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Abstract: Commercial cellulase Cellic CTec2 was immobilized by the entrapment technique in sol–gel
matrices, and sol–gel entrapment with deposition onto magnetic nanoparticles, using binary or
ternary systems of silane precursors with alkyl- or aryl-trimethoxysilanes, at different molar ratios.
Appropriate tailoring of the sol–gel matrix allowed for the enhancement of the catalytic efficiency of
the cellulase biocatalyst, which was then evaluated in the hydrolysis reaction of Avicel microcrys-
talline cellulose. A correlation between the catalytic activity with the properties of the sol–gel matrix
of the nanobiocatalysts was observed using several characterization methods: scanning electron
microscopy (SEM), fluorescence microscopy (FM), Fourier transform infrared spectroscopy (FT-IR)
and thermogravimetric analysis (TGA/DTA). The homogeneous distribution of the enzymes in the
sol–gel matrix and the mass loss profile as a function of temperature were highlighted. The influence
of temperature and pH of the reaction medium on the catalytic performance of the nanobiocatalysts
as well as the operational stability under optimized reaction conditions were also investigated; the
immobilized biocatalysts proved their superiority in comparison to the native cellulase. The magnetic
cellulase biocatalyst with the highest efficiency was reused in seven successive batch hydrolysis cycles
of microcrystalline cellulose with remanent activity values that were over 40%, thus we obtained
promising results for scaling-up the process.

Keywords: sol–gel entrapment; cellulase; magnetic nanobiocatalysts; catalytic performance; cellulose
hydrolysis; reusability

1. Introduction

Environmental pollution that is caused by fossil fuels, the growing population, and the
high costs of traditional energy sources are forcing researchers to develop new approaches
to producing green and biodegradable energy resources [1]. In recent years, increased
attention has been paid, among other issues, to reducing environmental pollution by the
rapid elimination of volatile organic compounds using photothermal catalysis [2], as well
as new strategies for the preparation of high-performance catalysts for the removal of
pollutants [3] and the reduction of CO2 emissions [4].

Biomass, especially cellulose, is the most abundant biopolymer, and it is a low-cost
energy source that can be degraded to produce biomaterials useful in many domains.
Cellulose-hydrolyzing enzymes, such as cellulases, are catalysts that convert cellulose
to glucose and are widely used in various applications in foods, cellulose and paper,
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detergents, textiles, agriculture, pharmaceuticals and medicine, but they are mainly for
the production of biofuel [1]. Cellulose-degrading enzymes generally refer to a set of
enzymes [5], the so-called cellulase enzyme complex, that are composed of endoglucanases (EC
3.2.1.4), exoglucanases (EC 3.2.1.91) and β-glucosidases (EC 3.2.1.21), that act synergistically
to bioconvert cellulose to glucose, which is a precursor for the production of various added-
value products [6,7].

The use of enzymes is challenging due to their low stability and activity along with
their high cost and fragile nature. To overcome these disadvantages, a possible solution is
to use immobilization, which also allows the biocatalyst to be easily recycled in practical
applications [7,8]. Immobilization can improve some of the catalytic properties of the
enzymes and also reduce their overall process costs by decreasing the amount of enzymes
that are required for the processes. There are various physical and chemical methods
for immobilizing enzymes, such as cross-linking, encapsulation, entrapment, covalent
binding and adsorption [9]. The attachment of the enzyme to the support can be achieved
chemically by covalent bonding or physical and weak bonding. The choice of the most
suitable support material and the immobilization method depends largely on the type of
catalytic process that will occur [10,11].

In the last decade, different cellulase immobilization techniques have been developed:
covalent immobilization to chitosan [12] and monodisperse polyurea microspheres [13],
immobilization of styrene/maleic anhydride copolymers [14] and alginate beads [15],
chitosan-cellulase nanohybrids, entrapment in alginate gel [16] and entrapment in hybrid
sol–gel matrices [17], etc. Among the immobilization methods, entrapment has the advan-
tage of increasing the stability without direct attachment to the support matrix, thereby
avoiding the possible alteration of the catalytically active conformation of the enzyme.
During entrapment, an enzyme is incorporated into a membrane, a microcapsule, a fiber,
or a gel network (polymer network), such as a silica sol-gel or an organic polymer. The
synthesis of the polymer network in the presence of the enzyme is often required for
entrapment and can be a possible source of partial inactivation [11].

The sol–gel entrapment is a remarkable method for the synthesis of silica nanoparticles
and nanocomposites consisting of the preparation of a liquid “sol” (colloidal suspension
of particles), its transformation into a gelatinous network (the “gel” phase) with its sub-
sequent post-treatment (removal of the solvent) and transition to a solid oxide “xerogel”
material [18]. The sol–gel procedure is carried out under mild synthesis conditions and the
enzyme is not bound to the silica matrix, therefore the inactivation of the enzyme during
immobilization is minimal [19].

Non-ionic surfactants, such as Tween 80 and a hydrophilic polymer PEG 20,000, have
been explored as additives in the bioconversion of lignocellulosic biomass because they can
increase the enzymatic hydrolysis yields by influencing the enzyme–substrate interactions,
as well as enhancing the thermal stability of cellulolytic enzymes [20–22]. In addition, they
could also be used as additives in the immobilization process to protect the enzyme and
prevent the shrinkage of the matrix that is created around the enzyme, as shown in our
previous studies [17,23,24].

Ionic liquids have also been proved to be efficient immobilization additives [24–26].
However, identifying the exact role of ionic liquids in the preparation of xerogels and the
influence on the catalytic properties of the entrapped enzyme is not an easy task to do.
Some advantages of ionic liquid addition during the sol–gel immobilization of the enzymes
include their protection against inactivation by the released alcohol and the shrinkage of
the gel during the maturation and drying step of the sol–gel immobilization process, an
increased gelation time, and it having an influence on the gel structure (increase in the
average pore radius and reduction in the pore size distribution) [26].

The separation of immobilized biocatalysts from the enzyme reaction mixture is a
key challenge in biocatalytic processes, and the association of biomolecules with magnetic
nanoparticles (MNPs) can facilitate this by using an external magnetic field, allowing the
reuse of the enzyme in multiple batches and reducing the overall processing costs [27]. The
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development of nanobiocatalytic systems by enzyme immobilization on MNPs has received
increasing attention in recent years, especially in the field of biomass conversion [27].
Cellulases have generally been immobilized by their physical adsorption or covalent
binding onto various magnetic supports such as graphene oxide [28,29], nanotubes [30],
porous biochar [31], chitosan [32,33], silica [34–38] or magnetic gold mesoporous silica
nanoparticles [39].

MNPs are important in the immobilization of enzymes due to them having a large
surface area and the presence of hydroxyl groups on their surface which allows the easy
functionalization of them and the strong binding of the enzyme molecule [40]. Magnetic
nanobiocatalysts have gained recognition due to them having multiple advantages such
as stability, a low toxicity, biocompatibility, a high specific surface area, a low cost and a
minimum mass transfer resistance [32].

Among the various magnetic nanoparticles that have been investigated as immobi-
lization carriers are iron oxides (Fe3O4 and Fe2O3), alloys (CoPt3 and FePt), pure metals
(Fe and Co) and spinel ferromagnets (MgFe2O4, MnFe2O4 and CoFe2O4). Fe3O4 nanoparti-
cles are mainly used for the immobilization of enzymes due to their biocompatibility and
non-toxicity [41]. Superparamagnetic iron oxide nanoparticles exhibit excellent recovery
properties when they are the carrier materials for enzymes and they can be synthesized
cost-effectively by the co-precipitation of iron salts [36].

The objectives of this research were the enhancement of the catalytic properties and
operational stability of the commercial cellulase complex Cellic CTec2 by sol–gel entrapment
and sol–gel entrapment combined with their deposition on magnetic particles. To our
knowledge, the process of sol–gel entrapment with their deposition on magnetic particles
has not been previously reported for the immobilization of Cellic CTec2 cellulase.

Another novelty of this research is the fine-tuning of the matrix structure with regard
to the nature and ratio of the silane precursor mixtures, enzyme loading and additive
that are used, thereby allowing the preparation of new biocatalysts exhibiting superior
catalytic properties in the hydrolysis reaction of microcrystalline cellulose (Avicel PH-101).
The morphology and structure of the sol–gel matrix of the nanobiocatalysts were also
investigated by several characterization techniques, and a thorough correlation of it with
the catalytic properties was observed (to the best of our knowledge, it has not yet been
realized). The ultimate goal was the reuse of the magnetic sol–gel-entrapped biocatalyst in
several batches of hydrolysis cycles with good remanent activity, thereby demonstrating its
potential for large-scale applications.

These results reveal the advantages of the sol–gel entrapment of cellulases, such as the
possibility of obtaining robust biocatalysts with a good thermal and pH stability, thereby
allowing them to be easily recovered from the reaction medium for multiple uses.

