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In GWAS studies, SNP heritability measures the proportion of phenotypic variance explained by all mea-
sured SNPs. Accurate estimation of SNP heritability can help us better understand the degree to which
measured genetic variants influence phenotypes. Over the last decade, a variety of statistical methods
and software tools have been developed for SNP heritability estimation with different data types includ-
ing genotype array data, imputed genotype data, whole-genome sequencing data, RNA sequencing data,
and bisulfite sequencing data. However, a thorough technical review of these methods, especially from a
statistical and computational viewpoint, is currently missing. To fill this knowledge gap, we present a
comprehensive review on a broad category of recently developed and commonly used SNP heritability
estimation methods. We focus on their modeling assumptions; their interconnected relationships; their
applicability to quantitative, binary and count phenotypes; their use of individual level data versus sum-
mary statistics, as well as their utility for SNP heritability partitioning. We hope that this review will
serve as a useful reference for both methodologists who develop heritability estimation methods and
practitioners who perform heritability analysis.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A central quest in genetics is to understand the relative contri-
bution of genetic factors and environmental factors to phenotypic
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Fig. 1. Partition of phenotypic variance. VG represents the phenotypic variance due to genetic effects; VE represents the phenotypic variance due to environmental effects;
and VG�E represents the phenotypic variance due to gene-environment interactions. The genetic variance VG can be partitioned into three parts: Vadd that represents the
additive genetic effects; Vdom represents the dominance genetic effects; and Vepi represents the epistatic effects. The environmental variance VE can also be partitioned into
three parts: Vcom represents common environmental effects such as those due to residing in the same family; Vmat represents maternal effects such as nutritional intake
during pregnancy; and Venv represents the residual stochastic environmental effects.
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variation – a quest commonly framed as the nature vs nurture
debate. Elucidating the relative contribution of genetics versus
environment for various diseases and disease-related complex
traits can help us better understand the causal mechanism of dis-
ease etiology and facilitate resource prioritization for disease diag-
nosis and prevention. A key quantity to evaluate the contribution of
genetics versus environment is heritability, which measures the
proportion of phenotypic variance explained by genetic factors.
Two types of heritability can be estimated. The broad-sense heri-
tability (H2) evaluates the proportion of phenotypic variance
explained by all genetic factors, including additive effects, domi-
nant effects, and epistasis effects. The narrow-sense heritability

(h2), on the other hand, evaluates the proportion of phenotypic vari-
ance explained by additive genetic effects. Accurate estimation of
heritability can show the degree to which genetic factors influence
phenotypes and improve our understanding of the genetic basis of
disease and disease-related complex traits. Indeed, heritability
plays an important role across a range of genetic applications [1]:
it is a key for understanding the evolutionary forces underlying nat-
ural selection; it determines how a population will respond to
selection; it predicts, at least in part, gene mapping power in
genome-wide association studies; it can estimate, quite accurately
in some cases, the phenotypic value of an individual and thus facil-
itate genomic selection via predicted breeding values; and it pro-
vides an upper limit for the genetic prediction of phenotypes.

In the absence of genetic data, heritability estimation can be
carried out in family/pedigree-based [2] or twin-based designs
[3]. Recent reviews of heritability estimation in related individuals
can be found from [4,5]. Briefly, in family/pedigree-based studies,
heritability is often estimated using the linear mixed model
(LMM), also known as the variance component model. The LMM
allows partitioning of the phenotypic variance into different com-
ponents: a genetic variance component, an environmental compo-
nent, and potentially a gene-environment (G � E) interaction
component (Fig. 1). The genetic variance component captures the
part of phenotypic variance explained by genetic factors and can
usually be further partitioned into three parts: the additive, dom-
inance, and epistatic parts. The environmental variance component
captures the part of phenotypic variance explained by environ-
mental factors and can also be further partitioned into three parts:
the common environment part, the maternal influence part, and
the residual stochastic environment part. The G � E interaction
variance component captures the part of phenotypic variance
explained by the interactions between genetic factors and environ-
mental factors. Measuring the G � E component is often challeng-
ing as it requires the assessment of detailed environmental
exposures obtained from appropriate study designs, with several
recent analytic methods developed for modeling G � E interactions
for heritability estimation [6]. In this review, we focus on the
genetic variance components.

After obtaining the estimates for various components, we can
compute the estimated ratio of genetic variance over the total phe-
notypic variance, which serves as an estimate for heritability. For
data with a relatively simple, familiar structure, a method of
moments (MoM) based algorithm is often employed for variance
component estimation in the linear mixed model. For example, a
regression between the offspring phenotypic value (YO) and the
average of phenotypic value for the two parents (YP) can directly

lead to the heritability estimate (h2 ¼ 2 � Corr YO; YPð Þ) [7]. Simi-
larly, for studies involving monozygotic (MZ) twins and dizygotic
(DZ) twins, Falconer’s formula is applied to obtain a heritability
estimate, which equals twice the difference between the pheno-
typic correlation in MZ pairs and the phenotypic correlation in
DZ pairs (H2 ¼ 2 rMZ � rDZð Þ) [8–10]. For family studies with individ-
uals of different levels of relationship, a likelihood-based inference
procedure is often employed for variance component estimation in
the linear mixed model. This procedure constructs a kinship matrix
based on pedigree information and then obtains the maximum
likelihood estimate (MLE) or the restricted maximum likelihood
estimate (REML) for heritability. Regardless of the estimation algo-
rithm, various early family-based studies have produced accurate
heritability estimates for various quantitative traits. For example,
it has been estimated that the narrow-sense heritability for height
is around 80% in family-based studies [1,11]. Heritability may vary
across populations, across individual groups with different age or
other characteristics, and may change over time. Similarly, heri-
tability of livestock traits (e.g., milk yield) can sometimes double
over a couple of decades through animal breeding programs [1].
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The progress of array-based techniques, and more recently,
whole-genome sequencing (WGS) techniques, have enabled accu-
rate measurement of genotypes on millions of single nucleotide
polymorphisms (SNPs) across the entire genome. These advances
have subsequently enabled large-scale genome-wide association
studies (GWASs) in apparently unrelated individuals. In the past
decade, GWASs have identified many SNPs associated with various
diseases and disease-related complex traits. However, the majority
of identified SNPs only explain a small fraction of heritability for
most traits, leading to a large fraction of unexplained heritability,
commonly referred to ‘‘missing heritability”. Many explanations
have been proposed for missing heritability. For example, it is pos-
sible the causal variants are not in complete linkage disequilibrium
(LD) with the genotyped SNPs [12]. It is also possible that rare vari-
ants with large effects contribute disproportionately to the pheno-
typic variance. In addition, pedigree-based studies may have
overestimated heritability [13]. A prominent hypothesis suggests
that current GWASs are underpowered and that many causal SNPs
remain undetected below the stringent genome-wide significant
threshold, which can vastly underestimate the phenotypic vari-
ance. Therefore, it becomes critically important to estimate the
heritability or phenotypic variance explained by all measured
genome-wide SNPs. For example, in the seminal paper by Yang
et al. [12], the heritability for height explained by significantly
associated SNPs is only 10%, while that explained by all measured
SNPs is near 50%, with an increase of 40%.

