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Creating a functional cerebral cortex requires a series of complex and well-coordinated
developmental steps. These steps have evolved across species with the emergence
of cortical gyrification and coincided with more complex behaviors. The presence of
diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and
diverse neuronal types are developmental features that have emerged in the gyrated
cortex. These factors could explain how the human brain has expanded in size and
complexity. However, their complex nature also renders new avenues of vulnerability
by providing additional cell types that could contribute to disease and longer time
windows that could impact the composition and organization of the cortical circuit. We
aim to discuss the unique developmental steps observed in human corticogenesis and
propose how disruption of these species-unique processes could lead to malformations
of cortical development.

Keywords: human cortical development, MCD = malformation of cortical development, progenitors cells,
neuronal migration, connectivity

INTRODUCTION

Malformations of cortical development (MCD) are an important and complex collection of
neurodevelopmental disorders that underlie over 40% of medically refractory childhood seizures
(Kuzniecky, 1994, 1995) with over three-quarters patients with MCD developing a seizure disorder
(Leventer et al., 1999). A standout feature of MCD is their association with a broad range of
cognitive deficits including mild to severe intellectual disability and autism (Guerrini and Dobyns,
2014). The heterogeneity in the genetic and phenotypic presentations that underlie MCD have
limited our ability to classify these disorders and coincide with challenges to predict and manage
these diseases. However, the increasing identification of genetic mutations have offered clues to
common molecular pathways and cellular processes that are disrupted in cortical malformations.
Mouse and rat models, the most frequently used to investigate the etiologies of MCD, have
substantiated the clinical relevance of MCD-associated genetic mutations but have been unable to
fully recapitulate the gross phenotypes observed in the clinical condition (Wong and Roper, 2016).
A deeper understanding of human cortical development is necessary to more effectively apply the
mechanistic findings from animal models to the disease state.
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With this perspective, MCD offer an opportunity to
decipher normal cortical development in the human brain.
Proper development and organization of the mammalian brain
requires the precise regulation of progenitor proliferation, cell
type specification, and migration coordinated with neuronal
differentiation, migration and cortical organization (Kriegstein
and Alvarez-Buylla, 2009). Errors, due to gene mutations or
environmental changes, can arise anywhere in this carefully
choreographed series of events and result in alterations
to cortical organization and a pathological states that are
characteristic of MCD, including altered brain size, aberrant
neuronal organization or clustering, and abnormal gyrification.
In this review, we explore the neuro-developmental sequence
in the human brain (Figure 1) and discuss various MCD
associated with each of these stages, highlighting areas where
human neurodevelopment differs from processes observed in
mouse and rat models.

DEVELOPMENTAL STAGE 1:
PROGENITOR PROLIFERATION

The human cerebral cortex is a complex structure showing a
remarkable increase in size when compared to other vertebrates.
This increase can be attributed to an evolutionary increase in
the numbers and types of progenitor cells that give rise to
the various types of cortical neurons and glia. The human
cerebral cortex displays a remarkable radial organization of its
excitatory neurons that is a result of the carefully organized
radial architecture established early in development (Rakic,
2009). Cortical excitatory neurons are generated from a parent
population of neuro-epithelial (NE) cells that are the founder
cells in the nervous system located in the ventricular zone
(VZ). These NE cells are arranged in a pseudostratified epithelial
organization with apical and basal contacts. Early on in
development, NE cells proliferate symmetrically to generate
more NE cells and expand the progenitor pool (Subramanian
et al., 2017). This expansion of the NE progenitors has been
hypothesized to be one of the key factors that contribute to
an increased number of progenitor cells in the human brain
(Rakic, 2009).

Around the beginning of neurogenesis, progenitor cells begin
to show characteristic morphological, molecular and mitotic
changes as NE cells transform into radial glial (RG) progenitors.
Similar to NE cells, RG cells have contact with both the apical
and basal surfaces, but their basal processes get progressively
longer and form the radial scaffold that not only support the
cortical architecture but also provide a framework for newly
generated neurons to migrate along and establish the cortical
plate, giving rise ultimately to the radial organization of the
mature cortex. RG cells show a dramatic increase in the number
of asymmetric divisions when compared to NE cells. These
asymmetric divisions give rise to two different daughter cells,
one of which is a self-renewed RG cell. The other daughter cell
can be either a neuron, that migrates along the radial fiber of its
sister cell to the cortical plate or more often a basal progenitor
cell that no longer has apical contact with the ventricular surface.
The basal progenitors are called intermediate progenitor cells

(IPCs) and are predominantly located in the subventricular zone
(SVZ). They undergo several rounds of proliferative divisions
(Rakic, 2009) before generating differentiated neurons in a
terminal division. At the end of neurogenesis, RG progenitors
transform into translocating progenitor cells that lose contact
with the apical surface and migrate through the cortex,
eventually generating astrocytes. These translocating RG have
been described extensively in multiple species including rat,
ferrets, monkeys and humans (Schmechel and Rakic, 1979; Voigt,
1989; deAzevedo et al., 2003; Noctor et al., 2004).

A subtype of radial glia called the outer radial glial cells (oRGs)
have been shown to generate neurons in humans, non-human
primates and carnivores (Fietz et al., 2010; Hansen et al., 2010;
Reillo et al., 2011; Kelava et al., 2012). Much smaller numbers of
these cells have also been identified in mice (Shitamukai et al.,
2011; Wang et al., 2011; Kalebic et al., 2019). Human oRG cells
exhibit a characteristic mitotic behavior called “mitotic somatic
translocation” (MST). The parent oRG cell moves rapidly along
the basal process in the direction of the pial surface just prior
to mitosis. This dramatic movement depends on the integrity
of the basal process and contributes to the expansion of the
oSVZ (Fietz et al., 2010; Ostrem et al., 2014; Kalebic et al.,
2019). Recent studies have shown that the oRG cells become
the predominant progenitor cell in the human cortex by mid-
neurogenesis 17 gestational weeks (17 GW). At this stage, oRG
cells also become the main contributor to the radial scaffold
that supports the development of the cortical architecture as the
vRG cells transform into truncated forms whose basal processes
no longer reach the pial surface (Nowakowski et al., 2016).
In humans, oRG cells are generated from ventricular radial
glia (vRG) by a process that resembles epithelial-mesenchymal
transitions (LaMonica et al., 2013; Pollen et al., 2015). vRG cells
lose apical contact with the ventricular surface and translocate
away into the SVZ to form an expanded progenitor rich, outer
subventricular zone (oSVZ). Similar to vRG cells, oRG cells
undergo multiple rounds of asymmetric division where they
self-renew and generate daughter IPC cells.