2. Results and Discussion
2.1. Tailoring the Structure of the Sol–Gel Matrix for Efficient Cellulase Immobilization
2.1.1. Influence of Nature and Molar Ratio of Silane Precursors on Cellulase
Immobilization by Sol–Gel Entrapment

The immobilization of the commercial cellulase blend Cellic CTec2 by sol–gel entrap-
ment was studied using binary and ternary mixtures of silane precursors of tetramethoxysi-
lane (TMOS) and organically substituted trimethoxysilanes with non-hydrolyzable alkyl or
aryl functional groups with a varying carbon chain length. The selection of an equimolar
silane ratio was based on previous studies on lipases [24], which demonstrated the impor-
tance of TMOS for the formation of the xerogel matrix, but also the complete loss of the
catalytic activity by using only TMOS as precursor due to the tight and overly compact
structure of the preparate. The use of hybrid organic–inorganic matrices for the sol–gel
entrapment of enzymes allows for the tailoring of the structure of the sol–gel biocatalysts,
thereby leading to there being specific structural and functional properties of the entrapped
enzymes. The deposition of the sol–gel-entrapped biocatalyst onto a solid support such as
magnetic particles improve the mass transfer of the substrate to the catalytic center of the
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enzyme as a consequence of the distribution of the xerogel onto the surface of the support
material. Furthermore, the use of magnetic particles as adsorbents imbues magnetic prop-
erties to the immobilized biocatalyst, thus allowing the facile separation and recycling of
the enzyme.

In our study, two types of magnetic supports with high saturation magnetization
properties were used, coded MP1 and MP2. The nanosized magnetic particles were syn-
thesized by a chemical coprecipitation according to the procedure that is described in
Section 4.2.2. The magnetization of the magnetic particles is slightly different as the
magnetization of the nanoparticles is highly dependent on the particle size and the type
of iron oxide that is present (magnetite/maghemite), as can be seen in Figure S1 in the
Supplementary Materials.

The properties of the silica gel network (silane type and molar ratio, which are arranged
by the increase of the C atom content), the protein immobilization yields and the protein
loadings (which are expressed as mg protein per g of solid xerogel) of the immobilized
biocatalysts, as well as the catalytic properties of them (the catalytic efficiency is expressed as
the U (µmol·min−1·g biocatalyst−1) of the total sugar that is released per g of biocatalyst
(sol–gel or magnetic sol–gel)) and the specific activity that is expressed as the U of the total
sugar that is released per g of protein (µmol·min−1·g protein−1), as determined in the CMC
hydrolysis, are given in Table 1.

Table 1. Influence of the binary silica network on the immobilization yield and catalytic efficiency of
the immobilized biocatalysts by their entrapment in sol–gel and magnetic sol–gel.

Biocatalyst Silane Type
(Molar Ratio)

MP
Type

Immobilization
Yield,

Entrapped
Protein Loading,

Catalytic
Efficiency *,

Specific
Activity,

% mg·g
Biocatalyst−1

µmol·min−1·g
Biocatalyst−1

µmol·min−1·g
Protein−1

SG1 MeTMOS:TMOS
(1:1) >99 20.6 5.9 288

SG2 EtTMOS:TMOS
(1:1) 99 19.3 2.3 119

SG3 VTMOS:TMOS
(1:1) 99 20.0 4.8 238

SG4 PrTMOS:TMOS
(1:1) 98 18.8 5.6 298

SG5
i-

BuTMOS:TMOS
(1:1)

77 18.2 6.7 366

SG6 PhTMOS:TMOS
(1:1) 84 14.2 2.2 153

M1-SG6 PhTMOS:TMOS
(1:1) MP1 55 5.3 1.5 277

M2-SG6 PhTMOS:TMOS
(1:1) MP2 63 5.7 0.6 101

SG7 OcTMOS:TMOS
(1:1) 95 8.5 3.7 216

* CMC assay; MP—magnetic particles.

The results depict that there is a steady decrease in the immobilization yields ac-
complished by the sol–gel immobilization with the increasing chain length (increasing
hydrophobicity of the silane precursor molecule) of the organic function of the silanes. The
immobilization yields of the enzyme in the hybrid silica matrix were usually greater than
80%, demonstrating the high effectiveness of the sol–gel entrapment process. Through us-
ing the combined method of sol–gel entrapment and the deposition of them onto magnetic
particles, the immobilization yields were decreased to about 55%.

The presence of non-hydrolyzable alkyl or aryl groups in the silane precursors de-
creased the rate of the polycondensation reaction, thereby leading to prolonged gelling
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times. With an increasing C chain length of organically modified silane, we also observed a
decrease in the immobilization yields; this was especially true for silanes with side chains in
the organic group of the silane (such as i-BuTMOS) or aromatic groups (such as PhTMOS).

The catalytic efficiencies of the entrapped biocatalysts followed a different trend, their
values increased with the length of the C atom chain until there were up to four C atoms
in the silane precursor structure. The highest catalytic efficiency was determined for the
i-BuTMOS:TMOS silane network at an equimolar ratio. However, the ones with longer
C chains (OcTMOS) and the bulky functional groups such as an aromatic ring (PhTMOS)
had a negative effect on the catalytic efficiency of the biocatalysts, suggesting that a very
hydrophobic microenvironment could hinder the access of the substrate (CMC) to the
active site of the enzyme. Surprisingly, the MeTMOS:TMOS silane network also led to there
being very high catalytic activity of the cellulase. Interestingly, the VTMOS:TMOS silica
network that contained the vinyl groups in silane demonstrated a catalytic efficiency that
was far better than that of the EtTMOS:TMOS silica network with the same amount of C
atoms in the organic function at similar immobilization yields and protein loadings. We
attributed this to the different electronic interactions of the unsaturated ethenyl group with
the enzyme molecule, compared to those of the saturated ethyl group, since the electronic
interactions of the charged and polar protein side chains with the dipole moments of the
substrate molecules are important for the enzyme activity [42], and the interactions with
the pendant groups of the matrix could interfere in this relationship.

The catalytic efficiency of the native cellulase which was determined with the CMC
assay was 36.2 U·mL−1. The enzyme blend contains approximately 70 mg of protein per mL
of commercial cellulase, thus pertaining to a specific activity of 517 U·g protein−1. The spe-
cific activities of the sol–gel-entrapped cellulase were in the range of 101–366 U·g protein−1

(Table 1). With the exception of the sol–gel-containing pendant phenyl groups (SG6 sample),
we observed a preservation of up to 71% of the enzyme’s specific activity after the immo-
bilization of the MeTMOS:TMOS, PrTMOS:TMOS, and i-BuTMOS:TMOS silane systems.
These results demonstrate that the sol–gel entrapment method is an efficient immobilization
technique for cellulases.

Based on these results in the sol–gel entrapment of the Cellic CTec2 cellulase blend
in binary silica networks, the next objective was to improve the immobilization yield and
catalytic efficiency of the PhTMOS:TMOS silica network. We hypothesized that the lower
catalytic efficiency and immobilization yields that were obtained with this binary silane
mixture were due to the presence of bulky phenyl groups, thereby leading to a polymer
network that was less suitable for the cellulose hydrolysis process. The fine-tuning of the
sol–gel structure by switching from a binary to a ternary silane system, which contained
MeTMOS or VTMOS next to PhTMOS and TMOS, could create a sol–gel matrix that is
more adequate for the cellulose substrate. Such an improvement in activity by switching to
ternary precursor systems has been reported for lipases [43], but it has not been investigated
in the case of cellulases.

The protein immobilization yields, protein loadings of the immobilized biocatalysts,
and catalytic properties (CMC assay) that were obtained using the ternary sol–gel networks
with varying aromatic group contents are presented in Table 2.

The ternary mixture of the silane precursors MeTMOS:PhTMOS:TMOS and VT-
MOS:PhTMOS:TMOS that were in a 0.4:1.6:1 molar ratio yielded the highest catalytic
efficiency of the entrapped cellulase. Introducing even small concentrations of methyl
or vinyl groups into the PhTMOS:TMOS silane system led to a three-fold increase in the
catalytic efficiency of the sol–gel entrapped cellulase, from 2.2 U·g−1 to 6.6 and 6.7 U·g−1,
respectively. In terms of the specific activity, the ternary silane systems significantly im-
proved the cellulase activity, especially for the magnetic biocatalysts, where a five-fold
increase was observed.
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Table 2. Influence of the ternary silica network on the immobilization yield and catalytic efficiency of
immobilized biocatalysts by their entrapment in sol–gel and magnetic sol–gel.

Biocatalyst Silane Type
(Molar Ratio)

MP
Type

Immobilization
Yield,

Entrapped
Protein Loading,

Catalytic
Efficiency *,

Specific
Activity,

% mg·g
Biocatalyst−1

µmol·min−1·
g Biocatalyst−1

µmol·min−1·
g Protein−1

SG8 MeTMOS:PhTMOS:TMOS
(0.4:1.6:1) 44 7.6 6.6 873

SG9 VTMOS:PhTMOS:TMOS
(0.4:1.6:1) 52 8.9 6.7 757

M1-SG9 VTMOS:PhTMOS:TMOS
(0.4:1.6:1) MP1 26 2.5 5.5 2167

M2-SG9 VTMOS:PhTMOS:TMOS
(0.4:1.6:1) MP2 21 2.0 5.4 2635

SG10 VTMOS:PhTMOS:TMOS
(1:1:1) 68 12.3 5.5 446

SG11 VTMOS:PhTMOS:TMOS
(1.6:0.4:1) 90 18.3 5.9 322

* CMC assay; MP—magnetic particles.