Several reviews have been recently written on SNP heritability
estimation [4–5,14–20]. Most of these papers focus on the practical
interpretation of SNP heritability and how it contributes to our
understanding of missing heritability for various diseases and com-
plex traits. In addition, these reviews are often targeted at experi-
mental biologists, focus on quantitative traits, and have a narrow
focus on a few existing statistical methods used for heritability
estimation. To fill this critical gap, we provide a systematic review
of various statistical methods that have been developed and used
for SNP heritability estimation on quantitative traits, binary traits,
and count phenotypes. Specifically, we included in our review all
existing statistical methods that are developed for SNP heritability
estimation. We did not include methods for heritability estimation
in family/pedigree-based or twin-based designs. All methods in the
review make use of genome-wide genotype data. Specifically, we
focus on explaining the detailed modeling assumptions underlying
various models, providing intuitions on how one would expect dif-
ferent models to work for traits with different genetic architec-
tures. We include two commonly used algorithms -- the method
of moments (MoM) and the restricted maximum likelihood (REML)
-- the first of which allows estimation of SNP heritability using
summary statistics. In addition, we include a broad category of
methods that are suitable for modeling phenotypes in the form
of traditional quantitative traits, ascertained case control status,
and count measurements from recent genomic sequencing studies.
We also include various methods for partitioning heritability
across different SNP functional categories. We hope that our
review can serve as a useful reference to the broad statistical
genetics and computational biology communities on modeling
and estimation of SNP heritability.
2. Heritability estimation for quantitative traits

2.1. Notations

First, we provide detailed notations and formulate the SNP her-
itability estimation problem into a statistical framework. We

denote y ¼ y1; � � � ; ynð ÞT as the n-vector of quantitative trait
measured on n individuals. We denote X as the n by p matrix of
genotypes for the same n individuals and p SNPs. These genotypes
can be collected in different forms, including genotype array data,
imputed genotype data, and whole genome sequencing data. The
genotype for the i-th individual and j-th SNP, Xij, is often coded
as 0, 1, or 2, representing the number of reference alleles. For the
genotype matrix, we assume that all missing genotypes have
already been imputed with proper genotype imputation software;
thus, Xij will be in the range of 0 and 2. To simplify the algebra, we
further assume that each column of X (i.e., SNP) has been centered
to have zero mean; the results will remain the same with or with-
out centering [21]. It is also common to standardize the columns of
X to have unit variance, which corresponds to making an assump-
tion that rarer variants tend to have larger effects than common
variants and variant effect sizes tend to decay with the inverse of
the genotype variance [22]. Therefore, standardizing the columns
will affect the results, although previous studies have shown that
its relative contribution to the genetic relatedness matrix (GRM,
defined later) is the same and has minimal influence on the SNP
heritability estimation [23]. Therefore, we also standardize each
column of X to have unit variance. We use the following linear
regression to model the relationship between the phenotype vec-
tor y and the genotype matrix X,

y ¼ Xbþ e; ð1Þ

where b ¼ b1; � � � ;bp

� �T is an p-vector of genetic effect sizes and

e ¼ e1; � � � ; enð ÞT is the n-vector of residual errors with each entry
ei � N 0;r2

e

� �
. Note that centering of the phenotype y and each col-

umn of genotype matrix X allows us to ignore the intercept in equa-
tion (1).

Equation (1) is often used for estimating the proportion of phe-
notypic variance explained by all measured SNPs in GWAS,
Var Xbð Þ=Var yð Þ; where Var denotes sample variance. This quantity
is commonly referred to as the proportion of variance in pheno-
types explained (PVE) by available genotypes or SNP heritability,

denoted as h2
g . A simple approach to estimate SNP heritability is

to select a candidate set of associated SNPs and then estimate
PVE by these selected SNPs. For example, for a given trait, we can
identify SNPs that are associated with the trait passing the
genome-wide p-value significance threshold of 5� 10�8. We can
include all these significant SNPs, or further extract uncorrelated
SNPs from the set through linkage disequilibrium (LD) pruning or
clumping, into the model defined in equation (1). When the num-
ber of SNPs, p, is small, we can easily estimate b through ordinary
least square estimation. When the selected SNPs are independent

from each other, we can estimate the PVE as ch2
g ¼ P

j2A
bb2

j , where
A denotes the set of selected independent SNPs; when SNPs are
correlated with each other, we can estimate the PVE using the def-
inition Var Xbð Þ=Var yð Þ. As noted above, such estimation may
greatly underestimate the true SNP heritability because it ignores
many SNPs that have not reached the stringent genome-wide
threshold due to imperfect statistical power. For example, the
top ~ 50 SNPs only explain 5–10% of phenotypic variance for height
[24–27] although, based on pedigree-based designs, height is a
highly heritable trait with estimated heritability as high as 80%
[1,11].

2.2. Modeling assumptions on the effect sizes

When we include all genome-wide SNPs, the number of SNPs p
would exceed the number of individuals n. Indeed, in a typical
GWAS, p is often on the order of a million to 100 million while n
typically ranges from a few thousand to half a million. When
p � n, the regression model defined in equation (1) becomes an
underdetermined system. Therefore, we need to make certain
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modeling assumptions on the SNP effect sizes b to complete the
modeling specification. Various modeling assumptions have been
proposed on the effect sizes b. We describe a few commonly used
modeling assumptions below.