Malformations of cortical development have been described
that are associated with multiple progenitor cell types. In
particular, changes to patterns of progenitor proliferation appear
to be responsible for several developmental malformations.
Progenitor proliferation consists of several events that are
susceptible to errors leading to cortical malformations. These
errors include but are not limited to changes in the proliferation
rate, changes to symmetric or asymmetric division patterns,
errors in mitosis resulting from changes to spindle orientation or
centrosome maturation and distribution, errors in apical or basal
attachment of progenitors affecting the position of the mitotic
progenitors and increased progenitor apoptosis (Guarnieri et al.,
2018; Pinson et al., 2019). Several of these errors may be the result
of germline or somatic mutations in the patient, but there may
also be environmental causes including viral infections in utero
that predominantly affect progenitor cells.

Microcephaly
Primary microcephaly is a condition in which patients exhibit a
marked decrease in the size of the head and the brain (>3 SDs
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FIGURE 1 | Human cortical development and stages of malformation. The human cerebral cortex forms early in the first trimester in the dorsal part of the
telencephalon (forebrain). The human brain shows a rapid expansion in size and complexity during the 40 weeks of gestation as a result of extensive progenitor
proliferation, migratory expansion and the generation of a complex connectivity pattern. During the first trimester, NE cells undergo symmetric division to expand the
progenitor pool. NE cells elongate and convert into RG. By the end of the first trimester, RG are well established and can generate neurons (identified as migrating
neuroblasts) directly through asymmetric division or indirectly by generation of IPCs. IPCs function as transient amplifying cells and can divide symmetrically one or
more times to generate clones of neurons. Genetic mutations or environmental insults at this stage can cause microcephaly. In the second trimester, RG begin to
give rise to RG-like cells that lack apical contact in the outer SVZ. These outer SVZ radial glia-like cells (oRG) are especially abundant in humans and other mammals
with complex gyrencephalic cortices. oRG cells can generate neurons through IPCs and may contribute particularly to the generation of upper layer neurons. By the
end of the second trimester, RG cells transform into truncated tRG. At this stage the RG scaffold is composed of the basal processes of the oRG cells. Proliferation
errors or progenitor apoptosis in the second trimester can cause microcephaly or lissencephaly. Somatic mutations in mTOR pathway genes in NE, RG or oRG
progenitors can result in FCD, HME or ME. Excitatory cortical pyramidal neurons are generated from RG and oRG progenitors via IPCs at the end of the first
trimester. These neurons begin to migrate radially along the RG scaffold and until the middle of the third trimester. The pyramidal neurons maintain a radial
organization as they migrate into and establish the cortical plate in an inside out manner, with the earliest generated neurons forming the deeper cortical layers while
the youngest neurons contribute to the superficial layers. Errors in neuronal migration can result in heterotopias and lissencephaly. As they migrate, cortical pyramidal
neurons begin to connect locally through transient connections in the subplate while they also begin to project axons that are myelinated by oligodendrocytes to
form the cortical white matter. Errors in network connectivity can cause many forms of epilepsy, both de novo or secondary to other malformations along with ASD
and schizophrenia. Errors of axonal projection lead to large scale connectivity defects like agenesis of corpus callosum. Toward the end of the second trimester, a
combination of increased progenitor and neuronal numbers and rapidly expanding neuronal networks begins to generate physical stresses that contribute to the
appearance of the main gyri. Over the course of the third trimester the secondary and tertiary gyrification of the cortex is established. Failure of gyrification may occur
at any developmental stage leading to a range of malformations such as lissencephaly, polymicrogyria or pachygyria. Inhibitory interneurons migrate from ventrally
located ganglionic eminences and appear in the cortex early in the second trimester. They migrate tangentially in the cortex along the marginal zone or in the
subplate and SVZ and then move radially along the RG scaffold to integrate into the cortical circuits. Human interneurons continue to migrate into the cortex for a
prolonged period through birth and early infancy. Failures of interneuron development, such as abnormal migration, arborization or maturation, can cause
disinhibition within the cortical circuits resulting in epilepsy and cognitive dysfunction. Malformations of Cortical Development (MCD) (shown schematically at the
bottom) arise at different stages along development. MZ, marginal zone; CP, cortical plate; IZ, intermediate zone, oSVZ, outer subventricular zone; iSVZ, inner
sub-ventricular zone; VZ, ventricular zone; NE, neuroepithelium; RG, radial glia.
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over mean head size for the same age and gender). Although
cortical organization is mostly preserved in the smaller brain,
patients often have significant intellectual disability (Jayaraman
et al., 2018). Microcephaly is predominantly associated with a
decrease in progenitor numbers. This decrease can be due to
decreased proliferation, changes in patterns of symmetric and
asymmetric divisions and increased progenitor cell death.

Primary microcephaly is present at birth and can be caused
by both genetic mutations and environmental insults like
infections and toxins. Viral or parasitic infections such as
Cytomegalovirus, Influenza, Herpes Simplex and Zika virus as
well as parasitic infections like Toxoplasma gondii have all been
linked to primary microcephaly (Devakumar et al., 2018). The
microcephaly associated with the recent Zika virus epidemics
have highlighted the role of progenitor cell proliferation in
determining the size of the cerebral cortex in humans. Mouse
studies, human in vitro models and studies on the developing
human brain described widespread infection and consequent
cell cycle arrest and apoptosis in infected NE, vRG and oRG
cells (Li et al., 2016; Onorati et al., 2016; Retallack et al., 2016).
Environmental toxins like alcohol in fetal alcohol syndrome
have been shown to cause microcephaly through diverse effects
on the developing neural tissue. Toxins and their metabolic
by-products affect the survival and viability of progenitor and
immature cells (Ehrhart et al., 2019). In addition, toxins can
alter normal developmental signaling pathways including growth
factor signaling, cause cytoskeletal disorganization in developing
progenitor cells, alter the epigenetic landscape of developing
neural tissues, initiate abnormal inflammatory responses, and
alter patterns of programed cell death (Petrelli et al., 2019).

Abnormal cell biological changes in neural progenitor cells
appear to be closely linked to primary microcephaly. The
organization, maturation and distribution of the centrosome,
and thus the organization of the spindle fibers appears to be
especially vulnerable to these errors. The first gene mutations
identified in patients with microcephaly, such as MCPH1, ASPM,
CDK5RAP2, and CENPJ (Bond et al., 2002, 2005; Jackson
et al., 2002; Zhong et al., 2006), had critical roles in the
centrosome maturation and spindle organization and the list has
been growing continually (Jayaraman et al., 2018). Centrosomes
regulate the mitotic spindle and control both the ability of
the progenitors to divide as well as the proper distribution of
chromosomes across the two daughter cells. Errors in spindle
organization can result in abnormal chromosomal numbers
following cell division resulting in apoptosis of the daughter cells.
Abnormal centrosome localization can also lead to abnormal
orientation of the mitotic spindle, leading to a premature shift
from proliferative symmetric divisions of ventricular progenitors
to asymmetric divisions. Such a shift rapidly depletes the
progenitor pool resulting in a smaller brain size. Mutations
in the ASPM gene account for up to 40% of all autosomal
recessive microcephaly (Pirozzi et al., 2018). Recent studies using
genome editing approaches to knock out ASPM expression in the
gyrencephalic ferret cortex (Johnson et al., 2018) have highlighted
the role of this centrosomal protein in regulating the transition
of apical vRG cells into basally located oRG cells. Such a change
in progenitor sub-type results in fewer proliferative divisions.