Increasing the content of the vinyl group in the ternary silane network allowed for the
acquiring of better immobilization yields, which were up to 90%. However, the catalytic
efficiency of the cellulase remained at similar levels, even at the maximum level of protein
loading (18.3 mg of protein per g of sol-gel).

In conclusion, the catalytic properties of the sol–gel-immobilized cellulase are strongly
influenced by the nature and content of the non-hydrolysable substituent groups in the
structure of the silane precursor. The fine-tuning of the carrier structure by using an ade-
quate ternary precursor mixture led to a significant improvement of the catalytic properties
and allowed for the further investigation of other immobilization parameters.

2.1.2. Screening of Additives for Sol–Gel Biocatalysts with Improved Activity and Stability

The protection of enzymes during the sol–gel entrapment process is essential to pre-
vent enzyme inactivation by gel shrinkage throughout the gel maturation and drying steps,
or by them having an inadequate pore size, thereby resulting in slow diffusion rates. The
additives that were used in the immobilization process of the enzymes not only served to
improve the properties of the sol–gel matrix, but also influenced the catalytic properties
of the entrapped biocatalysts. Silica gels are capable of entrapping large amounts of such
additives, thus enabling the preservation or even enhancement of enzyme activity and selec-
tivity [26]. For this reason, several compounds such as PEG (20,000 Da molecular weight),
the surfactant Tween 80 [polyoxyethylene (20) sorbitan monooleate] and three ionic liquids,
1-octyl-3-methylimidazolium tetrafluoroborate (OmimBF4), 1-butyl-3-methylimidazolium
hexafluorophosphate (BmimPF6) and 1-ethyl-3-methylimidazolium acetate (EmimAc) have
been tested as additives in the immobilization procedure. The role of these immobilization
additives was to protect the enzyme during the immobilization process and to promote a
suitable porous structure of the sol–gel matrix.

Previous studies on the potential of PEG, Tween 80 and ionic liquids to enhance the
catalytic activity of enzymes [17,23,25] led us to consider them as suitable additives in the
sol–gel immobilization procedure.

The biocatalysts that were immobilized in the binary and ternary silane networks,
which are presented in Tables 1 and 2, were obtained by using PEG 20,000 as additive. In
Figure 1, these results are compared with those that were obtained using Tween 80 and the
ionic liquids OmimBF4, BmimPF6 and EmimAc (only for the ternary system SG9), thus
illustrating the effect of the various additives on the catalytic properties of the sol–gel
entrapped enzyme.
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CTec2 cellulase that was immobilized by sol–gel entrapment with binary and ternary silane networks.

The additives exhibited a critical influence on the catalytic efficiency of the immobilized
cellulase. The addition of Tween 80 to the sol in the entrapment of the Cellic CTec2 cellulase
significantly improved the catalytic efficiency of the immobilized biocatalysts, particularly
for the binary silane systems with more hydrophobic non-hydrolysable functional groups
such as the phenyl groups. This enhancement in the catalytic efficiency of the immobilized
biocatalysts by the addition of Tween 80 was accompanied by a delay in the gelation
process, and it led to the presence of immobilized biocatalysts with significantly lower
protein loadings (data not shown).

Through using the binary VTMOS:TMOS silane system, the catalytic efficiency in-
creased from 4.8 to 6.6 µmol·min−1·g biocatalyst−1, while for the PhTMOS:TMOS silane
system, an increase from 2.8 to 6.7 µmol·min−1·g biocatalyst−1 (CMC assay) was observed.
In case of the ternary silane system (VTMOS:PhTMOS:TMOS) that used Tween 80 as an
additive, the gelation step could not be accomplished.

Replacing the non-ionic surfactant Tween 80 with ionic liquids resulted in improved
sol–gel biocatalysts being produced with increased protein loadings. The immobilization
yields were above 90%, regardless of the type of ionic liquid that was used (data not
shown). Since almost all of the enzyme proteins were entrapped in the sol–gel matrix, we
assumed that the differences in the enzyme activity were caused by there being different
inclusions of the enzyme within the porous support. Regarding the catalytic efficiency
of the immobilized biocatalysts that were obtained by using ionic liquids as additives,
the highest activity was observed when we were using the ionic liquid EminAc, and the
catalytic efficiency increased in the series of BmimPF6 < OmimBF4 < EmimAc.

These results show that ionic liquids can be considered to be good immobilization
additives because they do not interfere with the polycondensation reaction, thereby leading
to improved silica gels with high protein loadings. However, the examined ionic liquids
resulted in a lower catalytic efficiency of the immobilized cellulase compared to the additive
PEG 20,000.
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In conclusion, for the binary silane precursor system, Tween 80 was the best additive
that we used. The highest value for the catalytic efficiency, which was obtained with the
PhTMOS:TMOS silane precursor system and when Tween 80 was an additive, was about
6.7 µmol·min−1·g−1. Similarly, the highest catalytic efficiency, which was obtained when
we used PEG as an additive in the ternary VTMOS:PhTMOS:TMOS silane precursor system
(at a molar ratio of 0.4:1.6:1), was 6.7 µmol·min−1·g−1. Therefore, for the ternary silane
precursor system, PEG 20,000 was the best immobilization additive that we used.

Based on these results, the ternary silane mixture VTMOS:PhTMOS:TMOS at a
0.4:1.6:1 molar ratio, in the biocatalyst SG9, is the optimal composition for the immo-
bilization of Cellic CTec2 cellulase. Consequently, this immobilized biocatalyst SG9 was
used in the subsequent experiments.

2.1.3. Influence of Enzyme Loading on the Catalytic Efficiency of Immobilized Cellic
CTec2 Cellulase

A key feature of sol–gel structures is the possibility of combining high protein loadings
with a minimal diffusion limitation [19].

One of the main advantages of sol–gel immobilization is the ability to entrap a larger
amount of enzyme proteins in comparison to other immobilization methods. However,
the presence of the entrapped enzyme in the sol–gel matrix that is above a certain protein
loading can impede substrate diffusion to the active center of the enzyme, thereby leading
to a lower catalytic efficiency of the immobilized biocatalyst. This is especially true for
cellulases since their natural substrates (cellulose) are high-molecular mass compounds.
This aspect was highlighted in this study.

The effect of protein loading on the catalytic efficiency of the biocatalysts was studied
by evaluating the catalytic efficiency of the immobilized cellulases at three initially added
protein amounts (1.66, 3.33 and 5.00 mg of protein per mmol of silanes).

The catalytic efficiencies (DNS assay) of the immobilized biocatalysts, obtained by en-
trapment in sol–gel using a PhTMOS:TMOS binary silane precursor system at a 1:1 molar
ratio (SG6) and sol–gel (SG9) and magnetic sol–gel (M1-SG9 and M2-SG9) using a VT-
MOS:PhTMOS:TMOS ternary silane precursor system at a 0.4:1.6:1 molar ratio and different
protein loadings, are presented in Figure 2.

As highlighted in Section 2.1.1, the catalytic efficiency for the binary sol–gel biocatalyst
SG6 at an initial protein loading of 1.66 mg·mmol silane−1 was 2.2 µmol·min−1·g biocatalyst−1.
Increasing the initial protein amount led to a proportional increase in the entrapped pro-
tein loading. At 3.33 mg·mmol silane−1, we observed a two-fold increase in the catalytic
efficiency, while higher amounts resulted in a slight decrease in the catalytic efficiency.

For the biocatalyst that was obtained with a ternary silane system, with a protein dos-
ing of 1.66 mg·mmol silane−1, the VTMOS:PhTMOS:TMOS ternary silane system led to an
entrapped protein amount of 8.9 mg protein per g sol–gel and the highest catalytic efficiency
value (6.7 µmol·min−1·g biocatalyst−1). A two-fold increase in the initial protein amount
(3.33 mg·mmol silane−1) lead to a protein loading of 28.5 mg protein per g sol–gel, but it
lead to a small decrease in the catalytic efficiency of only 5.6 µmol·min−1·g biocatalyst−1.
Thus, increasing further the amount of protein-added (5.00 mg protein per mmol silane)
gelation could not be accomplished for the biocatalysts within the ternary silane system.

For the sol–gels with ternary silane systems that were adsorbed onto the magnetic
particles (M1-SG9 and M2-SG9), the calculated protein loadings were considerably lower
due to the higher mass fraction of the immobilized biocatalyst with a non-catalytic function.
At a protein loading of 1.66 mg·mmol silane−1, the magnetic sol–gel biocatalysts that are
presented in this work have similar catalytic efficiencies with the sol–gel-immobilized
biocatalyst (approximately 5.5 µmol·min−1·g biocatalyst−1), but with significantly lower
protein loadings (2.0–2.5 mg protein·g biocatalyst −1). By increasing the protein loading
to 3.33 mg·mmol silane−1, up to a six-fold increase in the entrapped protein loading was
observed, which correlated with a slight decrease in the catalytic efficiency.
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The protein content in the immobilization mixture has an important influence as con-
centrations above a certain limit can impede the gel formation, whereas low concentrations
may lead to there being reduced immobilization yields.