Bayesian variable selection regression (BVSR). Perhaps the first
attempt in the genetics field to estimate SNP heritability was BVSR.
BVSR makes a sparse modeling assumption that a relatively small
proportion of all genetic variants truly affect the phenotype [28–
33]. In particular, BVSR [32] assumes that the genetic effect size
of each SNP follows a point-normal distribution

bj � pN 0;r2
b

� �
þ 1� pð Þd0; ð2Þ

where r2
b is the variance component in the normal distribution and

d0 denotes a point mass at zero. The point normal is commonly
referred to as a spike and slab prior. Based on the point-normal
modeling assumption, with proportion p, the SNP effect size is
non-zero and follows a normal distribution; while with proportion
1� p, the SNP effect size is exactly zero. The proportion of non-zero
effect SNPs, p, is often assumed to be small. For example, BVSR [32]
places a sparsity-inducing prior on p and assumes that log pð Þ fol-
lows a uniform distribution a priori. The model defines a parameter

to quantify PVE, h2
g ¼ p��r2

b

p��r2
b
þr2

e
, with p� as the number of non-zero b.

Given the observed data, BVSR relies on a Markov Chain Monte
Carlo (MCMC) algorithm to obtain posterior samples from the
approximate posterior distribution for SNP heritability. As an exam-
ple, BVSR was applied to analyze a GWAS study with plasma C-
reactive protein (CRP) and found that using all SNPs explained
approximately 6% of variance in CRP, much higher than the previous
estimates of 0.35%-0.4% using only significant SNPs [34–35].

Linear mixed model (LMM). The second modeling assumption,
which is most often used, is the normality assumption on the effect
sizes. This modeling assumption is commonly referred to as LMM.
LMM was first proposed by [12] for SNP heritability estimation,
after which LMM became a standard method and one of the most
effective approaches for the analytic task. LMM assumes that

bj � N 0;r2
b

� �
ð3Þ

Under this modeling assumption, all SNPs have non-zero effects
with their effect sizes following a normal distribution. LMM is
commonly used for heritability estimation as well as association
analysis while accounting for family relatedness or population
stratification. When a particular likelihood-based inference proce-
dure REML (more details below) is used to perform parameter
inference, LMM is also known as the ridge regression or Genome-
based REML (GREML). In this review, the notations of LMM,
GREML, REML, and GCTA [36] all represent this approach. In the
LMM, the variance of total additive genetic effects can be defined
as r2

g ¼ p � r2
b . The variance components r2

g and r2
e can be esti-

mated using software such as GCTA [36] and GEMMA [37]. The

SNP heritability estimate can be expressed as ch2
g ¼ r2

g

r2
gþr2

e
: Note that,

when the columns of the genotype matrix X are not standardized, a
scaling factor s ¼ trace Kð Þ=n, where K denotes the estimated
genetic relatedness matrix (GRM) and is commonly computed as
K ¼ 1

pXX
T , is multiplied by r2

g , which leads to the SNP heritability

estimate as ch2
g ¼ sr2

g

sr2
gþr2

e
[22].

Bayesian sparse linear mixed model (BSLMM). Because BVSR and
LMM make completely different modeling assumptions, one may
naturally expect that the two models work better for traits with
different genetic architectures. Specifically, because of the sparse
effect size assumption, BVSR is more accurate in estimating SNP
heritability when a small proportion of SNPs truly has non-zero
effects on the trait. In contrast, because of the polygenic effect size
assumption, LMM is more accurate in estimating SNP heritability
when truly a large proportion of SNPs have non-zero effects on
the trait. Thus, BVSR tends to underestimate SNP heritability for
polygenic traits while LMM tends to be imprecise for non-
polygenic traits [22] – even though LMM produces unbiased esti-
mates for traits with various genetic architectures [22,38]. Unfor-
tunately, the true genetic architecture of a phenotype is
unknown a priori. Therefore, it is often unclear whether one should
use LMM or BVSR to analyze a given trait.

Motivated by this methodological limitation, Zhou et al. [22]
proposed a hybrid model of LMM and BVSR, which is referred to
as Bayesian sparse linear mixed model (BSLMM). BSLMM places a
mixture of two normal distributions on the effect sizes,

bj � pN 0;r2
a þ r2

b

� �þ 1� pð ÞN 0;r2
b

� �
: ð4Þ

That is, with probability 1� p, bj tends to be small and follows a
normal distribution with a small background variance of r2

b; while
with probability p, bj tends to be large and follows a normal distri-
bution with a large variance of r2

a þ r2
b , where r2

a is the additional
variance on top of the background variance. Clearly, when p ¼ 0,
BSLMM reduces to LMM. When r2

b ¼ 0, BSLMM reduces to BVSR.
By including both LMM and BVSR as special cases, BSLMM can take
advantage of LMM and BVSR to adaptively infer the genetic archi-
tecture underlying the trait from the data at hand. In the BSLMM,
the SNP heritability can be expressed as a population level param-

eter h2
g ¼ ppr2

aþr2
b

ppr2
aþr2

b
þr2

e
, the approximate expectation of PVE. Besides

h2
g , BSLMM also defines a parameter q ¼ ppr2

a
ppr2

aþr2
b
as the approximate

expectation of PGE, the proportion of genetic variance explained by
the sparse effects. In addition, PVE can be estimated by Var Xbþuð Þ

Var yð Þ

while PGE can be estimated by Var Xbð Þ
Var Xbþuð Þ, where u is the random

effect following u � N 0;r2
bK

� �
. BSLMM relies on a Metropolis Hast-

ings (MH) algorithm to perform posterior inference. BSLMM is also
closely related to the recent omnigenic model hypothesis [39].
Specifically, the omnigenic model hypothesizes that all genes have
non-zero effects, which is modeled in BSLMM by assuming that all
SNPs have non-zero effects. In addition, the omnigenic model
hypothesizes that a small proportion of genes, denoted as core
genes, have additional effects. These additional effects are modeled
by the normal component with a large variance in BSLMM. As an
extension of BSLMM, Zhu and Stephens [40] provided a summary
statistics-based version, Regression with Summary Statistics
(RSS) likelihood. RSS likelihood allows BSLMM to be applied to
large scale GWASs. By analyzing a summary-level GWAS with
253,288 individuals genotyped at 1.06 million SNPs using BSLMM,
RSS likelihood obtained the heritability estimate for height as 52%
[40].