Further, loss of ASPM appears to disrupt the apical polarity
complex that anchors vRG cells to the apical surface, leading to
the delamination of the apical progenitors and an increase in
the number of oRG cells. It is likely, therefore, that the effects
of ASPM on the apical to basal transition in progenitors may
be independent of or in addition to the effects of ASPM on the
mitotic apparatus.

Mutations in the WDR62 gene are also frequently identified
in patients with microcephaly. Mutations in human WDR62,
however, result in a wide range of cortical malformations
including microcephaly, pachygyria (unusually thick gyri) as well
as callosal defects, lissencephaly and schizencephaly (Bilgüvar
et al., 2010; Yu et al., 2010). Although gene knockout (KO)
studies in mice have been very useful in understanding the role
of WDR62 protein at the spindle pole as well as its interactions
with ASPM (Jayaraman et al., 2016), other cortical phenotypes
are not replicated in mice, which could be due to its absence
of cortical folding. A recent report using gene edited human
cerebral organoids has suggested a role for WDR62 in regulating
progenitor proliferation as a result of delayed disassembly of the
primary cilium, leading to cell cycle arrest and progenitor cell
death (Zhang et al., 2019).

Other mutations associated with microcephaly appear to
be involved in DNA regulation including DNA repair and
chromatin organization (Jayaraman et al., 2018). These mutations
appear to either affect cytokinesis of mitotic progenitors as a
result of abnormal chromatin organization or increase progenitor
apoptosis as a result of abnormal chromosome numbers.

mTORopathies and Progenitor Cells
There are also a spectrum of cortical malformations that
are associated with abnormal cortical organization. These
encompass a wide range of disorders involving local overgrowth
or disorganization of specific cortical regions or cerebral
hemispheres (Focal Cortical Dysplasias- FCD, Tuberous
Sclerosis – TSC, partial or Hemimegalencephaly- HME) to
enlargement of the entire cerebral cortex (Megalencephaly – ME)
or the entire head (macrocephaly) (Pavone et al., 2017). While
megalencephaly might contribute to an increase in head size,
macrocephaly is more commonly associated with changes to the
bone structure, vasculature or hydrocephalus. In contrast, FCD,
TSC, HME and ME appear to be a series of related conditions
resulting from specific changes to cortical architecture and
size. In addition to abnormal cortical organization involving
enlarged and aberrant neurons, disruptions of cortical layering,
balloon cells as well as cortical tubers in TSC, patients with these
conditions also suffer from intractable or medication-resistant
epilepsy. In addition, some patients might also have some form
of intellectual disability or autism spectrum disorders.

These malformations have been linked to mutations that
hyper-activate the PI3K-AKT-mTOR signaling pathway. As a
major signaling pathway regulating cell growth and proliferation,
over-activation of the mTOR signaling pathway is thought to
have an especially significant effect on progenitor cells, either
their proliferation or their proper differentiation (Iffland and
Crino, 2017). Sequencing studies from surgically resected patient
lesions have identified mutations in multiple genes that are a
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part of or signal to the mTOR pathway AMPK, PI3K, AKT,
PIK3CA, GATOR1 complex (DEPDC5-NPRL2-NPRL3), MTOR,
TSC1, TSC2, PTEN, and STRAD (Iffland and Crino, 2017;
Marsan and Baulac, 2018). While some of these mutations are
germline mutations, multiple studies have demonstrated that in
many cases the mTOR activating mutations are uniquely present
within only a subset of cells associated with the lesion. This
led to the hypothesis that the somatic mutation likely occurred
in a single progenitor cell sometime in early neurodevelopment
(Crino, 2011), with the more widespread malformations arising
out of a mutagenic event in a progenitor cell at an earlier
stage of development. Thus, the severity of the malformation
may be directly linked to the stage of cortical development,
with more severe malformations being the result of earlier
mutations whereas mutations that occur later in development
result in smaller malformations. Recent studies in mice have
established that cortical malformations occur when the mTOR-
activating mutation is present within the dorsal lineage (D’Gama
et al., 2017). Studies using in utero electroporation approaches
in rat and mouse models have been able to recapitulate the
pathological and seizure phenotypes of mTOR-mediated cortical
malformations by manipulating the molecular players in the
mTOR signaling pathway. In utero electroporation approaches
offer an elegant means of modeling the effects of somatic
mutations arising in the fetal cortex in a focal subset of neural
cells at varying developmental time-points. CRISPR-mediated
gene deletion of DEPDC5 in rats (Hu et al., 2018) and activation
of mTOR signaling in mice using constitutively active mTOR
kinase or Rheb proteins (Lim et al., 2015; Nguyen et al., 2019)
have been shown to cause abnormal neuronal morphology and
migration defects in the developing cortex. Furthermore, the
severity of the seizure phenotype appears to correlate well with
the extent of the electroporation, providing evidence linking the
severity of malformations with the timing of the mutagenic event.

Patients with mTOR-mediated cortical malformations also
appear to have a combination of germline and somatic mutations
within the mTOR pathway leading to the theory that the severity
of the malformation may depend not just on the timing of
the second somatic mutation but on a combination of the
genes affected by the somatic mutation and the timing of the
second hit (D’Gama et al., 2017; Ribierre et al., 2018). The
two-hit hypothesis presents an intriguing model for human
mTORopathies, particularly in light of recent evidence that
mTOR signaling in human cortical progenitors is uniquely active
only in the oRG cells (Nowakowski et al., 2017). oRG cells
predominantly contribute to neurogenesis in humans between
the middle and end of the second trimester (Hansen et al., 2010).
This developmental time window may therefore be particularly
vulnerable to the effects of mTOR-activating somatic mutations.

Cortical Folding and Progenitor Cells
The increase in the number of progenitor cells by proliferative
expansion has been suggested to be a contributor to the
gyrification, cortical infolding, of the human cortex. The
progenitor-driven model of cortical folding was initially proposed
following the development of folded brains in mice with
excessive progenitor cells following constitutive activation of

beta-catenin signaling (Chenn and Walsh, 2003). The more
recent discovery of the expanded population of oRG cells in many
gyrencephalic species (Martínez-Cerdeño et al., 2012) has led
to the hypothesis that the presence of this expanded progenitor
pool might be an important driver of cortical folding (Stahl
et al., 2013; Wang et al., 2016; Borrell, 2018; Llinares-Benadero
and Borrell, 2019). A recent study of the developing macaque
cortex has put forth the idea that gyrification is a result of the
expansion of the oSVZ progenitors but is driven by gliogenesis
rather than neurogenesis (Rash et al., 2019). Several cortical
malformations have been associated with abnormal gyrification
including smooth brain (lissencephaly), excessive gyrification
(polymicrogyria), and increased gyral thickness (pachygyria) but
it is unclear at this time what the role of progenitor cells are
in the generation of these malformations. Key gene mutations
associated with gyrification defects including LIS1 and FLNA
appear to regulate mitosis and early differentiation of progenitor
cells in mouse models, affecting the orientation of spindle fibers,
cell cycle length and cytokinesis (Vallee and Tsai, 2006; Fallet-
Bianco et al., 2014; Moon et al., 2014; Sun and Hevner, 2014; Lian
et al., 2019). Studies on human cerebral organoids generated from
patients with Miller-Dieker syndrome (MDS) identified specific
changes in the mitosis of oRG cells (Bershteyn et al., 2017). It
remains to be seen, however, how changes in progenitor cell
proliferation and migration relate to aberrant cortical folding
patterns associated with gyral malformations.