Based on these results, a protein loading of 3.33 mg·mmol silane−1 for the binary
and ternary silane systems sol–gels and the magnetic sol–gel that were obtained can be
considered optimal for the immobilization of Cellic CTec2 cellulase.

2.2. Morphological and Structural Characterization of Immobilized Cellulase
2.2.1. Scanning Electron Microscopy (SEM)

Through scanning electron microscopy (SEM), important characteristics of the mor-
phology of the immobilized biocatalysts can be highlighted as they provide useful informa-
tion about the microstructure, porosity, and texture of the studied material, and these are
details that can be correlated with their catalytic efficiency. A SEM characterization study
was performed to analyze the effect of different precursor silanes and the immobilization
method that was used on the morphology of the sol–gel material with entrapped cellulase.
The SEM images are shown in Figure 3 at 10,000× magnification.

The SEM image for the entrapped biocatalyst (SG6) that was obtained by the use of
the direct sol–gel method with a binary system of precursor silanes PhTMOS:TMOS at a
molar ratio of 1:1 (Figure 3a) shows a porous structure containing particles <2 µm (even
sub-micrometric) in a very crowded structure, and the SEM image of the control sol–gel
matrix (Figure 3b) is not much different from that of the immobilized biocatalyst.

The entrapped biocatalyst (SG9) that was obtained with the ternary silane precursor
system VTMOS:PhTMOS:TMOS at a molar ratio of 0.4:1.6:1, with a higher content of phenyl
groups, shows (Figure 3c) a porous structure with smooth areas and tiny particles that
are generally less than 4 µm, which firmly adhered to the smooth surfaces of the large
particles; this is a structure that is correlated with the good catalytic efficiency values that
were obtained in the CMC hydrolysis reaction. In contrast, the structure of the control gel
is completely different, with it showing a block-like morphology with almost completely
smooth surfaces and sharp edges.
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With the decrease in the concentration of the phenyl groups in the sol–gel matrix and
the increase in the content of the vinyl groups in the entrapped biocatalysts, their SEM
images show that there are more compact structures, with an increase in the size of the
spherical particles that end up measuring 5–10 µm and are found on the compact surface
of the matrix (Figure 3e,f). These structures are correlated with a slightly lower catalytic
efficiency, probably due to the fact that sol–gel matrices become too dense and compact,
thereby causing a limitation in the transfer of the corresponding mass of the reactant and
the product [24,44].
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Figure 4 shows the EDS spectra of the investigated materials, and it can be noticed that
the main peaks are attributed to C, O and Si, which is normal for these types of materials
and it is in concordance with our previous studies [25].
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In addition to these peaks with a higher intensity, N, F and Na were detected as well. 
N is present in small amounts, and it comes from the protein that is confined in the matrix, 
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(b) SG9—VTMOS:PhTMOS:TMOS (0.4:1.6:1); (c) SG10—VTMOS:PhTMOS:TMOS (1:1:1); (d) SG11—
VTMOS:PhTMOS:TMOS (1.6:0.4:1).

In addition to these peaks with a higher intensity, N, F and Na were detected as
well. N is present in small amounts, and it comes from the protein that is confined in the
matrix, while traces of F and Na elements were detected with a wt. % that is less than
1%, thus indicating that a small part of the NaF catalyst was not eliminated during the
gel-washing step.

The relative ratio of C/Si (w/w) in the silane precursors that were employed for the
studied immobilized biocatalysts decreased from 6.13 to 2.33, and this is corelated with
the decrease in the phenyl group in the sol–gel matrix. All the peaks are revealed by the
quantification results that are presented in Table 3.

Table 3. EDS quantification of the immobilized biocatalysts in weight percentages (wt. %).

Biocatalyst Silane Type
(Molar Ratio) C N O F Na Si C/Si

SG6 PhTMOS:TMOS
(1:1) 49.37 1.73 39.71 0.86 0.28 8.05 6.13

SG9 VTMOS:PhTMOS:TMOS
(0.4:1.6:1) 47.38 1.67 36.31 0.32 0.23 14.08 3.37

SG10 VTMOS:PhTMOS:TMOS
(1:1:1) 37.54 2.17 44.07 0.21 0.25 15.77 2.38

SG11 VTMOS:PhTMOS:TMOS
(1.6:0.4:1) 39.98 1.76 40.38 0.47 0.25 17.16 2.33

2.2.2. Fluorescence Microscopy (FM)

Fluorescence microscopic imaging provides important information on the distribution
of the immobilized enzyme within the sol–gel matrix, which is essential for the accessibility
of the enzyme by the substrate molecules. Because commercial Cellic CTec2 cellulase does
not have natural fluorescence, it was necessary to label it with a fluorochrome compound,
fluorescein isothiocyanate (FITC). The labelling was performed according to the method
that is described in the PIERCE EZ-LabelTM FITC Labeling Kit, then the immobilization was
carried out using the same protocol as for unlabeled cellulase’s entrapment in the sol–gel
(0.150 mL suspension containing cellulase that was bound to the fluorescein solution was
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immobilized by its entrapment in the sol–gel using the precursor silanes PhTMOS:TMOS
at a 1:1 molar ratio and VTMOS:PhTMOS:TMOS at a 0.4:1.6:1 molar ratio). For comparison,
a control sol–gel matrix (without an enzyme) was used for each immobilized biocatalyst
that was labeled with FITC, as shown in Figure 5a,c.
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containing FITC-labelled cellulase: (a) Blank-SG6 matrix—PhTMOS:TMOS (1:1); (b) FITC-SG6—
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VTMOS:PhTMOS:TMOS (0.4:1.6:1).

The images that were obtained by us applying fluorescence microscopy to the cellulase–
FITC complex that was immobilized in the two types of sol–gel matrices are shown in
Figure 5b for the binary system of precursor silanes PhTMOS:TMOS at a 1:1 molar ratio and
in Figure 5d for the ternary silane system VTMOS:PhTMOS:TMOS at a 0.4:1.6:1 molar ratio.
Because only the FITC-labelled biocatalysts showed fluorescence, the surface profile of
the active immobilized cellulases demonstrates that the enzyme is distributed both on the
surface and inside of the xerogel; in both cases, the labelled cellulases are found throughout
the matrix, suggesting that there is a uniform distribution of the enzyme in the preparations
obtained by the sol–gel entrapment technique. At the same time, in the case of the sol–gel
matrix that was obtained with a binary system of precursor silanes PhTMOS:TMOS at a
1:1 molar ratio, which is shown in Figure 5b, a different fluorescence is observed than that
which was obtained with the ternary system VTMOS:PhTMOS:TMOS at a 0.4:1.6:1 molar
ratio; the fluorescence image shows that there is the presence of more compact blocks that
keep the enzyme tight, which is a structure that can be correlated with the lower enzymatic
efficiency of the biocatalyst.

2.2.3. FT-IR Spectroscopy

FT-IR spectroscopy is a technique that is often used to characterize the structure of
the sol–gel type materials. The FT-IR spectra confirmed the presence of alkyl and aryl
functional groups of the precursor silanes in the sol–gel matrix (Figure 6), but the FTIR
spectroscopic analysis could not locate the cellulase because the band of the amide group
was covered by other vibrations of the structure sol–gel matrices.
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method: (a) SG6—PhTMOS:TMOS (1:1); (b) SG9—VTMOS:PhTMOS:TMOS (0.4:1.6:1); (c) SG10—
VTMOS:PhTMOS:TMOS (1:1:1); (d) SG11—VTMOS:PhTMOS:TMOS (1.6:0.4:1). Inset: enlarged
picture of the 400–1500 cm−1 region.

All of the immobilized biocatalysts showed characteristic bands of silica compounds
that were formed by the hydrolysis/condensation of the silane precursor groups that
were used: the 1085, 1076, 1056 and 1049 cm−1 bands were attributed to the Si–O–Si
bonds (1090–1030 cm−1); the 786, 777 and 767 cm−1 bands were specific to Si-CH3 bonds
(860–760 cm−1) [45]. The intense Si-OH bands between 3700–3200 cm−1 are missing, which
proves that almost all of the OH groups were involved in the sol–gel matrix, thereby
confirming the relationship between the condensation and contraction reactions of different
types of precursor silanes. At the same time, the absence of the residual Si-OH groups also
explains the hydrophobicity of the sol–gel matrix, as has been previously shown [24].