Linkage disequilibrium adjusted kinships (LDAK). The above BVSR,
LMM/GREML and BSLMM assume that the effect size for the j-th
SNP, bj, does not depend on how many SNPs are in close linkage
disequilibrium (LD) with the j-th SNP. In contrast, the Linkage
Disequilibrium Adjusted Kinships (LDAK) [41–42] assumes that bj

depends on how j-th SNP is correlated with its neighborhood SNPs.
Specifically, similar to LMM, LDAK assumes that bj follows a nor-

mal distribution bj � N 0;r2
j

� �
. However, different from LMM that

assumes the same variance r2
j ¼ r2, LDAK assumes that r2

j is j-th
SNP specific and is related to minor allele frequency, LD score,
and imputation information score of the SNP. The LD score of
SNP j is defined as lj ¼

Pp
j¼1r

2
jj � 1

n, where
Pp

j¼1r
2
jj is the sum of

the squared Pearson’s correlation between SNP j and all other SNP’s
j while 1

n represents the expectation of the summation under the



H. Zhu, X. Zhou / Computational and Structural Biotechnology Journal 18 (2020) 1557–1568 1561
null and a high value indicates that the j-th SNP is in high LD with
many nearby SNPs. The imputation information score is a metric
between 0 and 1 output from imputation software: a value of 1
indicates that there is no uncertainty in the imputed genotypes
while a value of 0 means that there is complete uncertainty about
the genotypes. Specifically, LDAK assumes that the effect size bj

follows

bj � N 0;r2
j

� �
;r2

j / f j 1� f j
� �� �1þa �wj � rj; ð5Þ

where f j is the minor allele frequency of the SNP j; wj is a SNP-
specific weight that is a function of the inverse of the LD score of
SNP j, so that the j-th SNP effect size tends to be smaller if there
are more SNPs in LD with the j-th SNP; and rj 2 0;1½ � is the impu-
tation information score measuring genotype certainty, so that the
j-th SNP effect size tends to be smaller for the genotype with
higher uncertainty. The parameter a determines the relationship
between r2

j and f j. Specifically, a ¼ �1 indicates that r2
j does not

depend on f j, an assumption commonly made in genetics;
a < �1 (e.g., �1:25) indicates that r2

j decreases as f j increases;

and a > �1(e.g., �0.75, �0.25) indicates that r2
j increases as f j

increases. The default value of a in LDAK is �0:25. LDAK relies on
REML to estimate parameters. Because of different modeling
assumptions of LDAK and LMM, different SNP heritability estima-
tions are obtained by different methods in real data analysis. For
example, if the underlying SNP effect size depends on LD in the
same form as of LDAK, then methods, such as LMM that fails to
model the effect size on LD score dependency, would generate
downward biased estimates. Indeed, in a real data application,
LDAK obtained an average of 43% SNP heritability estimation
higher than that of LMM for 19 analyzed traits [42]. Certainly,
while the naïve LMM does not account for the potential LD depen-
dency, it also can be extended to do so by LD stratified analysis;
such extensions are described in the SNP Heritability Partitioning
section.

Besides these above methods, several other models can be used
for SNP heritability estimation. Particularly, many phenotype pre-
diction models developed elsewhere can be directly applied for
SNP heritability estimation. For example, the Bayesian alphabet
models assume that the genetic effect sizes follow either a t-
distribution (BayesA) [43–46], a mixture of t-distribution and a
point mass at zero (BayesB, BayesD, BayesDp) [43–47], or a mix-
ture of two t-distributions (BayesC) [43,45]. The Bayesian lasso
assumes a double exponential distribution [28,48]. BayesR
assumes a mixture of three normal distributions and a point mass
at zero [49]. NEG assumes a normal exponential gamma distribu-
tion [29]. BayesS assumes a point-normal distribution with SNP-
specific variance as a function of MAF [50].

Dirichlet process regression (DPR). These aforementioned meth-
ods share a common feature of relying on a finite number of
parameters to characterize the genetic effect distribution; that is,
they all use parametric models. In contrast to the parametric
model, Zeng and Zhou [51] developed a Bayesian non-parametric
model, termed as the latent Dirichlet process regression (DPR).
DPR assumes that bj follows a normal distribution, with a further
unknown distribution G placed upon the variance parameter r2

j .
DPR actively infers the unknown distribution G by assuming a
non-parametric Dirichlet process (DP) prior on the distribution
itself:

bj � N 0;r2
j

� �
;r2

j � G;G � DP IG a; bð Þ; kð Þ ð6Þ

where the inverse gamma (IG) distribution is the base distribu-
tion and the concentration parameter k determines how the distri-
bution of G differs from the base distribution. By inferring the
distribution G based on the data at hand, DPR is flexible and adap-
tive to a wide range of genetic architectures, resulting in accurate
phenotype prediction and appreciable power gain for the
transcriptome-wide association studies (TWAS) [52–53], an inte-
grative analysis of expression mapping studies and GWASs. Note
that the above modeling assumption is also equivalent to assuming
each element of b follows a mixture of infinitely many normal dis-
tributions a priori,

bj �
Xþ1

u¼1
puN 0;r2

u

� �
;pu ¼ mu

Yu�1

l¼1
1� mlð Þ; mu � Beta 1; kð Þ

ð7Þ
Here, pu is the weight corresponding to the u-th normal distri-

bution; it is generated from a stick breaking process and deter-
mined by a latent proportion parameter ml that each follows a
Beta prior. With the DPR modeling assumption, one can obtain
the SNP heritability estimates via two algorithms: the Monte Carlo
Markov Chain and the variational Bayesian algorithm.
3. SNP heritability estimation for case control studies and count
phenotypes

Liability threshold model: REML. We have focused on estimation
of SNP heritability for quantitative traits. More considerations are
needed when the outcome is a disease phenotype obtained from
case control studies. In this case, estimation of SNP heritability
requires not only proper modeling of the binary nature of the out-
come, but also proper controlling of the ascertainment occurred in
case control studies. The binary nature of case control status sug-
gests that the variance of the phenotype is a function of its mean,
rendering invalid normality assumption on the residual errors. The
normality assumption is commonly used in SNP heritability esti-
mation for quantitative traits as described in previous sections.
Ascertainment is a result of the case-control sampling design
where the proportion of cases in the study is collected to be much
higher than that in the population. Ascertainment effectively
increases the associated SNP effect size estimates as compared to
that in the population; it renders inaccurate effect size assump-
tions made in SNP heritability estimation for quantitative traits.
Therefore, methods for quantitative traits are no longer applicable
to case control studies. Instead, a liability threshold model is used
to account for both the binary nature and ascertainment in case
control studies.