DEVELOPMENTAL STAGE 2: NEURONAL
MIGRATION

A fundamental property of the developing brain is that newborn
neurons must leave their site of origin to migrate varying
distances to their target regions. Within the cortex, they leave
the V-SVZ and reach their appropriate location within the
developing cortical plate (CP), the future six-layered cortex
(Buchsbaum and Cappello, 2019). This process happens in a
highly regulated pattern in the mammalian brain to correctly
establish the distinct laminae of the cortex. The cortex is also
one of the most complex parts of the brain across species
not simply in size but in anatomical architecture and cellular
organization. Errors in the movement and placement of incoming
neurons, therefore, can have consequences in the final cortical
network. These fall under the category of MCD and can manifest
with a wide spectrum of phenotypes, including seizures and
cognitive disability.

For excitatory/pyramidal cells, migration depends on the RG
process of neural progenitors to serve as a scaffold between
the progenitor niche and the CP (Noctor et al., 2001). Radial
migration is the primary mode of excitatory neuron movement
in the mammalian neocortex. Post-mitotic neurons leave the
V-SVZ using locomotive behaviors to travel along the RG fiber
to reach the CP. This longitudinal scaffold provided by vRG
cells underlies the protomap or radial unit hypothesis for how
the cerebral cortex is built (Rakic et al., 2009). The young
neuronal progeny generated by positionally related progenitors
are kept together by the physical restraints of the RG fibers.
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Thus the cortical surface can expand with individual neurons
maintaining their spatial, and possibly molecular, identity within
the developing cortical layers. Once arrived, they undergo somal
translocation to position themselves within the correct lamina.
Their migration is regulated by several key factors including
gap junctions between RG and the migrating neuron (Elias
and Kriegstein, 2008) and the guidance by the extracellular
protein Reelin, expressed at the marginal zone by Cajal–Retzius
cells (Hirota and Nakajima, 2017). These elements influence
cytoskeletal dynamics and adhesion properties of the migratory
neurons and a disruption, either genetic or environmental, leads
to disorganized formation.

Inhibitory neurons (interneurons) are produced in the
ventral/subpallial embryonic brain within the ganglionic
eminences and undergo a long “tangential” migration to reach
their appropriate layers in the CP (Marin et al., 2010). Their
migration undergoes a more complex pattern characterized
by saltatory motion where interneurons have abrupt changes
in speeds and accentuated pauses (Bellion et al., 2005). These
long-range movements observed by interneurons are guided
by a variety of cues. Neuregulins influence ERBB4-expressing
MGE-derived interneurons and CXCR4 and CXCR7 chemokine
receptors mediate migration in response to stromal-cell-derived
factor 1 (SDF1) present in the marginal zone and intermediate
zones of the developing cortex (Tiveron and Cremer, 2008; Li
et al., 2012). Interneurons eventually change to radial migration
as they enter the CP. Dysregulation of these processes can lead to
disorganized lamina and abnormal placement of neurons within
the gray and white matter.

Lissencephalies
Lissencephaly, or “smooth brain,” is a set of conditions where
the surface involutions (sulci and gyri) of the brain are missing
or abnormal due to defects in neuronal migration. One report
has implicated infection by cytomegalovirus, but most of our
understanding of lissencephaly comes from the identification
of associated genes that involve different aspects of cellular
movement, including cytoskeletal integrity and extracellular
matrix (ECM) interactions (Joseph et al., 2008; Mitchell, 2015).
The first genes identified in patients with cortical malformations
highlighted the importance of the cytoskeletal machinery. LIS1
and DCX mutations were identified in patients with lissencephaly
(Reiner et al., 1993; des Portes et al., 1998; Fox et al., 1998;
Gleeson et al., 1998); both genes encode microtubule-associated
proteins. DCX is an X-linked gene and mutations in men result
in complete lissencephaly while in females, the mutation is
associated with ectopic neuronal layering, such as in subcortical
band heterotopia or double cortex (Pilz, 1998). The product
of LIS1 gene regulates transport along the microtubule motor
protein, dynein, and the DCX protein, doublecortin, regulates
microtubule stability and signaling during migration (Faulkner
et al., 2000; Tanaka et al., 2004). Mutations in one of the seven
tubulin isoforms, the proteins that polymerize into microtubules,
are found in a broad spectrum of malformations (Bahi-Buisson
et al., 2014; Bahi-Buisson and Cavallin, 2016). Tubulin-related
malformations, or tubulinopathies, demonstrate the high overlap
between different MCD and the intimate relationship between

progenitor cell divisions and neuronal migration in normal
cortical development. Tubulin is fundamental to the function
of microtubules and the centrosome, thus defects can impact
on both progenitor proliferation and neuron migration. Many
tubulin mutations are associated with microcephaly, highlighting
the importance of microtubules on the mechanics of cell division
(Chakraborti et al., 2016). However, tubulinopathy phenotypes
also include heterotopic cortical layering and abnormal gyration
including microlissencephaly, classic lissencephaly (agyria),
subcortical band heterotopia, and polymicrogyria-like cortical
dysplasias (Jaglin and Chelly, 2009; Chakraborti et al., 2016).

The ECM is another arena where disrupted interactions
between neural progenitors, migrating neurons, and supporting
external macromolecules can lead to abnormal cortical layers
and loss of gyration as seen in MCDs. ECM is a complex
lattice of macromolecules including collagens, proteoglycans,
and glycoproteins that occupies the extracellular space in tissue
(Maeda, 2015). It serves many functions including as an adhesive
substrate for cells and a reservoir for signaling molecules such
as chemokines. The glycoprotein Reelin is the classic and
most studied member of this group (for more detailed reviews
please see Ishii et al., 2016; Lee and D’Arcangelo, 2016). Reelin
mutations have been associated with lissencephaly with cerebellar
hypoplasia, and the focus has been on expression by Cajal–
Retzius cells at the meninges and the early embryonic role
in regulating excitatory neuron migration for proper cortical
layering. However, Reelin expression and members of the Reelin
signaling pathway persists postnatally in the human brain
(Abraham and Meyer, 2003; Deguchi et al., 2003). The function
of Reelin at the end of gestation and in the early postnatal
period is unknown. Reelin localization outside of the ECM
and along dendrites suggests a role in synaptic remodeling and
neuronal maturation (Roberts et al., 2005; Stranahan et al., 2013).
Yet, Reelin receptors have been shown to function in neuronal
migration in the postnatal rostral migratory stream (Andrade
et al., 2007) and mouse cortical interneurons born at the end
of gestation continue to respond to Reelin signaling in the
brain, even at ages where Cajal–Retzius cells have disappeared
(Hammond et al., 2006). Thus, Reelin could function later in
cortical development to regulate neuronal migration, especially
in the human brain where neuronal migration continues into
infancy (Sanai et al., 2011; Paredes et al., 2016).