The presence of the phenyl groups in the immobilized biocatalysts (Figure 6) is demon-
strated by the specific bands of the CH group from the aromatic nucleus of benzene and
the vibration of the aromatic skeleton at 734–740 cm−1 and 696–698 cm−1, respectively.
These bands are best observed in the spectra of the immobilized biocatalysts where the
phenyl groups are in higher concentration (SG6) with PhTMOS:TMOS at a 1:1 molar ratio,
Figure 6a, and (SG9) with VTMOS:PhTMOS:TMOS at a 0.4:1.6:1 molar ratio, Figure 6b. The
bands at 1409 cm−1 and 968 cm−1 can be assigned to the νs and δCH2 of the Si–CH=CH2
bonds (1410–1390 cm−1; 960–980 cm−1), and the intensities are higher in the biocatalyst
(SG11), and this corresponds to there being a higher concentration of vinyl groups in the
sol–gel matrix.

These results confirm that all of the precursors were included in the sol–gel matrix;
the presence of these functional groups is essential for the activity and operational stability
of the entrapped enzyme.

Regarding the biocatalysts that were obtained by the double immobilization (sol–gel
magnetic), the FT-IR spectra that were obtained are different because the specific bands of
the magnetic support also appeared (Figure 7).
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rials), shows that there were bands of medium intensity at 634 cm−1, 582 cm−1 and 433 cm−1 

Figure 7. FT-IR spectra of: (a) magnetic support MP1 and (b) cellulase biocatalyst (M1-SG9), which
were obtained by the magnetic sol–gel immobilization method with silane precursors VTMOS:
PhTMOS:TMOS (0.4:1.6:1) and MP1. Inset: enlarged picture of the 400–900 cm−1 region, showing the
presence of the specific absorption bands for the magnetite/maghemite mixture.

Therefore, the FT-IR spectrum of the magnetic support MP1, Figure 7a, shows that
there were intense bands at 559 cm−1 and 400 cm−1 that are specific to magnetite (Fe3O4,
570 cm−1 and 400 cm−1) as well as weaker bands at 628 cm−1 and 430 cm−1 that are
specific to maghemite (γ-Fe2O3 630–660 cm−1), which shows that this support is a mixture
of magnetite/maghemite. In the case of the immobilized biocatalyst M1-SG9 that was
obtained by the sol–gel entrapment method which was combined with its adsorption on the
magnetic support MP1, with a ternary system of precursor silanes (PhTMOS:VTMOS:TMOS
at a 1.6:0.4:1 molar ratio), Figure 7b, the specific bands of the magnetic support, as well as
those of the sol–gel matrix, have been found.

The FT-IR spectrum of the magnetic support MP2, Figure S2a (Supplementary Materials),
shows that there were bands of medium intensity at 634 cm−1, 582 cm−1 and 433 cm−1 that
are specific to maghemite γ-Fe2O3, as well as very weak bands at 565 cm−1 and 410 cm−1

that are specific to Fe3O4 magnetite, thus proving that it is predominantly maghemite,
which contributes to its lower magnetization value when it is compared to MP1.

2.2.4. Thermal Analysis (TGA/DTA)

A thermogravimetric analysis (TGA) provides important information about the tem-
perature range in which the samples undergo a major conformational change by observing
the mass loss profile as a function of temperature. The mass loss curves of the biocatalysts
that were immobilized by the sol–gel entrapment method were divided into three regions
(Figure 8 and Table 4), as seen in our previous studies [24].
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Table 4. Thermal behavior of biocatalysts that were obtained by the sol–gel entrapment of Cellic
CTec2 cellulase.

Biocatalyst
Weight Loss, %

Residual Mass, %
30–280 ◦C 280–530 ◦C 530–990 ◦C

Blank-SG6 matrix 2.80 5.32 20.18 71.40
SG6 3.82 5.43 16.46 71.73

Blank-SG9 matrix 2.62 6.33 11.30 79.42
SG9 3.05 6.46 18.12 70.20

SG10 2.16 4.34 6.76 84.59
SG11 2.28 3.79 5.14 86.68

Region I is related to the loss of water and some volatile organic molecules, which goes
up to a temperature of 280 ◦C. Region II, which is in the range of 280–530 ◦C, is associated
with the loss of organic constituents (C, H, O and N), volatiles that were present or were
formed at the beginning of the organic decomposition, including cellulase decomposition.
In region III, the mass loss is associated with the dehydroxylation and carbonization
reactions of the organic compounds. Above 850 ◦C, thermal stability may be reached, or
the material may be completely disintegrated.

In the first interval, the mass loss between 2.1–3.8% was due to the evaporation of water
and perhaps a small amount of 2-propanol or other volatile compounds that remained in
the preparation at the end of the drying period. It was not surprising that the immobilized
biocatalysts that contain the entrapped cellulase had a mass loss that is about 0.4–1% higher
than the cellulase-free sol–gel matrix had, which used as reference, since the cellulase was
introduced as such in liquid form into the immobilization mixture and it remained in a
hydrated state at the end of the process. The small amount of water that is hydrogen-
bonded to the hydrophilic amino acid residues in the enzyme structure is essential to
maintain the conformation of the active site. The second and third regions are the most
important for the thermal analysis profiles of the immobilized biocatalyst; the difference of
0.11–0.13% between the mass loss of the immobilized biocatalysts (PhTMOS:TMOS at a
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1:1 molar ratio), respectively (VTMOS:PhTMOS:TMOS at a 0.4:1.6:1 molar ratio), and the
reference control gels, in the range of 280–530 ◦C can be attributed to the entrapped protein.

The decrease in the mass loss that was observed in the immobilized biocatalysts
obtained with a ternary system of silane precursors with the decrease of phenyl groups,
respectively, with the increase of vinyl groups in the sol-gel matrix, is correlated, as seen,
with a decrease in the catalytic efficiency of these biocatalysts, probably because of the com-
paction of the matrix network, as was also noticed by SEM scanning electron microscopy.

The DTG curves, Figure 8, show that the highest value of the thermal decomposition
rate was at high temperatures of around 600 ◦C, which indicates that there was a very good
protection against temperature rise after the immobilization. These conclusions were later
confirmed by the preservation of the cellulase activity at high temperatures, which was
also demonstrated by the thermal stability study.

The organic functional groups that were covalently bound in the matrix structure
were almost completely decomposed up to 800 ◦C in all of the immobilized biocatalysts
that were tested. As can be seen in Table 4, the total amount of mass that was lost was
the highest (about 28%) in the case of the immobilized biocatalysts with the highest con-
centration of phenyl groups, and this loss decreased as the number of vinyl groups in the
matrix increased.

2.3. Tuning the Catalytic Efficiency of the Sol–Gel-Entrapped Cellulase for the Hydrolysis
of Cellulose
2.3.1. Time Course of the Enzymatic Hydrolysis of Microcrystalline Cellulose

The catalytic efficiency of the sol–gel-entrapped cellulase was also investigated in the
hydrolysis of the microcrystalline cellulose (Avicel PH-101) substrate. The DNS assay of
the total reducing sugars has been used at different time intervals, which ranged up to 48 h,
to establish the optimum time of the hydrolysis reaction of the native and the magnetic
sol–gel-immobilized cellulase M1-SG9 with VTMOS:PhTMOS:TMOS at a molar ratio of
0.4:1.6:1 which was adsorbed onto MP1. The time course of the hydrolysis reactions is
shown in Figure 9.
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Comparing the catalytic efficiency of the native and immobilized enzymes is a difficult
task because, during the immobilization, the enzyme was dispersed in the sol–gel matrix,
and the amount of entrapped proteins can only be determined indirectly. The native
cellulase was added to the reaction medium at a concentration of 6 mL·L−1 (approximately
0.4 mg protein per mL acetate buffer), while for the (solid) immobilized cellulase, about
10 g·L−1 sol–gel was added, therefore corresponding to only 0.1 mg of protein per mL of
the buffer.

We observed a steady increase in the hydrolysis yield of Avicel PH-101 as a function of
time for both biocatalysts. In the case of the native cellulase, almost a complete conversion
of the substrate was achieved after 24 h. The hydrolysis reaction that was catalyzed by the
magnetic sol–gel-entrapped cellulase followed a similar trend, though with lower yields,
after 24 h, and this reached 86% after 48 h of the reaction.

Compared to the native cellulase, the immobilized biocatalyst yielded a lower hydrol-
ysis rate, but the immobilization confers numerous other advantages, such as an enhanced
stability and reusability, as is shown in Sections 2.4 and 2.5. The lower hydrolysis yield that
was obtained for the sol–gel-entrapped biocatalysts is probably due to the reduced diffusion
of the substrate in the sol–gel matrix. Further hydrolysis experiments were performed at
24 h of reaction time.

2.3.2. Influence of the Immobilization Parameters on the Enzymatic Hydrolysis of
Microcrystalline Cellulose

The influence of the nature and molar ratio of the silane precursors on the catalytic
efficiency of the sol–gel-immobilized cellulase was explored using the reference substrate
CMC, and this is discussed in Section 2.1.1. The same immobilized biocatalysts were
also studied as catalysts for the hydrolysis of Avicel 101 microcrystalline cellulose. Sugar
productivity, as it is defined in literature [46], was considered to be an appropriate parameter
to express the real catalytic efficiency of the biocatalysts in the cellulose hydrolysis process.