The liability threshold model was first introduced by [54]. It
introduces a latent continuous variable for every individual i, ter-
med as liability score li. The liability score effectively measures
the individual’s susceptibility to disease. The liability score, paired
with the liability threshold value of t, determines whether an indi-
vidual is a case or a control: the individual i is a case when li > t

and is a control otherwise. The liability score is a continuous vari-
able and assumed to follow the same linear model as in equation
(1)

l ¼ Xbþ e; ð8Þ
where Xb represents the genetic contribution to liability and e

represents the environmental contribution to liability. As
described in previous sections, different modeling assumptions
can be made on the genetic effect sizes b, though the common
choice is the normal assumption. Under this assumption, the liabil-
ity score follows a (multivariate) normal distribution in the popu-
lation (Fig. 2A). The liability threshold t, when paired with a
distributional assumption on li, effectively determines the preva-
lence of the disease. Certainly, due to ascertainment, the liability
scores in the case control study no longer follow a normal distribu-
tion but are often enriched with large liability scores (Fig. 2B). To



Fig. 2. The distributions of liability score under random sampling and ascertained case-control sampling for unrelated individuals. Red represents cases while black
represents controls. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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address the issue of nonnormality with liability score, Lee et al.
[55] proposed a transformation procedure. In particular, the trans-
formation procedure first treats the disease status (0/1) as a con-
tinuous outcome and fits an LMM described in equations (1) and
(3) using the REML algorithm to estimate the variance compo-

nents. The resulting SNP heritability estimate h2
o is referred to as

the SNP heritability estimated on the observed scale. Afterwards,
the transformation procedure applies a linear transformation on

h2
o and converts it to the SNP heritability estimate h2

g on the liability
scale:

ch2
g ¼ P2 1� Pð Þ2

P� 1� P�ð Þu tð Þ2
ch2
o ð9Þ

whereu �ð Þ is the standard normal density function, ch2
o is the

REML heritability estimates obtained by treating the case-control
status (0/1) as a quantitative trait, P represents the disease propor-
tion in the population, and P� denotes the disease proportion in in
the sample. The above transformation extends the Dempster and

Lerner [56] formula h2
g ¼ P 1�Pð Þ

u tð Þ2 � h2
o which addresses the binary nat-

ure of case control outcome but does not account for
ascertainment.

Liability threshold model: HE/PCGC. The detailed algorithmic
derivation in Lee et al. [55] is complicated. Based on Taylor series
expansion and approximation, Zhou et al. [22] provided an alterna-
tive derivation, which led to the same transformation equation
described in equation [9]. However, the new derivation casts con-
cern on the effectiveness of such transformation when paired with
REML, as the approximation in equation [9] is only valid when SNP
heritability is close to zero. When SNP heritability is not close to
zero, the SNP heritability on the liability scale based on equation
[9] will be underestimated [57–58]. Golan et al. [58] provides a
simple solution to the downward bias in SNP heritability estima-
tion: instead of using REML estimates, one can use the Haseman-
Elston (HE) regression to obtain the variance component estimates.
The HE regression is also referred to as the phenotype correlation-
genotype correlation (PCGC) regression relying on the equation

E Piið Þ ¼ f h2
g ;Gii

� �
, where Pii is the phenotypic correlation between

individual i and i and Gii is the genotypic correlation between the
two individuals. Here, f �ð Þ is a function that relates SNP heritability
and genetic correlation Gii to the phenotypic correlation Pii. The
specific functional form of f �ð Þ depends on the design of the study
and the properties of the phenotype. In HE regression, the function
f �ð Þ is a simple product of the SNP heritability and genetic correla-

tion; that is, f h2
g ;Gii

� �
¼ h2

g � Gii. Instead of requiring low SNP
heritability, HE/PCGC regression only requires each element in
the kinship matrix close to zero. Consequently, it can be widely
applied to data collected on unrelated individuals and provides
approximately unbiased SNP heritability estimates on the liability
scale in several GWASs [58]. The HE/PCGC regression is later recog-
nized to be linked to the MINQUE (the minimal norm quadratic
unbiased estimation) estimation proposed in the statistical litera-
ture and can be viewed from a method of moments (MoM) algo-
rithm perspective [59]. The HE/PCGC regression is further
extended to model ascertained case control studies using summary
statistics [59–60].

Generalized linear mixed model: PQLseq. Besides binary traits and
case control studies, many complex traits are measured on various
other data types through genomic sequencing studies. For exam-
ple, RNA sequencing (RNAseq) studies have allowed accurate gene
expression measurements across tens of thousands of genes. Bisul-
fite sequencing (BSseq) studies have enabled accurate methylation
profiling across genome wide CpG sites. Understanding SNP heri-
tability of these molecular traits, including gene expression levels
and methylation levels, can facilitate our understanding of the cau-
sal or mediation mechanism underlying the SNP-trait associations.
These two types of sequencing data have different data structures.
Specifically, RNAseq studies collect one read count for each gene as
its expression level. In contrast, BSseq studies collect two read
counts for each CpG site – one methylated count and one total
count – as the methylation level. The ratio between these two
counts represents approximately the methylation proportion of
the given CpG site. Both types of data are of count nature. The stan-
dard SNP heritability estimation method, LMM, has been recently
applied to estimate heritability of gene expression [61–65], of
methylation level [66–68], and of various other molecular traits
[69]. However, LMM is specifically designed for analyzing quanti-
tative traits. In genomic sequencing studies, the application of
LMM requires a priori transformation of the count data to continu-
ous data before heritability estimation [61,70]. Transforming
sequencing count data may fail to account for the sampling noise
from the underlying count generating process and may inappropri-
ately attribute such noise to independent environmental variation.
As shown in Sun et al. [71], modeling count data with LMM can run
into the risk of overestimating environmental variance and subse-
quently underestimating heritability. To mitigate the problem, Sun
et al. [71] developed PQLseq, a penalized quasi-likelihood for
sequencing count data, based on the generalized linear mixed
models (GLMM), which directly model count data. For a given gene
in an RNAseq study, PQLseq considers a Poisson mixed model
(PMM) to directly model the count data yi � Poi Nikið Þ for the i-th
individual, where yi is the number of reads mapped to the partic-
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ular gene, Ni is the total read counts (a.k.a read depth or coverage),
and ki is an unknown Poisson rate parameter that represents the
underlying gene expression level. For a given CpG site in a BSseq
study, PQLseq considers a binomial mixed model (BMM)
yi � Bin ri;pið Þ, where ri is the total read count for the i-th individ-
ual, yi is the methylated read count constrained to be an integer
value less than or equal to ri, and pi is an unknown parameter that
represents the underlying proportion of methylated reads at the
site. For either model, PQLseq transforms the unknown parameters
into a latent variable zi: zi ¼ log kið Þ in PMM and zi ¼ logit pið Þ in
BMM. The latent variable zi is combined together into a vector,
which is modelled as follows:

z ¼ Xbþ e ð10Þ
where Xb represents the genetic contribution to the latent variable
z and e represents the environmental contribution. PQLseq further
relies on the penalized quasi-likelihood for parameter inference to
obtain unbiased SNP heritability estimates.

4. Inference algorithms for LMM and the adaptation of
summary statistics

All the methods described so far require individual-level geno-
types and phenotypes data from all samples in the study. Because
of consent and privacy concerns, and logistic limitations (e.g.,
large-scale data transfer and storage often require high-end com-
puting infrastructure), it is increasingly difficult to access complete
individual-level data from large-scale association studies. Indeed,
sharing summary statistics such as the marginal z-scores across
multiple studies, performing meta-analysis, and releasing results
in terms of summary statistics has become a standard practice in
most consortium studies. Requiring complete individual-level data
restricts the use of many SNP heritability estimation methods and
limits their benefits in many large-scale studies. In addition, the
aforementioned methods are computationally expensive. For
example, the REML algorithm in LMM or GLMM scales cubically
with respect to the sample size. Similarly, both BVSR and BSLMM
require computationally expensive Markov chain Monte Carlo
methods for model fitting. To alleviate the computational concern
and make use of summary statistics, several alternative statistical
methods for SNP heritability have been recently developed.

A common method to estimate SNP heritability based on
summary-statistics is LD Score regression (LDSC) [72]. For each
SNP, LDSC first computes its LD score, lj, which is defined in the
above LDAK section and captures approximately the number of
genetic variants tagged by this SNP. LD score cannot be computed
exactly due to the large number of genome-wide SNPs. Instead, it is
typically estimated based on SNPs in an appropriate sliding win-
dow (e.g., 1 MB or 1 cM). After obtaining LD score, LDSC regresses
the v2 test statistic from GWAS on the per-SNP LD scores

E v2
j jlj

h i
¼ nlj �

h2
g

p
þ naþ 1; ð11Þ

where a measures the confounding bias due to potential population
stratification and cryptic relatedness. Here, population stratification
refers to the presence of a systematic difference in allele frequencies
between subpopulations in the data possibly due to different ances-
try. Cryptic relatedness occurs when individuals in the study are
more closely related to another than thought. Both population strat-
ification and cryptic relatedness, if uncontrolled, can lead to upward
biased SNP heritability estimation. By controlling for population
stratification and cryptic relatedness using the parameter a, LDSC
can mitigate their influence for SNP heritability estimation. Thus,
regressing the GWAS test statistics v2

j on per-SNP LD scores lj

allows for estimation of h2
g . Unlike standard data-generative models
(i.e., models that describe how the individual-level variables y are
generated based on genotypes of n samples), LDSC models the mar-
ginal test statistics for p SNPs. By modeling summary statistics,
LDSC is not only applied to many data sets that previously cannot
be analyzed for SNP heritability estimation, it also substantially
improves computational speed and makes SNP heritability scalable
to large data sets. LDSC was initially introduced without an under-
lying data-generative model. It was later found out that LDSC is fit-
ting the LMM described in [59]. However, instead of applying the
standard likelihood-based approach REML for fitting LMM, LDSC
relies on a matching moments-based method. From this aspect,
LDSC is closely related to HE/PCGC methods.

Zhou [59] developed MQS (MinQue for Summary statistics) and
related it with LDSC and HE/PCGC. MQS is based on the MINQUE
criterion, a conceptual framework based on MoM. For the case of
one variance component, an analytic variance component estima-
tion is as follows:
br2
b ¼ S�1q; ð12Þ
where q ¼ yT A� Ið Þy
n� 1ð Þ2 ; S ¼ tr AKð Þ

n� 1ð Þ2 �
1

n� 1
ð13Þ
where A is an n by n matrix. All choices of A can lead to unbiased
variance component estimates while different choices of A can
influence the estimation accuracy. In particular, the optimal choice

A ¼ r2
bK þ I

� ��1
K r2

bK þ I
� ��1

with known r2
b leads to the most

accurate variance component estimates. In practice, r2
b is unknown

and the optimal choice of A cannot be used. Therefore, we will need
to make decisions on the choice of A. Different choices of A in MQS
lead to different existing variance component estimation algo-

rithms. Specifically, when A ¼ br2
bK þ I

� ��1
K br2

bK þ I
� ��1

and br2
b

is updated through the above estimation equation in an iterative
fashion, MQS becomes REML. When A ¼ XWXT=p with a certain
diagonal weighting matrix W, MQS becomes the weighted version
of LDSC. When A ¼ K , MQS becomes HE/PCGC. MQS brings many
seemingly unrelated methods – REML, HE/PCGC, LDSC – into the
same unified statistical framework. With this new framework,
MQS provides an alternative but mathematically equivalent form
of HE/PCGC to allow for the use of summary statistics. MQS also
provides an exact approximation of LDSC for yielding unbiased
and statistically more efficient SNP heritability estimation. In addi-
tion, MQS can be easily extended to model multiple variance com-
ponents or multiple phenotypes. Finally, while MQS requires
computing q in equation [12] using all individuals, it can use only
a subset of individuals to estimate Swithout incurring accuracy loss
for the final SNP heritability estimates. Such strategy of MQS, using
a subset of individuals for estimating certain quantities while using
all individuals for computing other quantities, is in line with the
idea of stochastic approximation as in Robbins and Monro [73].
The stochastic estimation strategy used in MQS leads to computa-
tional speed improvement over standard methods by orders of
magnitude.