Other ECM components have been implicated in cortical
malformations. Dystroglycans complexes serve as a physical
link between the cytoskeleton and the ECM; their function
is greatly modified by post translational changes such as
glycosylation (Barresi, 2006). While “dystroglycanopathies”
classically manifest as congenital muscular dystrophy, mutations
in glycosyltransferase enzymes such as POMT1 and LARGE
have also been shown to present with brain malformations
such as cobblestone lissencephaly and polymicrogyria (Kano
et al., 2002; Balci et al., 2005; Meilleur et al., 2014). A rare
cortical malformation, bilateral frontoparietal polymicrogyria
(BFPP), arises from mutations in the adhesion G-protein coupled
receptor GPR56 (Piao, 2004). Collagen III is the ECM ligand
for GPR56. Postmortem human and mouse model studies have
shown that loss of GPR56 function leads to abnormal ECM
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organization within the meninges, resulting in pial heterotopias
at the cortical surface and cobblestone lissencephaly (Li et al.,
2008; Singer et al., 2013). The signaling pathways that are affected
by these ECM-associated mutations is not known.

Heterotopias
Cortical malformations can also appear as neuronal clusterings,
or heterotopias, in abnormal locations. These are commonly
identified as periventricular heterotopias (PVH) arising from the
ventricular wall or subcortical heterotopias within the cortical
layers. Despite their focality, heterotopias have significant impact:
the vast majority (over 80–90%) of patients with these localized
collections have seizures (Srour et al., 2011; Barkovich et al.,
2015). The phenotype becomes more severe if associated with
more expansive heterotopia size or other types of cortical
malformations (d’Orsi et al., 2004).

The most commonly identified gene in patients with PVH
is FLNA (Fox et al., 1998; Sheen et al., 2005) that encodes for
filamin A, an actin-binding cytoskeletal protein and serves as
a scaffolding protein, binding as many as 45 different proteins
(Lian and Sheen, 2015). Other cytoskeletal members linked
to heterotopias in a genetic screen of individuals with PVH
include TUBG1, KIF2A, and microtubule-associated protein 1B
(MAP1B) (Poirier et al., 2013; Heinzen et al., 2018). FLNA mutant
models in mice and rats have also shown defects in neural
progenitor proliferation and abnormal RG scaffolding in addition
to arrested neuronal migration from the V-SVZ (Nagano et al.,
2004; Carabalona et al., 2012), highlighting the complex interplay
of different developmental cell types in the brain. Further support
of heterotopias involving more than neuronal migration was
the association of PVH-microcephaly with mutations in the
ARFGEF2 gene (Sheen et al., 2004). ADP-ribosylation factor
guanine exchange factor 2 (ARFGEF2) directs vesicle trafficking
and fusion and heterotopias from mutations in this gene are
linked to a disrupted neuroependymal lining and abnormal cell-
cell contact within the ventricular zone (Ferland et al., 2009).
Progenitors and the neuroepithelium have also been highlighted
in PVH by the presence of mutations in DCHS1 and FAT4,
members of the protocadherin family; both these protocadherins
are highly expressed in the ventricular zone of early fetal human
brains compared to the intermediate zone and the developing
cortical plate (Cappello et al., 2013).

Modeling these heterotopias in mouse and rat brains
have highlighted differences between human and rodent brain
development and suggest divergent regulatory processes at play
in different species. Neither FLNA KO or the FAT4 KO mice
develop heterotopias (Carabalona et al., 2012; Badouel et al.,
2015). Furthermore, focal knockdown of either FAT4 or DCHS1
in embryonic mice led an increase in progenitor proliferation
in addition to accumulation of cells in the mouse ventricular
zone (Cappello et al., 2013). However, 3D modeling using human
iPSC-derived organoids did replicate this hyperproliferation due
to FAT4 or DCHS1 mutations (Klaus et al., 2019). Instead, these
organoids revealed morphological and transcriptomic changes
in mutant progenitor cells together with abnormal migratory
behaviors including increased paused times. Heterogeneity was
also observed in that despite all neurons bore the same mutation,

only a subset had abnormal migration and formed clusters. Taken
together, studies of heterotopias demonstrate the intimate link,
both physical and molecular, between neural progenitors and
migratory young neurons.

INTERNEURON DEVELOPMENT AND
MALFORMATIONS

The specific role of the GABAergic interneuron in MCD
pathology and whether interneurons are directly disrupted or are
secondarily affected by the abnormal development is unknown.
Changes in interneuron distribution and number in MCDs
have been observed in both the lissencephaly and FCD human
cortex (Pancoast et al., 2005; Medici et al., 2016; Nakagawa
et al., 2017), with parvalbumin-expressing subtype was the
most affected interneuron. In patients with MDS (lissencephaly
involving 17p13 deletion), the number of calretinin-expressing
interneurons were abnormal in the fetal cortex but were no
different at postnatal childhood ages when compared to the
number in “control” brains; this suggested a specific effect on
migration (Pancoast et al., 2005). Analysis of surgical resections
from patients with FCD have also tried to shed light into
how interneurons contribute to the seizure phenotype. Surgical
tissue resected from FCD patients had a reduction in the
frequency of spontaneous inhibitory currents onto pyramidal
cells compared to currents in control (non-FCD) resected tissue
(Calcagnotto et al., 2005); the change in inhibition was associated
with abnormal interneuron distribution and altered GABA
reuptake kinetics. A defining feature in FCD type II is the
presence of morphologically aberrant cells, including cytomegalic
neurons and balloon cells (Najm et al., 2018). The origins
of these abnormal cells is unknown, but electrophysiological
studies of cytomegalic neurons show that they have membrane
properties that could render them as a seizure-generating
(Wuarin et al., 1990; Tasker et al., 1992, 1996; Cepeda et al.,
2006). Interestingly, in cases of severe FCD, cytomegalic neurons
were found to be interneurons with more complex arborization
and, unlike pyramidal cytomegalic neurons, had hyperexcitable
properties, including the presence of spontaneous depolarization
(André et al., 2007).

