had comparable gender, maternal age, offspring
age, and gestational age. Regarding the education and IQ,
mixed results were reported; while some studies included
participants comparable based on education and IQ, other
studies reported that the mothers of the MA-exposed group
had a decreased IQ**™° and a lower educational level
compared to the mothers of the unexposed control
group.'****3" Most of the studies revealed that a higher
proportion of mothers of the MA-exposed groups smoked
tobacco or consumed alcohol and marijuana during pregnancy
compared to mothers in the control group.

Table 2 presents the studies exploring the effects of prenatal
MA exposure on the offspring’s brain divided by imaging
modality. Structural MRI studies used tensor-based morph-
ometry, FreeSurfer, and graph theoretical analysis. The
methods of analysis for DTI studies were tract-based spatial
statistics (TBSS) and tractography. Both MRS studies used
localized '"H-MRS analysis. The three fMRI studies were
conducted during the performance of a task: two of them
analyzed brain activity and the other explored functional
connectivity with a seed-based approach.

In the following sections, we present and discuss imaging
findings of MA-exposed offspring in distinct location-based
categories of cortical and subcortical regions.

Effects of Prenatal Exposure to MA on the Offspring’s
Cortical Regions. The included studies demonstrated that
prenatal MA exposure is associated with both structural and
functional changes across cortical regions, particularly in the
frontal region (Figure 2). Structural MRI investigations
revealed decreased volumes in left parieto-occipital and right
anterior prefrontal cortices®” and in the posterior part of the
superior temporal sulcus® in children exposed to MA. In
addition, decreased and increased volumes in ventral and
medial temporal lobes and bilateral perisylvian cortices’” were
also described. Moreover, Roos et al. reported significantly
decreased left cortical thickness in the inferior parietal lobe,
pars opercularis, and precuneus in the MA-exposed children;
they also observed gender effects on volume differences
between the two groups.”* A DTI study by Cloak et al,
assessing WM microstructural integrity, reported that MA-
exposed children had decreased apparent diffusion coefficient,
mainly in the right frontal and bilateral parietal WM. They did
not observe significant differences in FA between the two
groups, but they reported a trend for increased FA in the left
frontal WM in the MA-exposed group.'' Lastly, only one study

ence. Values are
h .
Depression, as

Special characteristics or exclusion criteria of the study groups are given in

ge at birth, in weeks. Data are presented as mean = SD. °Cj,q is the head circumfer

in years. Data are presented as mean + SD. #Years of education. Data are presented as mean + SD.

b

+ SD. “Gestational a

A Age at delivery,

distrib, distribution; educ, education; soc/ec, socioeconomic. Dashes (—) indicate that no data were presented or the measure was not investigated. It should be noted that in the case of a discrepancy
measured by the indicated scale. ‘Age at first scan. Age at second scan.

between the text of a reviewed article and the presented tables, we relied on the data in the (supplementary) tables.

parentheses. “Age at scanning, in the indicated units. Data are presented as mean

at birth unless otherwise noted. Data are presented as mean + SD

Table 1. continued
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Figure 2. Illustration showing the most affected cortical regions in prenatal methamphetamine (MA) exposure. Each arrow represents a separate
study. Upward blue arrow: increased volume/thickness; downward blue arrow: decreased volume/thickness; upward red arrow: increased
microstructural integrity; downward red arrow: decreased microstructural integrity; green arrow: altered metabolite concentration; upward yellow
arrow: increased functional activity/connectivity; downward yellow arrow: decreased functional activity/connectivity.
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Figure 3. Illustration showing the most affected subcortical structures in prenatal methamphetamine (MA) exposure. Each arrow represents a
separate study. Upward blue arrow: increased volume/thickness; downward blue arrow: decreased volume/thickness; upward red arrow: increased
microstructural integrity; downward red arrow: decreased microstructural integrity; green arrow: altered metabolite concentration; upward yellow
arrow: increased functional activity/connectivity; downward yellow arrow: decreased functional activity/connectivity.

assessed the association between brain structure and the
neurocognitive profile of children; it showed a positive
correlation between bilateral occipital volumes and full-scale
intelligence quotient scores and a negative correlation between
the volume of the left inferior temporal fusiform region and
full-scale intelligence quotient scores.”