While both LDSC and MQS rely on the standard LMM assump-
tion, the recently proposed SumHer [74] makes a different model-
ing assumption on the SNP effect sizes based on the LDAK model.
SumHer effectively extends LDAK [41–42] to use summary statis-
tics. Another method extended from existing approach is PCGC-s
[60], which extends the PCGC approach [58] to use summary
statistics as well as the genetic correlations between two diseases.
A summary of methods for estimating SNP heritability is shown in
Table 1 and a corresponding decision tree is in Fig. 3.



Table 1
A summary of methods for SNP heritability estimation.

Main Text Sections Methods Modeling Assumptions Estimation
Algorithms

Trait Types Software Weblink Comments References

Modeling assumptions BVSR bj � pN 0;r2
b

� �
þ 1� pð Þd0 MCMC Quantitative GEMMA https://github.com/genetics-

statistics/GEMMA
Fast for large-scale data; Also useful for
phenotype prediction and PRS construction;
supports Mac and Linux platforms

[32–33]

BSLMM bj � pN 0;r2
a þ r2

b

� �þ 1� pð ÞN 0;r2
b

� �
MCMC [22]

LMM/
REML

bj � N 0;r2
b

� �
REML Quantitative GEMMA/

GCTA
https://github.com/genetics-
statistics/GEMMAhttp://
cnsgenomics.com/software/
gcta/#Overview

Also useful for SNP association tests with LMM;
supports Windows, Mac and Linux platforms

[12]

LDAK
bj � N 0;r2

j

� �
;r2

j / wj f j 1� f j
� �� �0:75 REML Quantitative LDAK http://dougspeed.com/ldak/ Over 30 functions, importantly, SNP

heritability estimation and SNP-based
prediction models construction, supported for
Mac and Linux platforms

[41–42]

DPR bj �
Pþ1

u¼1puN 0;r2
u

� �
;r2

u � G;G � DP H; kð Þ MCMC/VB Quantitative DPR https://github.com/
biostatpzeng/DPR

Mainly for robust genetic prediction and PRS
construction of complex traits; supports Mac
and Linux platforms

[51]

Case-control study HE/
PCGC

bj � N 0;r2
j

� �
MoM Binary PCGC https://data.broadinstitute.org/

alkesgroup/PCGC/
Mitigate biases in REML heritability estimation
for ascertained case-control studies; supports
Linux platform

[58]

Count data PQLseq bj � N 0;r2
b

� �
MCMC Binary/Count PQLseq https://cran.r-project.org/

web/packages/PQLseq/index.
html

For heritability estimation of count data in
RNAseq and Bisulfite seq studies; supports
Windows, Mac and Linux platforms

[71]

Summary statistics LDSC E bj
� � ¼ 0;r2

j ¼ h2g=p MoM Quantitative/
Binary

LDSC https://github.com/bulik/ldsc A command tool for estimating heritability and
genetic correlation using GWAS summary
statistics

[72]

MQS bj � N 0;r2
j

� �
MoM Quantitative/

Binary
GEMMA https://github.com/genetics-

statistics/GEMMA
A general statistical framework for SNP
heritability estimation using summary
statistics; supports Mac and Linux platforms

[59]

SumHer
E bj
� � ¼ 0;Var bj

� � / wj f j 1� f j
� �� �0:75 REML Quantitative/

Binary
SumHer http://dougspeed.com/sumher/ Heritability estimation using summary

statistics under the LDAK assumption;
supports Linux platform

[74]

Table lists 10 methods described in the main text, with the first seven methods for analyzing individual level data and last three methods for analyzing summary statistics. Columns contain the main text section in which the
method is described (1st column), method name (2nd column), modeling assumption on the SNP effect sizes (3rd column), estimation algorithms (4th column), phenotype type (5th column), implemented software (6th column),
web link (7th column), additional comments (8th column) and references (9th column). In the 3rd column, d0 denotes a point mass at zero; N(.,.) denotes a normal distribution with the mean and variance parameters; DP denotes a
Dirichlet process. In the 4th column, MCMC represents Markov chain Monte Carlo method, VB represents variational Bayesian, REML represents restricted maximum likelihood method, and MoM represents method of moments. In
the 8th column, PRS is short for polygenic risk scores.
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Fig. 3. A decision tree on what type of methods to use for SNP heritability estimation.
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5. SNP heritability partitioning

In parallel to trait mapping efforts, large-scale functional geno-
mic studies have yielded a rich source of SNP functional annota-
tions [75–79]. Various discrete and continuous annotations are
being developed to characterize the function of genetic variants
[80–82]. For example, we can now classify genetic variants based
on their genomic location (e.g., coding, intron and intergenic vari-
ants), role in protein structure and function (e.g., SIFT score [83] or
PolyPhen score [84], ability to regulate gene expression (e.g., eQTL
and ASE evidence [85–86], biochemical function (e.g., DNase I
hypersensitive sites, metabolomic QTL evidence, and chromatin
states [87–89], evolutionary significance (e.g., GERP score [90],
and/or a combination of all these annotations (e.g., CADD score
[76] and Eigen score [91]. These functional annotations are impor-
tant predictors for SNP effects. Previous studies have shown that
SNPs in certain functional categories (e.g., in promoters and enhan-
cers) are more likely to be causal [92–93], tend to have larger effect
sizes, and explain more heritability than SNPs in other categories
(e.g., introns) [94–95]. Along with SNP properties (e.g., MAF and
LD), incorporating SNP functional annotation is expected to
improve SNP heritability estimation accuracy. In this section, we
will introduce methods that are developed to estimate and parti-
tion SNP heritability by different SNP properties (e.g., GREML-MS
and GREML-LDMS) or by different functional genomic annotations
(e.g., stratified LDSC, MQS, and SMART).