While all these studies suggest a mechanism for
epileptogenesis in FCD patients, it remains unknown
whether the changes were secondary to the emergence of
the dysplasia. In a toxin-induced gyrencephalic model for
cortical dysplasia, the MAM (methylmethoxymethanol)-
exposed ferret, interneuron migration is disorganized and is
associated with a disorganized distribution of Calbindin- and
Parvalbumin-expressing interneuron subtypes (Poluch et al.,
2008). This was hypothesized to be a non-intrinsic, or indirect,
phenomenon as transplanted interneuron precursors cells from
the MAM-treated ferret brain migrated normally in the normal
(non-MAM-treated) cortex. One gene that directly ties abnormal
interneuron development to MCD is the ARX (aristaless related
homoebox) gene. ARX mutations have been associated with
diverse symptoms including agenesis of the corpus callosum
(ACC) and lissencephaly; XLAG syndrome includes severe cases
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associated with abnormal genitalia (Bonneau et al., 2002; Kato
et al., 2004). Glutamatergic neurons do not express ARX though
changes in ARX expression can indirectly affect their radial
migration (Friocourt et al., 2008). The lissencephalic ARX brain
is a 2–3 layered cortex with diminished neuronal populations and
loss of interneurons (Forman et al., 2005; Okazaki et al., 2008;
Marcorelles et al., 2010). ARX is a transcription factor that acts at
several developmental stages including interneuron progenitor
proliferation and neuronal migration (Friocourt et al., 2008;
Friocourt and Parnavelas, 2011), though many questions remain
about its exact function. The generation (Arshad et al., 2016),
migration, and maturation of human cortical interneurons take
place over a long timeline (Nicholas et al., 2013; Paredes et al.,
2016; Close et al., 2017); therefore there are several points along
their developmental trajectory where interneurons may directly
or indirectly become dysfunctional and lead to abnormal circuit
formation and connectivity.

DEVELOPMENTAL STAGE 3:
CONNECTIVITY

As discussed, the telencephalon develops through a sequence
of spatiotemporally coordinated events: cell proliferation,
migration, differentiation, axonal growth which end with
synaptogenesis and synaptic pruning. Altogether, this leads
to the formation of functional neuronal connectivity (Rakic
and Lombroso, 1998; Judas et al., 2003, 2005; Kostović and
Jovanov-Milošević, 2006; Bystron et al., 2008; Raybaud, 2013;
Raybaud et al., 2013). In mouse models, the organization
and differentiation of the cortex, neuronal proliferation and
migration are essentially complete at birth, and many neurons
begin to be eliminated (Bystron et al., 2008; Stiles and Jernigan,
2010; Tau and Peterson, 2010; Raybaud and Widjaja, 2011),
influencing the subsequent synaptic connectivity in the brain.
Neuronal pruning reaches a peak at two postnatal weeks in
mice. In contrast synaptogenesis and neuronal connectivity
in the human cortex begin at 22 GW (Semple et al., 2013),
but occur mainly after birth, particularly during the first two
postnatal years (Huttenlocher, 1979; Herschkowitz et al., 1999).
The timing of synaptogenesis in humans is region-dependent,
reaching the maximum near postnatal age 3 months in the
auditory cortex, 8–12 months in the visual cortex and 2–4 years
of age in the prefrontal cortex (Huttenlocher et al., 1982;
Lenroot and Giedd, 2006).

The proliferation and migration of neurons shape the
coordinated network and connectivity of the developing
neocortex. Interneurons migrate from the ganglionic eminences
into the cortical plate to form local synapses with cortical
pyramidal cells establishing microcircuits (Nadarajah and
Parnavelas, 2002). The tangential migration of GABAergic
interneurons in the cortex occurs in close association with
the radial migration of glutamatergic pyramidal neurons
(Bystron et al., 2008). Peak migratory activity of human cortical
neurons is suggested to be at mid-gestation (weeks 20–22),
though subpopulations of human interneurons continue
to migrate through infancy, long after pyramidal neurons

have stopped (Bystron et al., 2008; Raybaud et al., 2013).
Furthermore, neurogenesis of interneurons occur at later stages
of human fetal development (Letinic et al., 2002; Arshad et al.,
2016). Late-developing and distinct lineages of GABAergic
neurons in the human brain may add to the diversity of
inhibitory neuron subtypes and ultimately impact the cortical
circuitry that emerges.

The structural and functional development of the cerebral
cortex is also regulated by electrical activity (Kirischuk et al.,
2017) and connectivity is influenced by early neuronal activity
in multiple ways. At embryonic stages, intermittent spontaneous
activity is synchronized within small neuronal networks
and become more complex during further development of
the cerebral cortex, depending on maturation of network
connectivity (Egorov and Draguhn, 2013; Yang et al., 2016).
Spontaneous synchronous network activity is required to
activate silent synapses by incorporating AMPA receptors into
the postsynaptic membrane (Durand et al., 1996; Voigt et al.,
2005), modeling the functional connectivity within the existing
structural network. At this time, the neurotransmitter GABA
has an excitatory effect on immature cells and is important
in shaping connectivity (Ben-Ari, 2002; Dzhala et al., 2005;
Batista-Brito and Fishell, 2009). GABAergic transmission by
interneurons contributes to spontaneous network oscillations in
the developing cortex through the synapse-driven coordinated
activity patterns. In addition, neuronal spontaneous activity
regulates GABA synthesis, affecting the inhibitory innervation
patterns and the pruning process of redundant neuronal
connections (Hata and Stryker, 1994; Chattopadhyaya et al.,
2007; Kirischuk et al., 2017).

The connectivity process follows the radial gradient of the
inside-out migration of cortical neurons from the deeper to
the superficial cortical layers. By 18 GW, when the cortex is
still smooth, radial (inside-out), but not tangential (horizontal),
intracortical connections have formed (Noctor et al., 2001;
Hadders-Algra, 2018). New connections subsequently induce an
excessive tangential expansion of the superficial cortical layers
(Huttenlocher and Dabholkar, 1997) which is associated with
an increase in cortical compressive stress and initiation of
cortical folding (Richman et al., 1975). The excessive tangential
growth induced by the formation of intracortical horizontal
connections is limited to the superficial cortical layers I to
IV. As the deep layers and the white matter do not undergo
tangential expansion, this process induces compressive stress,
which has been hypothesized to lead to surface involution
(Tallinen et al., 2014). The late migration of superficial neurons,
the increased number of astrocytes, oligodendrocytes, and
microglial cells, the intense neural connectivity formation and
the laminar organization all contribute to cortical expansion
and cortical folding. This process begins around 23 GW
following the same tangential gradient as proliferation and
connectivity (Huttenlocher et al., 1982; Moulton and Goriely,
2011; Raybaud et al., 2013; Budday et al., 2015b). Therefore,
the connectivity-driven tangential growth, as a physics-based
approach, mainly affects the superficial layers and induces
the formation of gyri and sulci (Huttenlocher, 1979; Raybaud
et al., 2013). Through term, secondary gyri formation extend
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concentrically around the primary sulci and after term, tertiary
sulci develop together with short association fibers.