As shown in Figure 10, the immobilization of Cellic CTec2 cellulase in the sol–gels that
were obtained from the binary silane systems using alkyl-functionalized silanes resulted in
low hydrolysis yields and sugar productivity values that were less than 20 mg of sugar per
mL of the reaction mixture. The highest sugar productivity value (corresponding to 40%
Avicel hydrolysis yield in 24 h and a sugar productivity of approximately 75 mg·mL−1) was
obtained for the PhTMOS:TMOS system (SG6 biocatalyst). As concerns the ternary silane
precursor systems, the best results were obtained for the sol–gel matrix with the highest
content of the phenyl groups (SG9 biocatalyst, obtained with VTMOS:PhTMOS:TMOS at a
0.4:1.6:1 molar ratio). Increasing the vinyl group content in the tertiary silane precursor sys-
tem resulted in a steady decrease of the catalytic efficiency, which was observed. Obviously,
the presence of bulky phenyl groups in the matrix in an optimized amount is favorable for
cellulose hydrolysis.

2.3.3. Influence of Enzyme Loading on the Enzymatic Hydrolysis of Microcrystalline Cellulose

The enzymatic hydrolysis reaction of Avicel PH-101, which was catalyzed by the best
performing immobilized biocatalysts which were obtained by their entrapment in sol–gel
and magnetic sol–gel (presented in Table 5), was also studied at different protein loadings
by means of observing their sugar productivity (mg·mL−1·g substrate−1).

In the case of the binary silane system, the productivity increased only slightly with the
increasing of the protein loading, which was up to 111 mg/mL. For the sol–gel-entrapped
cellulase using a ternary silane system, higher protein loadings were limited by the gelation
difficulties, as is discussed earlier in the paper. The ternary system without magnetic
particles (VTMOS:PhTMOS:TMOS at a 0.4:1.6:1 molar ratio) led to comparable sugar
productivities as for the binary system at lower entrapped enzyme amounts. A sugar
productivity value of 108 mg·mL−1·g substrate−1 was obtained at a protein loading of
28.5 mg·g biocatalyst−1, compared to a productivity of 111 mg·mL−1·g substrate−1 at the
maximum protein loading of 43.0 mg·g biocatalyst−1 for the binary silane system.
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Figure 10. Enzymatic hydrolysis of microcrystalline cellulose Avicel-PH101 that was catalyzed by
immobilized biocatalysts which were obtained by their entrapment in sol–gel, at 24 h reaction time
and 50 ◦C.

Table 5. Influence of protein loading on the enzymatic hydrolysis of microcrystalline cellulose Avicel-
PH101, at 24 h reaction time and 50 ◦C, as catalyzed by immobilized biocatalysts which were obtained
by their entrapment in sol–gel and magnetic sol–gel.

Biocatalyst Silane Type
(Molar Ratio)

MP
Type

Initial Protein
Dosing,

Entrapped Protein
Loading, Sugar Productivity,

mg·mmol Silane−1 mg·g Biocatalyst−1 mg·mL−1·g
Substrate−1

SG6
PhTMOS:TMOS

(1:1)

1.66 14.2 74
3.33 29.3 104
5.00 43.0 111

SG9
VTMOS:PhTMOS:TMOS

(0.4:1.6:1)

1.66 8.9 58
3.33 28.5 108
5.00 NG * -

M1-SG9
VTMOS:PhTMOS:TMOS

(0.4:1.6:1) MP1
1.66 2.5 22
3.33 11.2 149

M2-SG9
VTMOS:PhTMOS:TMOS

(0.4:1.6:1) MP2
1.66 2.0 20
3.33 11.8 118

* NG—no gelling; MP—magnetic particles.

By using the ternary magnetic sol–gel systems, higher productivity values were
obtained with significantly lower enzyme contents of the magnetic nanobiocatalysts. The
deposition on the magnetic particles probably leads to an improved mass transfer and has
a positive effect on Avicel hydrolysis. Although the immobilization yield of the enzyme is
lower, the biocatalyst is more efficiently disposed in the matrix, and the sugar productivity
increases. Therefore, this magnetic sol–gel biocatalyst M1-SG9 can be considered to be the
best option for further studies.
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2.4. Effect of Immobilization on the Main Parameters of the Cellulose Hydrolysis Reaction
2.4.1. Influence of Temperature on the Catalytic Performance of the Immobilized Biocatalysts

Thermal stability is a key requirement for biocatalysts that are intended for use in
industrial processes; thus, the development of thermostable biocatalysts through enzyme
immobilization is essential. The influence of temperature on the catalytic efficiency of
the native and sol–gel-immobilized biocatalysts has been studied for both of the sol–gel
biocatalysts that were obtained with the ternary silane network VTMOS:PhTMOS:TMOS
at a 0.4:1.6:1 molar ratio without (SG9) or with deposition on the magnetic particles MP1
(M1-SG9). The model reaction of CMC hydrolysis was carried out at different temperatures
in the range of 50–90 ◦C. The relative activities of the immobilized biocatalysts which are
compared to those of the native cellulase are shown in Figure 11.
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Figure 11. Influence of temperature on the catalytic efficiency of native and immobilized Cel-
lic CTec2 cellulase by entrapment in sol–gel (SG9) and magnetic sol–gel (M1-SG9) with VT-
MOS:PhTMOS:TMOS (0.4:1.6:1) in the hydrolysis of CMC at 30 min reaction time and different
temperatures in the range 50–90 ◦C.

The maximum catalytic efficiency of the native cellulase was observed at 50 ◦C, which
was followed by a steady loss of activity at increasing temperatures, with there being about
50% at 90 ◦C. With respect to sol–gel-entrapped biocatalyst (SG9), we observed an increase
in the temperature-related activity of the enzyme up to 60 ◦C; above this temperature,
there was a slow decrease in the catalytic activity to 53%. An almost two-fold increase
in the specific activity was determined for the sol–gel biocatalyst (702 U·g protein−1) at
this temperature (native enzyme 467 U·g protein−1). The elevated temperature proved
to be beneficial for the catalytic efficiency of the sol–gel biocatalyst probably because of
improved substrate diffusion to the entrapped enzyme.

In the case of the magnetic biocatalyst (M1-SG9), the highest catalytic efficiency was
obtained at 50 ◦C. A five-fold increase in the specific activity was determined for the mag-
netic sol–gel biocatalyst (2533 U·g protein−1) at this temperature (517 U·g protein−1 for the
native enzyme). It can be noticed that the thermal inactivation at increasing temperatures
was lower for the magnetic sol–gel biocatalyst. In the studied temperature range, this
biocatalyst maintained the highest relative activity that was about 55% at 90 ◦C. Other
research groups also reported that there were unchanged optimal temperature values after
the immobilization or an extension of the temperature stability range [29,47–49].
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Keeping in mind the industrial applications of immobilized enzymes, thermal stability
is one of the important parameters to be considered; therefore, the magnetic sol–gel bio-
catalyst demonstrated promising potential in this field with the added benefit of its easy
recovery by applying a magnetic field.

2.4.2. Influence of the pH of the Reaction Medium on the Catalytic Performance of
Sol–Gel-Immobilized Cellulase

Enzymes are generally stable only at a well-defined pH range; cellulases particularly
favor more acidic environments, which is why most activity assays are carried out at a pH
of 4.8–5.0. The influence of pH on the catalytic performance of the native and immobilized
biocatalysts (sol–gel SG9 and magnetic sol–gel M1-SG9), with the ternary silane network
VTMOS:PhTMOS:TMOS at a molar ratio of 0.4:1.6:1, was studied in the range of 4.2–6.8.
The relative and specific activity of the native and immobilized biocatalysts are given in
Figure 12.
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Figure 12. Influence of pH on the catalytic efficiency of native and immobilized Cellic CTec2 cellu-
lase by entrapment in sol–gel (SG9) and magnetic sol–gel (M1-SG9) with VTMOS:PhTMOS:TMOS
(0.4:1.6:1) in the hydrolysis of CMC at 30 min reaction time and 50 ◦C.

In the studied pH range, the native cellulase had the highest catalytic efficiency at a pH
of 4.8, while the sol–gel and magnetic sol–gel-immobilized biocatalysts were most efficient
at a pH of 5.2. Other research groups reported either a slight decrease or unchanged optimal
pH values after immobilization [29,49,50].

An almost two-fold increase in specific activity was determined for the sol–gel bio-
catalyst (723 U·g protein−1) and a six-fold increase for the magnetic sol–gel biocatalyst
(2696 U·g protein−1) at this pH value (native enzyme only 476 U·g protein−1). The immo-
bilized biocatalysts were relatively more stable in a broader pH range when they were
compared to the native cellulase. The enhancement of the pH stability of the cellulase
towards a more basic media after the immobilization is due to the increased rigidity and
protection of the enzyme by the sol–gel matrix against conformational changes that can be
induced by pH variations, as was also seen in our previous study [17].