Lee et al. [96] and Yang et al. [13] categorize SNPs into different
categories based on MAFs and MAFs with LD scores, respectively,
and assume the following extended LMM modeling assumption

bj � N 0;r2
k

� �
; ð14Þ

if j-th SNP belongs to the k-th functional category. In this way, SNPs
inside each functional category have their own variance component
r2

k . When the SNPs are categorized based on their MAFs, GREML-MS
implements the REML approach for fitting the extended LMM.
When the SNPs are categorized based on both MAFs and LD scores,
GREML-LDMS implements the REML approach for fitting the
extended LMM. Incorporating MAFs and LD scores is particularly
useful for analyzing whole-genome sequencing data that collect
SNPs in high density with an excessive number of rare variants.
Indeed, some of the methods mentioned in previous sections may
yield inaccurate heritability estimates in different data types when
their corresponding modeling assumptions do not fit the genetic
architecture of the trait. For example, in whole genome sequencing
data, a naïve application of LMM may lead to underestimation of



Table 2
A summary of SNP heritability estimates for height using different methods.

References Dataset Data Type Sample Size Number of SNPs SNP type (applicable AF) Methods SNP heritability Estimates

[12] Australian data Individual 35,189 294,831 Array (>0.01) LMM/REML 0.449
[22] Australian data Individual 35,189 294,831 Array (>0.01) BSLMM 0.41

LMM/REML 0.42
BVSR 0.15

[59] Australian data Individual 3,925 4,352,968 Imputed (>0.01) MQS 0.28
LMM/REML 0.27
HE 0.25
LDSC 0.21

[58] Australian data Individual 35,189 294,831 Array (>0.01) PCGC/HE 0.537
LMM/REML 0.510

[74] 24 Published GWAS Summary Average 121,000 4,555,718 Imputed (>0.01) SumHer 0.46
LDSC 0.20

[13] UK10K Individual 44,126 ~17 M Imputed (>0.0003) GREML-LDMS 0.56
GREML-MS 0.523

Table lists SNP heritability estimates for height reported in the previous literature. Columns contain the references where the SNP heritability estimates are reported (1st
column), dataset name (2nd column), data type in terms of individual-level data versus summary statistics (3rd column), sample size (4th column), number of SNPs (5th
column), genotype data type in terms of array data versus imputed data (6th column), used methods (7th column) and the SNP heritability estimates (8th column). Note that
the heritability estimates for height in the Austrian data using the imputed data [59] is smaller than that using the array data , which seems to be general phenomenon for
many other traits.
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SNP heritability for traits whose underlying causal variants are
mostly common. Instead, accurate SNP heritability estimation
may require analysis in each MAF and/or LD stratum separately.
To facilitate stratified analysis, GREML-MS stratifies the genetic
variants based on their minor allele frequency into different MAF
bins. That is, it estimates SNP heritability using SNPs in each MAF
bin and then sums the estimates across bins. Similarly, GREML-
LDMS stratifies the genetic variants based on both their MAF and
LD and performs stratified heritability estimation. A previous study
[13] had shown that, SNP heritability estimate for height was 52.3%
by GREML-MS based on imputed data from 1,000 genome project
reference. In the same data, SNP heritability estimate for height
was 55.5% by using GREML-LDMS. Similar stratification ideas are
applied for other methods, such as the stratified version of LD Score
regression [97] or stratified LDSC, in which the SNP heritability is
partitioned by functional annotations and estimated by using
GWAS summary statistics. As introduced above, MQS [59] is based
on a set of second moment matching equations determined by the
MINQUE algorithm and has closed-form solutions for genetic vari-
ance components. MQS is also flexible in estimating heritability
when SNPs are partitioned into different functional annotations.
Hao et al. proposed SMART (Scalable Multiple Annotation integra-
tion for trait-Relevant Tissue) to mainly identify trait-relevant tis-
sues by integrating multiple functional annotations jointly [98].
SMART modifies LMM to relate genetic effects with functional
annotations by functionalizing the variant-specific variance compo-
nents with respect to SNP annotations. The SNP heritability can be
estimated based on the generalized estimation equation (GEE) that
allows for only summary statistics.
6. Discussion

We have provided a technical review on a wide range of meth-
ods for SNP heritability estimation. We have focused on their mod-
eling assumptions, their interconnected relationships, estimation
algorithms, as well as their extensions towards different types of
phenotypes and towards the use of summary statistics. Different
methods have different benefits and may be preferred for heritabil-
ity estimation of different traits or different data types. Indeed,
heritability estimates for height in the literature vary depending
on the particular methods used and depending on the datasets
examined (Table 2). By detailing the technical properties of differ-
ent methods, we hope that this review will serve as a useful
reference for both methodologists who develop heritability
estimation methods and practitioners who perform heritability
analyses.

As experimental technology develops and statistical methodol-
ogy progresses, we are now able to achieve relatively robust and
accurate SNP heritability estimation for many diseases and com-
plex traits. For example, the estimates of SNP heritability for height
is now above 50% [12,40]. However, these SNP heritability esti-
mates are still less than that estimated from pedigree studies
where the heritability of height is estimated to be 80%. This phe-

nomenon, h2
g < h2

family (SNP heritability < family-based heritability),
is referred to as ‘‘still-missing heritability” [17]. Many explanations
on ‘‘still-missing heritability” exist. Pedigree-based heritability
estimation may be upward biased due to gene-environment inter-
actions [5,6,14,15,19,99,100]. In contrast, inaccurate genotype call-
ing in sequencing or array-based studies may lead to an
underestimation of SNP heritability. Accurate heritability estima-
tion requires the statistical modeling assumption to match the
underlying genetic architecture, which depends on the minor allele
frequency distribution of causal variants, LD pattern, and the
strength of environmental components, all of which can be popu-
lation specific. Consequently, SNP heritability estimates may
change across populations and may change over time within each
population [7]. A recent study reports that heterogeneity across
sampling populations and time may contribute to part of the
‘‘still-missing heritability” [101] as most existing studies are car-
ried out on individuals of European ancestry [12,59,72,74,98].
Using LMM models on datasets from seven sampling populations,
this study discovered that at least 20% of missing heritability for
BMI and 37% for years of education can be explained by individual
heterogeneity. Therefore, understanding how various genetic,
environmental, as well as study design factors influence the esti-
mation of SNP heritability is an important future direction.
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