Alterations in the metabolic concentrations of cortical
regions were limited to the frontal region. In a 'H-MRS
study, Smith et al. did not report any significant differences in
metabolite concentrations or ratios in the frontal WM but only
a trend for decreased N-acetyl compounds/creatine in the
frontal WM in the MA-exposed offspring.”* However, Chang
et al. demonstrated that MA-exposed children had increased
total creatine, N-acetyl compounds, and glutamate + glutamine
and decreased myoinositol/total creatine in the frontal WM
compared to the control group. They also reported increased
choline compounds in the frontal WM of children with MA
exposure throughout the pregnancy. Exploring the gender
effects, they reported significantly decreased myoinositol/total
creatine in MA-exposed girls but only a trend for decreased
myoinositol/total creatine in MA-exposed boys in the frontal
WM, and they explained these findings with a trend for the
more significant elevation of total creatine and slightly
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decreased myoinositol in the MA-exposed girls. They also
showed that increased N-acetyl compounds/total creatine in
the frontal WM correlated to age in both MA-exposed and
control groups.”

Changes in the functional activity and connectivity in MA-
exposed offspring were investigated during verbal and working
memory tasks and were distributed across the frontal, parietal,
temporal, and occipital regions. Investigating the brain activity
during a verbal memory task, Lu et al. found that the MA-
exposed group showed increased activation in bilateral medial
temporal and right occipitotemporal regions (along with basal
ganglia) compared to the control group. In the control group,
better verbal memory performances correlated with increased
activation in the medial temporal regions.”® Roussotte et al.
conducted two task-based fMRI studies on the same group of
offspring exposed to prenatal MA. In the first study, they
showed that, during a working memory task, inferior frontal
gyrus showed decreased activation in the MA-exposed group
compared to the control group. In both control and MA-
exposed groups, activation in the inferior and middle temporal
gyri, temporal pole, orbitofrontal cortex and frontal pole
bilaterally, and the left superior frontal gyrus were negatively
correlated with task accuracy. Especially in the MA-exposed

https://doi.org/10.1021/acschemneuro.1c00213
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Figure 4. Illustration showing the underlying molecular mechanisms through which methamphetamine (MA) might affect brain structure and

function.

group, activation in the left parahippocampal gyrus, bilateral
pre- and postcentral gyri, and superior temporal gyrus was
negatively associated with task performance.'® In the second
study, they used a seed-based functional connectivity analysis
with striatal nuclei as the seeds and demonstrated that cortical
regions had altered functional connectivity with striatum in
MA-exposed offspring (see below).>

Effects of Prenatal Exposure to MA on the Offspring’s
Subcortical Regions. Basal Ganglia. Basal ganglia are a set
of nuclei located in the subcortical region that are mainly
involved in the regulation of movement and reward.”” Our
review demonstrated that basal ganglia are the most affected
structures in the MA-exposed offspring, probably in a wider
circuit of fronto-thalamo-striatal connections (Figure 3). Of
five volumetric studies, four showed reduced volumes of basal
ganglia,'””*'™* and only one study reported increased
volumes.>* Putamen,'”**® caudate,*****" and pallidum17
were reported to have decreased volume in MA-exposed
children. Differently, Roos et al.** reported increased putamen
volume in MA-exposed children compared to the control
group and increased globus pallidus volume in MA-exposed
males compared to male controls; they also observed gender
effects on basal ganglia volume differences between the two
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groups: MA-exposed males had increased volumes of left
globus pallidus and bilateral ventral diencephalon compared to
control males.”* Regarding cortical thickness, one study
showed no between-group difference® but another study
reported decreased cortical thickness in the left precentral
region, right caudal middle frontal, and right rostral anterior
cingulate and increased cortical thickness in the left superior
parietal region.”® Alterations in striatal and pallidal volumes
were associated with neurocognitive deficits in offspring. Two
volumetric studies investigated children’s neurocognitive
performance and showed that prenatal MA exposure was
associated with deficits in visual-motor integration, verbal and
spatial memory, attention, cognition, and mental develop-
ment.'”>? Particularly, Chang et al. reported that impaired
verbal memory was associated with smaller putamen and
globus pallidus volumes and impaired visual-motor integration
was associated with smaller globus pallidus volume.'’
Accordingly, Derauf et al. showed a significant correlation
between caudate volume and impaired attention in MA-
exposed children.*”