2.5. Operational Stability of the Immobilized Cellulase

Enhancing the recyclability of cellulases is a promising approach to reduce the high
cost of the enzymatic hydrolysis of lignocellulosic biomass to fermentable sugars/glucose.
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One of the main objectives of this study was the recovery and reuse of the immobilized
biocatalysts, as this can reduce the process costs. Generally, enzymes are reused until
their activity reaches below 25% of their initial value. The operational stability in seven
consecutive reaction cycles (Figure 13) of the magnetic sol–gel-entrapped biocatalyst M1-
SG9 was evaluated in the hydrolysis of CMC at 50 ◦C, with a pH of 4.8, and after 30 min
of reaction time in comparison with the hydrolysis of the microcrystalline cellulose Avicel
PH101 at 50 ◦C, with a pH of 4.8, and after 24 h of reaction time.
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Figure 13. Operational stability of Cellic CTec2 cellulase that was immobilized by its entrapment
in magnetic sol–gel (M1-SG9) with VTMOS:PhTMOS:TMOS (0.4:1.6:1) in the hydrolysis of CMC at
30 min reaction time at 50 ◦C, and Avicel PH-101 at 24 h reaction time at 50 ◦C.

The magnetic sol–gel biocatalyst retained more than 80% of its activity after seven
reaction cycles of the hydrolysis of CMC and only 40% of its activity after seven hydrolysis
cycles in comparison to it’s first use in the hydrolysis of Avicel PH-101.

The maximum glucose productivity that was obtained in the decomposition of CMC
at 50 ◦C and at a pH of 4.8 was 171 mg·mL−1·g−1 of CMC, which is similar to the results
that were reported by Tan et al. (162 mg·g−1 of CMC) using cellulase that was immobilized
inside a hollow magnetic structure [49], and Zanuso et al. (168 mg·g−1 of CMC) who used
cellulase that was bound to magnetic nanoparticles that were coated with chitosan [33].
Zanuso et al. found that there was a 45% relative activity retention after 13 reuse cycles
for the magnetic biocatalyst, while Asar et al. [29] reported that there was a 49% retention
of activity after eight reuse cycles for the cellulase that was immobilized on chitosan-
modified Fe3O4/graphene oxide. The loss of activity in reuse can be associated with the
agglomeration and/or natural deactivation of the enzyme rather than enzyme leakage,
protein denaturation and inhibition [33].

3. Conclusions

Commercial cellulase Cellic CTec2 which was immobilized by entrapment in sol–gels
showed efficient biocatalytic properties for the conversion of cellulose to glucose. The
entrapment of the enzyme blend into a tailored sol–gel matrix resulted in stable biocatalysts
with good catalytic efficiency. Furthermore, deposition of the sol–gel-entrapped biocatalyst
onto the magnetic nanoparticles improved the possibility of the enzyme’s reuse. The
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tailoring of the immobilization parameters such as the nature and ratio of the silane
precursors, the nature of the immobilization additives and the protein loading, allowed for
the optimization of the catalytic properties of the sol–gel and magnetic sol–gel biocatalysts.
The best immobilized biocatalysts were obtained with the use of a ternary silane precursor
system VTMOS:PhTMOS:TMOS at a 0.4:1.6:1 molar ratio and also with the deposition of it
on the magnetic particles. The sol–gel-immobilized cellulase was thoroughly characterized
and displayed a good temperature and pH stability. Multiple uses of magnetic sol–gel-
immobilized cellulase on a microcrystalline cellulose substrate demonstrated the capability
to retain more than 40% of its residual activity after seen reuse cycles, thus opening up
the possibility to investigate the catalytic performance of this new series of immobilized
cellulase biocatalysts on real biomass.

4. Materials and Methods
4.1. Materials

Celulase enzyme blend Cellic CTec2 was purchased from Sigma-Aldrich. Microcrys-
talline cellulose Avicel PH101 (Sigma-Aldrich, Burlington, MA, USA), carboxymethyl-
cellulose and phenol were products of Fluka. Glucose (Merck, Rahway, NJ, USA), 3,5-
dinitrosalicylic acid (Merck, Rahway, NJ, USA), Coomassie Brilliant Blue G-250 (Merck,
Rahway, NJ, USA), 98% phosphoric acid (Merck, Rahway, NJ, USA), bovine serum albu-
min (Merck, Rahway, NJ, USA) and fluorescein isothiocyanate (Merck, Rahway, NJ, USA)
were of analytical grade and have been used in the state that they were in when they
were purchased.

Silane precursors tetramethoxysilane (TMOS, 98%), methyltrimethoxysilane (MeT-
MOS, 98%) and vinyltrimethoxysilan (VTMOS, 99%) were bought from Merck;
ethyltrimethoxysilane (EtTMOS, 98%), propyltrimethoxysilane (PrTMOS, 98%), iso-butyl-
trimethoxysilane (i-BuTMOS, 98%) and phenyltrimethoxysilane (PhTMOS, 99%) were from
Sigma-Aldrich, while octyltrimethoxysilane (OcTMOS, 98%) was from Fluka. Polyethylene
glycol 20,000 (PEG; Fluka), Tween 80 surfactant (Spectrum 3D), absolute ethanol (Merck),
sodium fluoride (Sigma-Aldrich), 2-propanol (Merck) and hexane (Merck) were used as
reagents and additives for sol–gel immobilization. Glacial acetic acid was purchased locally.

The ionic liquids 1-octyl-3-methyl-imidazolium tetrafluoroborate (OmimBF4), 1-butyl-
3-methyl-imidazolium hexafluorophosphate (BmimPF6) and 1-ethyl-3-methylimidazolium
acetate (EmimAc) were products of Merck.

4.2. Immobilization Procedures
4.2.1. Sol–Gel Entrapment Procedure and Enzyme Immobilization Yield

The immobilization procedure for the sol–gel entrapment of enzymes, which was
used in this study, is a modified version of the one that was previously reported by our
group [23]. Briefly, a certain volume of cellulase, depending on the enzyme loading that
was used in this study, was added to 0.05 M sodium acetate buffer pH 4.8, and it was mixed
with 200 µL additive (PEG20000, ionic liquid or TWEEN 80), 100 µL 1 M NaF solution and
200 µL isopropyl alcohol. The mixture was kept on the magnetic stirrer for 30 min (or 1 min)
for homogenization, then the silane precursors were introduced while they were agitating
until gelation occurred. The gel that was obtained was kept for 24 h at room temperature
for complete polymerization to occur. The wet gel was washed with 2-propanol, distilled
water, 2-propanol and n-hexane, and it was vacuum-filtered through a glass Buchner funnel
(G3 porosity). The product that was obtained was kept for 24 h at room temperature and
then, in a vacuum oven at a temperature of 25 ◦C for another 24 h (100 mbar vacuum level).
The final xerogel was crushed in a mortar and stored under a refrigeration condition (4 ◦C).
The washing filtrate was tested for proteins using the Bradford protein assay [51].

The efficiency of the immobilization process was evaluated in terms of protein immobi-
lization yield (%), which was calculated as a percentage of immobilized protein and protein
subjected to immobilization.
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Entrapped protein loading was expressed as mg of immobilized protein per ·g biocata-
lyst (mg·g biocatalyst−1).

A leaching test was also carried out to determine the possible loss of enzymes by
diffusion in the solution, as described by [52]. Enzymatic activity was not detected in the
samples by this assay.

4.2.2. Magnetic Nanoparticles Synthesis Procedure

The magnetic nanoparticles MPs (code names MP1 and MP2) that were used in this
study were synthesized in our laboratory by chemical coprecipitation of Fe3+ and Fe2+ salts
in the presence of an excess of ammonia, according to [53]. Briefly, FeSO4 was dissolved
in distilled water and mixed with a FeCl3 solution of appropriate concentration to yield a
Fe3+/Fe2+ ratio of 1.7 since the synthesis was carried out in the presence of oxygen. This
mixture was then heated to 80 ◦C under vigorous mechanical stirring and precipitated with
ammonia solution, and the stirring was continued for another 15 min. The precipitate that
was obtained was washed several times with distilled water to remove residual salts and
dried under vacuum.

The magnetic diameters of the particles were 5 nm and 7 nm for MP1 and MP2, respec-
tively, while their saturation magnetization was 70 emu g−1 and 60 emu g−1, respectively;
this method is described in Section 4.6.5. The hydrodynamic diameters of the particles that
were determined by DLS analysis (described in Section 4.6.6.) of the aqueous suspension
of the magnetic nanoparticles were 408 nm and 187 nm for MP1 and MP2, respectively
(Figure S3 in the Supplementary Materials).

4.2.3. Sol–Gel Magnetic Immobilization Procedure

The sol–gel magnetic immobilization procedure was identical to the sol–gel entrap-
ment procedure that is described in Section 4.2.1, until the onset of gelation. Next, 0.5 g
of magnetic nanoparticles were added to the gelling mixture. Subsequently, the obtained
magnetic gel (MSG) was processed as described above.

4.3. Catalytic Efficiency of the Native and Immobilized Cellulase

Cellulase activity expressed which was as catalytic efficiency was determined accord-
ing to the original reducing sugar analysis method [54] that was used and reported in our
previous work [17]. Briefly, 5 µL of cellulase (0.350 mg protein) or 50 mg immobilized
biocatalyst of was incubated with 2% (w/v) carboxymethyl-cellulose (CMC) in 1 mL 0.05 M
sodium acetate buffer, with a pH of 4.8, in a Thermomixer (Eppendorf AG, Hamburg,
Germany) at 50 ◦C for 30 min. The reduced sugars that were released were measured
spectrophotometrically at 575 nm (Agilent UV-VIS Cary 60 spectrophotometer) with the
3,5-dinitrosalicylic acid (DNS) method [55], and were expressed as glucose equivalent using
a standard calibration curve.