From 22 GW to the end of gestation, the connectivity and
circuit organization in the human cortex continue to develop
(Marin-Padilla, 1971). The synaptic density increases rapidly after
birth, mainly within the early postnatal months and by 2 years
of age reaches a level of about 50% higher than that is seen in
adulthood (Herschkowitz et al., 1999). Synaptic elimination and
remodeling in humans continue to adolescence, while in mice,
the entire process appears to be completed by 3–4 weeks of age
(Petanjek et al., 2011; Semple et al., 2013). Therefore, the human
cortex remains relatively plastic and locally adapts its thickness
and stress state as new neuronal connections form and dissolve
thought the entire life (Budday et al., 2015a). For example,
learning induces the formation of new connections, increases
gray matter volume, and changes the brain surface morphology
(White et al., 2010), while aging acts in the opposite way.

Neuronal connectivity in the cortex proceeds from the deeper
to the superficial cortical layers. Thus, corticothalamic fibers
from the deeper layer 6 and corticospinal from layer 5 first
project single axons; thalamocortical fibers reach layer 4 and
then neurons from layer 3 and 2 form long-association and
commissural tracts, receiving multiple incoming fibers (Raybaud
et al., 2013). Short-association tracts in the cortical gray matter
and in the subcortical white matter results in a horizontal
layering pattern of the neocortex (Marin-Padilla, 1970). The
developing cortex contains the subplate neurons, the earliest
generated neurons in the cerebral cortex of mammals (Luskin and
Shatz, 1985; Perkins et al., 2008; Kanold, 2009). In humans, the
subplate contains up to 50% of cortical neurons in the second
trimester and it remains highly expanded during the first few
years of life. The subplate neurons form one of the first functional
cortical circuits (Kanold, 2009). They expand markedly during
gestation, reaching peak numbers at about gestational week 28,
guide efferent axons and establish transient connections with
them until their cortical target cells are mature enough to
become connected (Shu et al., 2003; Bi et al., 2018; Zhao et al.,
2019). As these thalamocortical, corticocortical, interhemispheric
commissural fibers and the intracortical connections gradually
develop from 26 to 47 weeks, the migration path of the cortical
cells traverses the white matter (Raybaud and Widjaja, 2011).
Subplate neurons are thus uniquely positioned to establish the
initial transient connections between these neurons (Bystron
et al., 2008; Budday et al., 2015b).

The most prominent interhemispheric connective structure
in the human brain is the corpus callosum (Luders et al.,
2010). It begins to differentiate as a commissural plate around
week 8, the axons appear around week 12, and adult callosal
morphology is achieved around week 20 (Achiron and Achiron,
2001). The genesis of the corpus callosum, which connects the
two cerebral hemispheres, depends on the functional integrity
of callosal projection neurons and midline cell populations that
produce various molecular cues such as semaphorins, netrins,
fibroblast growth factors and slits that guide callosal axons
to extend toward and cross the midline (Serafini et al., 1996;
Bagri et al., 2002; Huffman et al., 2004; Andrews et al., 2006;
Smith et al., 2006; Tole et al., 2006; Molyneaux et al., 2009;

Niquille et al., 2009; Chinn et al., 2015). The anatomical midline
structures that display a guidance activity for callosal axons
include the glial wedge, the indusium griseum glia and the
hippocampal commissure. The glial wedge, located in the
medial wall of the lateral ventricle and composed of astrocytes
(Bignami and Dahl, 1973), repels ipsilateral callosal axons toward
the midline (Shu and Richards, 2001) and guides the axons
toward contralateral cortex (Shu et al., 2003; Keeble et al.,
2006). The indusium griseum glia are dorsal to the developing
corpus callosum, express SLIT2 and guide commissural axons
toward their site of midline crossing (Shu and Richards,
2001). The hippocampal commissure facilitates caudal callosal
development, acting as a scaffold for the caudal corpus callosum
(Paul et al., 2007).

Malformations and Cortical Connectivity
Subtle changes in neuronal layering and altered brain
connectivity of specific circuits are a common finding in
neurological and neuropsychiatric disorders, such as epilepsy,
autism spectrum disorder and schizophrenia. Abnormal
connectivity has been demonstrated in humans and in animal
models by molecular anatomical and neuroimaging studies
(Barkovich et al., 2012; Goodkind et al., 2015; Huang et al.,
2016; Guarnieri et al., 2018). Recent functional connectivity
studies using neuroimaging in humans have demonstrated
long-range connectivity defects in patients with variable degrees
of cortical malformations. These include patients with epilepsy
associated with gray matter heterotopia (Shafi et al., 2015),
polymicrogyria (Sethi et al., 2016), focal cortical dysplasia (Jeong
et al., 2014; Hong et al., 2017; Rezayev et al., 2018), and tuberous
sclerosis complex (Im et al., 2016), patients with schizophrenia
(Adhikari et al., 2019; Zhao et al., 2019), autism spectrum
disorders (Cooper et al., 2017; Bi et al., 2018) and ACC (Owen
et al., 2013). The impaired neuronal connectivity and synaptic
plasticity in these diseases have been associated with a decreased
expression/function of neural ECM proteins, such as reelin, that
might disrupt the axonal guidance cue gradients (Costa et al.,
2004; Abdolmaleky et al., 2005; Dong et al., 2005; Berretta, 2012;
Folsom and Fatemi, 2013; Jovanov Milošević et al., 2014). The
abnormalities in location of particular neuronal populations, cell
cues and inputs or presence of abnormal neurons may affect the
subsequent developmental steps that control cortical synaptic
connectivity (Easter et al., 1985; Redecker et al., 1998; Jacobs
et al., 1999b) leading to aberrant interhemispheric, callosal,
corticocortical and corticothalamic connectivity (Humphreys
et al., 1991; Jacobs et al., 1999a).

Changes in structural connectivity and gyrus formation can
also result in an imperfect tangential growth of the cortex
and consequent white matter volume reduction. The white
matter may become dysplastic together with the cortex, as a
part of the cortical malformation, or secondary to the cortical
abnormality, and may also become abnormal as a late result of an
epileptogenesis process and/or behavioral abnormalities (Budday
et al., 2015b). This distorted connectivity, with decreased volume
of white matter in the corresponding portion of the hemisphere
and the brainstem, has been described as the basis for the aberrant
sulcation with no recognizable pattern seen in polymicrogyria
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(Raybaud and Widjaja, 2011). Microcephaly resulting from a
deficient pool of neurons with a consequent lack of connectivity,
is frequently associated with abnormalities of the corpus callosum
and the level of reduction in white matter volume is correlated
with the severity of the malformation (Raybaud and Widjaja,
2011). ACC is a complex condition in which the corpus callosum
is partially or completely absent. ACC may or may not be
associated with other MCD and can result from any of the
following: defects in cellular proliferation and migration, axonal
growth or in the midline structures (Jacobs et al., 1999a;
Paul et al., 2007).