In line with volumetric studies, DTI research has shown that
WM fibers connecting basal ganglia to other structures are
affected by prenatal MA exposure. Tractography analysis on

https://doi.org/10.1021/acschemneuro.1c00213
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MA-exposed neonates demonstrated that the mean FA of
fibers connecting midbrain to left putamen, right putamen to
the right orbitofrontal cortex, and right putamen to the right
amygdala is decreased in MA-exposed neonates.”” Moreover,
RD was increased in the midbrain-right caudate connection in
MA-exposed neonates.”” Furthermore, Roos et al. performed a
longitudinal graph theoretical analysis to investigate the effects
of prenatal MA exposure on the structural connectivity of brain
networks in school-aged children. In the prenatal MA-exposed
group, striatal hubs showed greater changes in connectivity
over time. No significant between-group difference in the
normalized characteristic path length and clustering coefhicient
was found. Similar patterns of change were observed in
network connectivity on a regional level between groups. As
they reported, the segregation of networks (modularity and
transitivity of structural networks) showed less change in the
MA-exposed group compared to the control group. They
suggested that the observed increased striatal and also
decreased frontal connectivity might result in increased risk-
taking activity in prenatal MA-exposed children.*®

Using 'H-MRS, Smith et al. conducted a study on 26
children (12 with a history of prenatal MA exposure and 14
control children) on the right frontal WM and right striatal
voxels. They reported that the total creatinine was significantly
increased in the striatum of MA-exposed children compared to
the control group.”*

All three task-based fMRI studies investigating the pattern of
brain function in prenatal MA exposure demonstrated that
basal ganglia are affected. Bilateral basal ganglia were
demonstrated to have increased activation in MA-exposed
children compared to controls during a verbal memory task.’
In the two task-based fMRI studies by Roussotte et al,'¥** it
was demonstrated that basal ganglia, particularly caudate and
putamen, had decreased activation during working memory in
MA-exposed children compared to the controls. In the MA-
exposed group, the activity of putamen was negatively
correlated with performance on the working memory task."
Examining the same study group, with seed-based functional
connectivity analysis, they investigated the functional con-
nectivity between striatal seeds and other brain regions.”> They
found a positive correlation between caudate seeds and
prefrontal regions, which was more noticeable in the control
group than MA-exposed ones. They reported a negative
correlation between the caudate seeds with the cerebellum,
occipital cortex, and bilateral primary motor cortex in the
control group and fewer negatively correlated regions with
caudate seeds in MA-exposed children. They also reported a
negative correlation between the putamen seeds with the
dorsolateral prefrontal cortex, the posterior cingulate, the
precuneus, and the angular gyrus bilaterally in the control
group and fewer negative correlations with superior frontal
regions in the MA-exposed group. Additionally, they reported
relatively reduced functional connectivity between the dorsal
caudate and frontal executive network in the MA-exposed
group. Parallel to their hypothesis, MA-exposed children had
increased functional connectivity between the posterior
putamen and the frontal executive network compared to the
control group. These intriguing results corroborated their
hypothesis that putamen might show increased connectivity
with the frontal executive network as a compensatory response
to damaged caudate and reduced connectivity of caudate with
these frontal regions.”
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The findings from reviewed neuroimaging studies showed
that basal ganglia, and in particular striatum, are the most
affected structures in offspring exposed to prenatal MA.
However, the underlying molecular mechanisms through
which MA exerts its neurotoxic effects cannot be presumed
from neuroimaging studies in the Review. Nonetheless,
findings from in vivo and in vitro studies suggest that oxidative
stress due to dysregulation of dopaminergic metabolism and
transmission is largely accountable for the detrimental effects
of MA (Figure 4).”°"*" MA exposure leads to excessive
dopamine discharge into the synaptic space through dopamine
transporter (DAT)-mediated inward transport of MA with
simultaneous outward transport of dopamine.*” The ensuing
increased levels of synaptic dopamine and thus elevated
activation of dopamine receptors lead to most of the physical
and psychological effects of MA, such as addiction and
psychomotor dysregulation. In another distinct mechanism in
dopaminergic terminals, MA inhibits the vesicular monoamine
transporter 2 (VMAT-2), which is responsible for the
sequestration of dopamine into vesicles. This, in turn, leads
to increased dopamine levels in the cytosol, which is an
oxidizing environment compared to vesicles where dopamine is
normally stored.** In the cytosol, dopamine is metabolized by
monoamine oxidase-B (MAO-B), ultimately resulting in the
production of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) through several reactions.”*™*® These
ROS and RNS cause oxidative damage on phospholipids,
proteins, and nucleic acids, leading to dopaminergic cell death.
In sum, basal ganglia structure and function seem to be altered
in offspring of a mother who abused MA during pregnancy,
presumably because of the eftect of MA on the dopaminergic
system. Interestingly, animal and human studies have shown
that dopamine transporters are altered in offspring exposed
prenatally to MA," which suggests the overstimulation of
dopamine receptors in utero caused by dopamine overflow
may result in an abnormal neurotransmitter activity threshold
during adulthood.