The catalytic efficiency of the biocatalysts was assessed as µmol·min−1·mL biocatalyst−1

or (U·mL−1) for native cellulase and µmol·min−1·g biocatalyst−1 or (U·g−1) for the immo-
bilized biocatalyst, with 1 U of enzymatic activity being defined as the amount of enzyme
that catalyzed the release of 1.0 µmol reducing sugars per time unit (1 min) under the
assay conditions. In this work, the term “efficiency” was used instead of “activity” because
enzymatic activity is related to the initial reaction rate of the enzyme-catalyzed reaction.

The specific activity of the biocatalysts was expressed as U total sugar that was released
per g of protein (µmol·min−1·g protein−1).

Studies on the influence of temperature and pH on the catalytic performance of
the immobilized biocatalysts studies have been carried out under the same experimental
conditions, except for the studied parameter which was set at the proper value. The thermal
profile was assessed by thermostating 2% (w/v) CMC substrate in 0.05 M sodium acetate
buffer, with a pH of 4.8, at the appropriate temperature in the 50–90 ◦C range, which
was followed by the addition of 5 µL native cellulase or 50 mg immobilized cellulase and
incubation for 30 min at the same temperature.
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The pH study was carried out in solutions of 0.05 M acetate buffer, at 50 ◦C and pH
values of 4.2, 4.8, 5.2, 6.0 and 6.8, respectively.

4.4. Enzymatic Hydrolysis of Cellulose

The hydrolysis of 10 mg·mL−1 microcrystalline cellulose (Avicel PH101) in 0.05 M
sodium acetate buffer (pH 4.8) catalyzed by 6 µL·mL−1 native cellulase Cellic CTec2
(containing 0.417 mg protein·mL−1) or 50 mg immobilized biocatalyst was performed in
15 mL glass vials with lids using a Thermomixer (Eppendorf AG, Hamburg, Germany) at
750 strokes/min and 50 ◦C for 24 h. Glass vials with the reaction mixture were centrifuged
at 6000× g, 10 min at 25 ◦C, then, the supernatant was analyzed for total released sugars
using the 3,5-dinitrosalicylic acid (DNS) method [55], and this was expressed as glucose
equivalent using a standard calibration curve.

The hydrolysis yield (%) was calculated as the ratio between the total amount of sugars
expressed as glucose released after enzymatic hydrolysis (g) and the 1.11 g of glucose
released by the complete hydrolysis of 1 g of cellulose.

The sugar productivity expressed as mg glucose per mL of reaction medium was obtained
by converting 1 g of substrate after 24 h of reaction at 50 ◦C in the enzymatic hydrolysis of
microcrystaline cellulose Avicel using native or immobilized cellulase biocatalysts.

All of the experiments were performed in duplicate, and all of the samples were
measured in triplicate. Results that are given in tables and figures are average values, as
the standard deviation for repeated measurements did not exceed 3%.

4.5. Reuse of the Magnetic Sol–Gel Biocatalyst

The reusability of the magnetic sol–gel biocatalyst was tested on both the cellulosic
substrate CMC and Avicel PH101. For this purpose, 50 mg was subjected to catalytic
activity assays according to the method described above. After the activity assay, the
biocatalyst was collected with an external magnet, washed with a buffer solution, and the
same experiment was repeated with a fresh CMC substrate solution.

As for the hydrolysis of microcrystaline cellulose (Avicel PH101), 50 mg magnetic
sol–gel immobilized biocatalyst was added to 5 mL of 0.05 M sodium acetate buffer (pH 4.8),
containing 10 mg·mL−1 microcrystaline cellulose (Avicel PH101), and it was incubated at
50 ◦C. After 24 h of enzymatic hydrolysis, the magnetic immobilized enzyme was separated
using an external magnet, washed with buffer solution, and the same experiment was
repeated with fresh Avicel substrate. The total reducing sugars were assayed by the DNS
method, as previously described, and were expressed as glucose equivalent.

All of the experiments were performed in duplicate, and all of the samples were
measured in triplicate. Results that are given in tables and figures are average values, as
the standard deviation for repeated measurements did not exceed 3%.

4.6. Characterization of the Biocatalysts
4.6.1. Scanning Electron Microscopy (SEM)

The morphology of the investigated materials was investigated by scanning electron
microscopy (SEM: Quanta FEG 250, FEI, Hillsboro, OR, USA) along with energy dispersive
X-ray spectroscopy analysis (EDX with Apollo SSD: detector, EDAX Inc., Mahwah, NJ,
USA). The SEM was operated in low-vacuum mode, using 5 kV and a 1.5 spot size to
avoid sample charging. EDX was used for chemical characterization and quantification by
positioning the samples at a working distance of about 10 mm. The measurements were
performed on 8 µm2 areas and to increase the accuracy of the measurements of 5 particles
from each material that was investigated.

4.6.2. Fluorescence Microscopy (FM)

To investigate the distribution of the enzyme in the sol–gel matrix, the fluorescence
microscopy technique was performed using an inverted microscope; Leica DMI4000B
(Leica, Munich, Germany) was used. For this purpose, a coupling reaction of Cellic CTec
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2 cellulase with a compound showing fluorescence such as fluorescein isothiocyanate
(FITC) was performed according to the PierceTM FITC kit. The removal of unbound FITC
from the obtained solution was carried out by centrifugation in a centrifuge tube with an
Amicon Ultra-4 filter (cut off 10 KDa) and repeated washings with distilled water until the
collected fractions had absorbance at a wavelength of 493 nm of about 0.1. The obtained
solution (containing FITC-labeled enzyme or enzyme-FITC complex) was concentrated
to 10 mg protein·mL−1 by centrifugation in an Amicon Ultra-4 filter tube and used for
immobilization by sol–gel entrapment. For comparison, a blank sol–gel matrix without the
enzyme-FITC complex was also prepared.

4.6.3. Fourier Transform Infrared Spectroscopy (FTIR)

Fourier transform infrared (FTIR) spectroscopy analyses of the samples were per-
formed in attenuated total reflectance (ATR) mode using a Bruker Vertex 70 (Bruker Dal-
tonik GmbH, Germany) spectrometer that was equipped with a Platinum ATR, Bruker
Diamond Type A225/Q. Sample spectra were collected in the range of 4.000−400 cm−1 at
64 scans/min with a resolution of 4 cm−1.

4.6.4. Thermal Analysis (TGA/DTA)

Thermogravimetric and differential thermal analysis (TGA/DTA) were recorded using
a TG 209 F1 Libra thermogravimetric analyzer (Netzsch, Selb, Germany) operating at a
resolution of 0.1 µg under nitrogen atmosphere conditions. Thermogravimetric curves
were recorded from 30 to 1000 ◦C, with a heating rate of 10 ◦C·min−1. The average sample
mass was 5.0 ± 0.2 mg. The samples were tested in open alumina crucibles (average mass
190 ± 1.0 mg).

4.6.5. Vibrating Sample Magnetometry (VSM). Magnetogranulometry

The full magnetization curves, including the initial susceptibility and saturation
magnetization of the magnetic nanoparticles, were determined using a VSM 880 vibrating
sample magnetometer (ADE Technologies, Pensacola, FL, USA) at room temperature in the
field range of 0–1000 kA m−1. The magnetization data were used for magnetogranulometry
analysis which consisted of determination of the magnetic diameter distribution from
nonlinear regression of the experimental data according to [53,56].

4.6.6. Dynamic Light Scattering (DLS)

The mean hydrodynamic diameter of the iron oxide particles was determined at
25 ± 0.1 ◦C by dynamic light scattering (DLS) using the NanoZS device from Malvern (UK)
which was operating in backscattering mode at an angle of 173◦. The concentration of the
dispersions was set to give an optimal intensity of ~100 counts per second. The diluted
samples were homogenized in an ultrasonic bath for 10 s prior to the measurements, after
which, 50 s of relaxation was allowed. The size was measured in a disposable zeta cell
(DTS 1070). Cumulative analysis was used to calculate the average hydrodynamic sizes. In
the case of unstable, coagulating systems, the measurable hydrodynamic size increased
over time.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels8100626/s1, Figure S1: Magnetization curves of the magnetic
nanoparticles MP1 and MP2.; Figure S2: FT-IR spectra of: (a) magnetic support MP2 and (b) cellulase
biocatalyst (M2-SG9), obtained by magnetic sol–gel immobilization method with silane precursors
VTMOS: PhTMOS:TMOS (0.4:1.6:1) and MP2. Inset: enlarged picture of the 400–1200 cm−1 region,
showing the presence of the absorption bands specific for the maghemite; Figure S3. Hydrodynamic
size distributions of the magnetic nanoparticles MP1 and MP2 as determined by DLS.
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