The synaptic connectivity in the brain is formed by distinct
neuronal population interacting in a complex and yet organized
spatiotemporal dynamic network. In a rat model for microgyria
for example, the permanent loss of all connections coming
via white matter, is partially compensated by an increased
intracortical connectivity with no changes in the number of
cortical neurons (Jacobs et al., 1999a). Such an area with
preserved number of neurons and aberrant synaptic connectivity
are the most probable sites to generate seizures (Chauvette et al.,
2010; Timofeev et al., 2014; Timofeev, 2000). Brain oscillations
emerge from this dynamic interaction between intrinsic cellular
and network properties and correlate with distinct behavior state
(Buzsáki and Draguhn, 2004). Since the circuits necessary for any
abnormal oscillations are present in the neocortex, small shifts in
the normal network and intrinsically bursting neurons involved
in this circuit reorganization could result in either epileptiform
activity or abnormal cortical oscillations that would affect the
behavior (Chagnac-Amitai and Connors, 1989; Chagnac-Amitai
et al., 1990). In the neocortex, recurrent excitatory connections
are enhanced in focal cortical dysplasia and the aberrant synaptic
connectivity produces a focal epileptogenic zone capable to
generate epileptiform activities independent of connections with
the malformation itself (Paz and Huguenard, 2015). Aberrant
synaptic connectivity and displacement cortical interneurons are
associated with abnormalities of gamma oscillations in patients
with autism spectrum disorders (An et al., 2018; Hashemi
et al., 2018). The neuronal disorganization and clusters of
immature neurons in FCD I contribute to hyperexcitability and
in the FCD II, in addition to increased excitation caused by
immature neurons and reorganization of neuronal network,
cytomegalic neurons (FCD II A) intensify the hyperexcitability
and recruitment microcircuits in the cortex (Blümcke et al.,
2011; Abdijadid et al., 2015). The presence of balloon cells (FCD
IIB), claimed to not be involved in epileptogenesis, could play a
role in modifying brain oscillation by interfering with neuronal
connectivity. Abnormalities of high frequency oscillations and
hyperexcitability were recorded in bottom part of the type II FCD
cortical sulcus, independent of the presence of the balloon cells
(Hu et al., 2019). Interestingly, in FCD I and II, the subcortical
white matter neurons are excessive and are particularly frequent
just beneath the depth of a sulcus or the base of a gyrus,
the U-fiber layer (O’Halloran et al., 2017). The U-fiber system
consists of subcortical arcuate fibers, following gyral contour
and within gyral cores, originate from pyramidal neurons of
layer 6 of cortex, acting as short- synaptic circuits that connect
neighboring cortical regions or microcircuits (plexi) (Sarnat,

2018). The neuronal dispersion in the U-fibers compromises
the short-range network connections, increasing the microcircuit
(plexi) integration and consequently modifying the structure and
function of local network contributing to the epileptogenesis.

Neuronal diversity and functional spatiotemporal dynamic
in the network are key points to establish the normal
connectivity in the brain. The cerebral cortex of mammals has
a large diversity of cells operating in intricate circuits. This
cellular diversity form complex circuits formed by synapses
in distinct cellular compartment and time for encoding
processing storage and sending information. Therefore, brain
oscillations and behavior depends on the spatiotemporal
dynamics of the network (Klausberger and Somogyi, 2008).
Aberrant organization, plasticity of neuronal network recruiting
distinct microcircuits of different location at specific time
could alter synchronicity, leading to abnormal oscillations and
consequent behavior, resulting in epilepsy and neuropsychiatric
disorders associated with abnormalities of structural and
functional connectivity.

GLIAL POPULATIONS

Neuronal connectivity involves not only the growth of
neuronal dendrites and axons, but also the generation and
expansion of astrocytes, oligodendrocytes and microglial
cells, the formation of synapses, and the development of the
vasculature system (Dulla et al., 2013). By 28 weeks of gestation
in humans, when excitatory neuronal migration is mostly
complete, the number of astrocytes, oligodendrocytes, and
microglial cells increases, and myelination reaches its peak
that corresponds to the shift from pre-oligodendrocytes to
immature oligodendrocytes that produce myelin and induce
white matter growth (Semple et al., 2013; Budday et al., 2015b).
The white matter development and axonal outgrowth in mice
take place only at postnatal day 1–3 which correspond to
23–32 weeks gestation in humans (Craig et al., 2003). Gray
matter changes from a radial to a tangential organization
during the third trimester. The degree of interconnection
within the white matter, and consequent stiffness, remains
low between weeks 22 and 38, until term (Raybaud, 2013;
Raybaud et al., 2013), but increases after term, when myelination
and the formation of astrocytic branches give rise to a highly
connected microstructure. In mice, myelination begins during
neurogenesis and occurs over a shorter timescale, peaking at
approximately postnatal day 20 compared to adolescence in
humans (Wiggins, 1986; Rockland and Defelipe, 2011); the
increase in white matter stiffness from earlier myelination
could in part explain, why mouse brains are less folded than
mammalian brains.

Astrocytes with thousands of processes interact with all cell
types of the CNS, and help drive nervous system development
and sculpt its activity by guiding the migration of developing
axons and neurons. Oligodendrocytes provide structural and
metabolic support and axon myelination that facilitate nerve
impulse conduction. The dynamic regulation of myelination
may regulate the precise timing of information propagation and
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communication across functional circuits. Microglia control cell
proliferation, differentiation and modify synapses. Toward the
end of the synaptogenic period, weak and inappropriate synapses
are eliminated by astrocytes and microglia, leaving neurons with
their adult connectivity. The capillaries and neuro-glial-vascular
coupling ensure oxygen and metabolic supply to neurons for
proper connectivity development (Barres, 2008; Allen and Lyons,
2018). Thus glial dysfunction could contribute to the pathology of
MCD via creating a local proinflammatory environment driven
by abnormal gliovascular interaction (Kielbinski et al., 2016).

CONCLUSION

As our knowledge of human developmental neuroscience
increases, we can better understand the heterogeneity and origins
of MCD. Common themes that emerge from human studies,
when compared to mouse analyses, are the expansion of unique
progenitor populations that contribute to neurogenesis and
the protracted developmental timeline over which progenitor
proliferation and neuronal migration can occur. This has
likely provided the substrate to allow for a larger cortex with
complex connections, as in the human brain. But it also creates
increased vulnerability for mistakes in the neurodevelopmental
process at any point. Rodent models remain the foundation for
deciphering the precise mechanistic pathways that are implicated
in MCD by genetic studies. But a clearer comprehension
of how these pathways diverge in the human brain will
require the development of creative new approaches to study
human neurobiology. Investigations directly on human cortical
specimens are crucial to accurately study MCD. There is a
need to improve access to tissue samples for research, both
from post-mortem tissue specimens and surgical resections.
Toward this goal, our scientific community must have ongoing

communication with the public about the importance of
human tissue-based research. Developing new models for
human brain research, including patient-derived 2D and 3D
culture systems, and identifying appropriate gyrencephalic
animal models, will be fundamental to understanding the
pathology of cortical malformations and establish ways to screen
treatment approaches. Human cortical development is a long
and intricate process but by the same token, it also has the
potential for expanded windows of opportunity that may be
utilized for therapeutic purposes. More studies are needed to
understand this potential.
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