Thalamus and Limbic Structures. The evidence shows that
the thalamus and the limbic system are affected in MA-exposed
offspring, both structurally and functionally. It was reported
that the thalamus®"** and hippocampus'” were smaller in MA-
exposed offspring compared to the controls. It was also shown
that the right thalamus volume was positively associated with
full-scale intelligence quotient scores of MA-exposed children.
Also, Chang et al. reported decreased myoinositol in the
thalamus in the MA-exposed group.”> However, Sowell et al.
showed an increased volume of anterior and posterior
cingulate cortices in MA-exposed offspring.’” In agreement,
DTI studies found that fornix and WM fibers connecting the
orbitofrontal cortex and amy§dala to putamen had decreased
FA in MA-exposed offspring.'”*’ In a longitudinal DTI study
with graph theoretical analysis, multiple limbic hubs in the
structural network had fewer changes in MA-exposed offspring
compared to controls.*®

Task-based fMRI studies also found that prenatal exposure
to MA was associated with altered functional features in the
thalamus and limbic system. Roussotte et al. reported that MA-
exposed children had a decreased activation in the bilateral
thalamus during working memory tasks compared to the
control group. It was also observed that activations in anterior
cingulate and paracingulate gyri and left parahippocampal
gyrus were negatively correlated with task performance.'

https://doi.org/10.1021/acschemneuro.1c00213
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The thalamus receives dopaminergic projections from the
striatum and projects them to the frontal cortex.’® It is also
involved in prenatal MA-exposed children’s brain alterations.
Myoinositol was decreased in the thalamus of MA-exposed
children, which is in line with the poorer performance of them
in the visual-motor integration task.>> Results of a structural
MRI study showed that prenatal MA exposure is associated
with decreased bilateral thalamus at a trend level,>' which is in
line with reduced thalamic gray matter in subjects addicted to
alcohol, cannabis, nicotine, MA, cocaine, and opioids.SI_59
Previous literature demonstrated reduced WM and gray matter
integrity, baseline metabolism, and at rest, functional
connectivity in the thalamus in drug abuser individuals.”
Taking together the thalamus as a central region in cortico-
striato-thalamocortical circuit,””*’ showed reduced volume,
decreased activation during working memory tasks and altered
metabolite concentrations in the child with prenatal MA
exposure relative to unexposed ones.

WM Fibers. WM fibers connecting bilateral regions or
connecting higher level to lower level structures have also been
demonstrated to have structural deficits in MA-exposed
offspring. In particular, MA-exposed females presented
decreased midposterior corpus callosum volume compared to
control females.”* According to Colby et al, in the MA-
exposed group, FA was significantly higher in the genu of the
corpus callosum, left hemisphere internal and external capsules,
and corona radiata compared to the control group. They also
observed group effects in a region within the left anterior
corona radiata. MD and RD were decreased, but AD in this
area was increased in the MA-exposed group compared to the
control group.”

Roos et al. demonstrated that, compared to the control
group, MA-exposed children had significantly decreased FA in
the left external capsule, fornix, and stria terminalis.
Furthermore, they reported that, in these regions, MD and
RD were increased in the MA-exposed children. Altered FA in
these regions correlated with poorer performance in motor
coordination and cognitive function in MA-exposed children,
after controlling for confounding variables. In addition, there
was a trend for decreased FA in the right external capsule to
predict poorer motor coordination.'’

Moreover, Warton et al.’" investigated the effects of prenatal
MA exposure on the microstructure of global WM networks in
neonates. Probabilistic tractography was used to estimate WM
bundles associated with pairs of target regions within five
networks (commissural fibers, left and right projection fibers,
left and right association fibers). After controlling confounding
variables, they showed negative associations between MA
exposure and FA in several WM connections in all five
networks, and positive associations were found between MA
exposure and RD in several WM connections in all five
networks. The increase in abnormal reflexes was associated
with decreased FA in the left projection fiber network, but the
performance on the neonatal behavioral assessment scale was
not associated with FA in any of the other networks.

Chang et al. (2016), in a prospective longitudinal study,
showed some sex-specific alterations in developmental age-
dependent changes in MA-exposed infants. They reported that
FA increased and diffusivity decreased with age in all
participants. They demonstrated in the superior corona radiata,
MA-exposed boys had decreased age-dependent changes of FA
at an earlier age, which normalized at a later age. Also, they had
increased diffusivity measures at earlier postmenstrual age but
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had sharper declines with age compared to control infants. At
the same time, the girls did not show any differences between
the two groups. Similarly, in the posterior corona radiata,
diffusivity measures started increased and declined sharper in
the MA-exposed boys, and no differences were seen between
girl groups. In the anterior corona radiata in the MA-exposed
girls, the age-dependent changes of FA remained decreased
compared to unexposed girls across the time, but boys showed
no differences. Additionally, they reported independent of sex,
in the retrolenticular internal capsule, MA-exposed infants
showed altered developmental age-dependent changes in AD
compared to unexposed infants. They also evaluated all infants
with Amiel-Tison Neurological Assessment at Term examina-
tion and showed that MA-exposed infants had poorer active
muscle tones and increased total score, indicating poorer
function, which normalized after three to four months after
birth.*®

Cloak et al. demonstrated that children exposed to MA had a
reduced apparent diffusion coeflicient in the right frontal and
right and left parietal WM compared to the control children."’
Similarly, another study reported decreased MD and RD in
lateral corona radiata in MA-exposed children,’® but
conversely, Roos et al. reported increased MD and RD in
the left external calpsule, fornix, and stria terminalis in the MA-
exposed children.”” In line with Roos et al, another study
reported increased RD in the midbrain-right caudate
connection in the MA-exposed infants relative to the control
group.”” Additionally, the results of these studies were
inconsistent in the comparison of FA between groups. Colby
et al.’’ reported increased FA, while Roos et al.'” reported
decreased FA in the left external capsule and Warton et al.*”*’
reported decreased FA in the three WM connections
(midbrain-left putamen, right putamen-right orbitofrontal
cortex, and right putamen-right amygdala) in the MA-exposed
children. These inconsistencies might be due to the
heterogeneity of the participants in terms of age,'’ which
ranged from infancy to school age. Moreover, differences in
methods and selecting regions of interest might cause this
discrepancy.

Sex-Specific Alterations. MA-exposed girls had decreased
midposterior corpus callosum volume relative to control girls,
but MA-exposed boys had relatively increased left globus
pallidus and right and left ventral diencephalon.”* Another
study investigated sex-specific alterations in developmental
age-dependent changes in MA-exposed children and found
that MA-exposed boys had decreased age-dependent changes
of FA in the superior corona radiata compared to the control
boys, which normalized at a later age. Diffusivity in the
superior and posterior corona radiata of MA-exposed boys
started to increase but declined more sharply relative to
unexposed boys, but no differences were seen between girl
groups in these regions. Normalization of the age-dependent
changes of FA and diffusivity in later postmenstrual age,
compared to the early years, might have occurred because of
neuronal repair or other structural changes occurring as a
compensatory mechanism to the MA-induced neuronal
damage after cessation of the MA exposure. Conversely, in
the MA-exposed girls, in the anterior corona radiata, the age-
dependent changes of FA remained decreased relative to
control girls across time, while boys showed no differences.*®
Considering that MA can inhibit the dopamine transporter at
body temperature*”®* and that previous investigations on rats
have revealed a sexual dimorphism of the dopamine trans-
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porter system, "’ we might speculate that the toxic effect of MA
on the dopaminergic system varies in the two sexes.

Neurocognition and Behavioral Alterations. Preschool
and school MA-exposed children showed poorer performances
on visual-motor integration tasks,"”*® and also, they had a
decreased score on sustained attention, delayed verbal
memory, and delayed spatial memory tests.!” Moreover, MA-
exposed children had significantly decreased Full Scale
Intelligence Quotient (FSIQ)** and poorer sustained atten-
tion.”” In a cohort study, children with prenatal MA exposure
showed increased aggressive behavior, and children with MA
exposure throughout pregnancy showed more aggressive
behavior than those who were exposed in only one trimester.
These results are in line with studies on adult MA abusers®®
that show a wide range of cognitive impairments, including
executive functions, attention, working memory, impulsivity,
and social cognition. In sum, the included investigations
showed that MA-exposed children presented decreased
cognitive performances in comparison with healthy controls,
which might be due to the neural toxicity of MA during brain
development and also the deprived socio-economical context
in which the MA-exposed children are raised.**

Strengths and Limitations. The divergence in the
methods of analysis and the selection of regions of interest
were important limitations to compare the results of the
reviewed studies. The use of different methods of analysis
across studies made it difficult to quantitatively compare the
results. Thus, we herein could only compare the result
qualitatively. Another considerable limitation was polysub-
stance exposure, especially alcohol and tobacco, as a
confounding variable; to address this issue, some studies
tried to exclude children whose mother abused other drugs
than MA,”>*® some used multivariable analyses to control this
issue,'”'®*"*> and some included a separate group who used
alcohol but did not use MA® to differentiate their effect on the
brain. One noteworthy strength of this study was the
consistent results of some regions from the different studies
with different modalities, which confirmed each other.

Clinical and Nonclinical Implications and Further
Direction of the Studies. To confirm the results of these
studies, future studies with more participants should
investigate how alterations in brain macrostructural, micro-
structural, metabolic, and functional characteristics might
mediate the association between prenatal MA exposure and
related neurocognitive deficits. A confirmed interpretation of
structural, metabolic, and functional alterations in the brain of
prenatal MA-exposed children would help clinicians to
diagnose earlier and choose more specific therapeutic targets
to prevent and treat the developmental disorders. Future
studies should evaluate possible pharmacological and cognitive
treatments to improve these children’s functional and social
performance.

B CONCLUSION

In this study, we systematically reviewed macrostructural,
microstructural, metabolic, and functional brain abnormalities
in children exposed to prenatal MA. Studies have used different
MRI modalities (including conventional MRI, DTI, MRS, and
fMRI) and different methods of analysis to investigate the
effect of prenatal MA exposure on brain development. Our
findings demonstrated that prenatal MA exposure was
associated with macrostructural, microstructural, metabolic,
and functional deficits in both cortical and subcortical areas.
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However, the most affected regions were striatal nuclei, frontal
region, thalamus and the limbic system, and WM fibers
connecting these regions. The findings from our study might
have valuable implications for targeted treatment of neuro-
cognitive and behavioral deficits in children with prenatal MA
exposure. Even so, our results should be interpreted cautiously
due to the heterogeneity of the included studies in terms of
study populations and methods of analysis.
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