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In the frame of Higuchi’s type functionality, this paper presents the anisotropy influences on the drug deliverymechanisms through
the joint invariant functions to the simultaneous actions of the two SL(2R) isomorphic groups. Then, a new equation for drug
delivery mechanism, independent of the type of polymer matrix and/or drug, is proposed.

1. Introduction

After administration and distribution, a drug has therapeutic
effect if the molecules have affinity and selectivity for its
pharmacological target. But in the same time it is very impor-
tant to realise an optimal concentration interval because con-
centrations above or below this interval can produce toxic
manifestations or no therapeutic effects. The way by which
a drug is released from a particular formulation can have a
remarkable effect on its efficacy or toxic effects. In this con-
text, the aim is to reduce to minimum the risks of adminis-
tration by maintaining drug level within a desired range. Fol-
lowing conventional drug administration is possible to avoid
high variation of plasma concentration if it used multidose
therapy. The interval between doses is calculated using a
pharmacokinetic parameter named half-life time of the drug.
In the last years, the interdisciplinary research that combines
chemistry, pharmacology, and molecular biology released
new pharmaceuticals forms which provide a specific quantity
of a therapeutic substance for a prolonged period of time to a
target area within the body.

One of these forms are the drug delivery systems (DDS),
based on biocompatible polymers. Depending on DDS and
application type, studies reveled that several phenomena
occur simultaneously or concurrently. These phenomena,
mentioned in the order of their appearance, are as follows:

(i) water diffusion inside DDS due to water concentration
gradient between release environment and DDS;

(ii) swelling of polymeric matrix due to the penetration of
water, determining an increase of system size, and, as
a consequence, also variations in drug concentration
inside DDS;

(iii) drug diffusion out of DDS due to drug concentration
gradient between release environment and DDS; in
time, the polymer matrix swelling will determine a
more relaxed polymer network for which the mean
free path and implicitly the diffusion coefficient of
drug particles are higher;

(iv) depending on polymer network density length, at a
certain moment, the polymer matrix itself dissolves
more or less rapidly [1].

In most of the theories developed so far, diffusion is
considered the dominant phenomena, in the approximation
that the effect of all other phenomena is negligible.

If the diffusion takes place only on 𝑥-axis, Fick’s first law
can be written in the form

𝐽 = −𝐷𝜕𝐶
𝜕𝑥 , (1)
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where 𝐽 is the diffusion flux, 𝐶 the drug concentration,
𝜕𝐶/𝜕𝑥 the drug concentration gradient, and 𝐷 the diffusion
coefficient. Assuming that the ensemble, DDS and release
environment, is isolated, the concentration variation in time
𝜕𝐶/𝜕𝑡 is numerically equal with the flux difference 𝜕𝐽/𝜕𝑥:

𝜕𝐶
𝜕𝑡 = − 𝜕𝐽𝜕𝑥 . (2)

By combining these equations, the diffusion equation,
that is, Fick’s second law, results:

𝜕𝐶
𝜕𝑡 = 𝜕

𝜕𝑥𝐷(𝜕𝐶𝜕𝑥 ) . (3)

The generalized diffusion equation, for the case of diffu-
sion along all three axes x, y, and z can be written as [2]

𝜕𝐶
𝜕𝑡 = 𝜕

𝜕𝑥𝐷(𝜕𝐶𝜕𝑥 ) + 𝜕
𝜕𝑦𝐷(𝜕𝐶𝜕𝑦 ) + 𝜕

𝜕𝑧𝐷(𝜕𝐶𝜕𝑧 ) . (4)

Since water and drug diffusion take place simultaneously,
it can be further generalized to

𝜕𝐶𝑚
𝜕𝑡 = 𝜕

𝜕𝑥𝐷𝑚 (
𝜕𝐶𝑚
𝜕𝑥 ) + 𝜕

𝜕𝑦𝐷𝑚 (
𝜕𝐶𝑚
𝜕𝑦 )

+ 𝜕
𝜕𝑧𝐷𝑚 (

𝜕𝐶𝑚
𝜕𝑧 ) ,

(5)

where 𝐶𝑚 is the concentration and 𝐷𝑚 is the diffusion
coefficient for water (𝑚 = 1) and drug (𝑚 = 2).

In the particular case of a cylindrical DDS, the diffusion
equation can be written under the form

𝜕𝐶𝑚
𝜕𝑡 = 1

𝑟 {
𝜕
𝜕𝑟 (𝑟𝐷𝑚

𝜕𝐶𝑚
𝜕𝑟 ) + 𝜕

𝜕𝜃 (
𝐷𝑚
𝑟

𝜕𝐶𝑚
𝜕𝜃 )

+ 𝜕
𝜕𝑧 (𝑟𝐷𝑚

𝜕𝐶𝑚
𝜕𝑧 )} ,

(6)

where 𝐶𝑚 and 𝐷𝑚 have the same significance as above, 𝑟 is
the radial coordinate, 𝑧 is the axial coordinate, 𝜃 is the angular
coordinate, and 𝑡 is time [3].

Crank [4] solved these equations, assuming constant
diffusion coefficient and known initial and boundary con-
ditions, offering an extensive number analytical solution, for
different geometries [4].

But, in reality, and, implicitly in the case of DDS, the dif-
fusion coefficient is influenced by time, position, and solute
concentration, in which case the diffusion equations can not
be solved, due to the high number of variable dependence.

To overcome this aspect, having in view the need to
predict in an easier manner the drug release, empirical and
semiempirical equations were used: the Higuchi [5] is as
follows:

𝑀(𝑡)
𝑀∞ = 𝐾𝐻 ⋅ 𝑡1/2 (7)

and the Korsmeyer-Peppas [6] is as follows:

𝑀(𝑡)
𝑀∞ = 𝐾𝑃 ⋅ 𝑡𝑛, (8)
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Figure 1: Phases demarcation in drug release mechanism [8].

where 𝑀(𝑡) is the released drug amount at 𝑡, 𝑀∞ is the
released drug amount after very large time intervals, tending
to infinity, equal, in most cases, with the drug amount loaded
into polymeric matrices, 𝐾𝐻 is the Higuchi diffusion con-
stant, 𝐾𝑃 is the Korsmeyer-Peppas constant, an indicator of
release rate, and 𝑛 is an exponent that depends on the shape
of the polymeric matrix and can indicate the drug release
mechanism. The Korsmeyer-Peppas is actually a generaliza-
tion of the Higuchi equation; Higuchi equation is considered
applicable in the first stage of the release (up to 20%), while
Korsmeyer-Peppas equation is considered applicable in the
first stage of the release up to 60%, until the equilibrium
plateau is reached.

These models were confirmed by a plethora of experi-
mental data, for all types of polymeric matrices and drugs,
proving their validity and confirming the existence of

(i) burst effect phase (I) characterized by a high drug
release rate (large drug amount released in a very
short time), determined by high concentration gradi-
ents;

(ii) swelling phase (II), in which drug release rate dec-
reases, due the decrease of the concentration gradi-
ents;

(iii) equilibrium phase (III), characterized by null concen-
tration gradients and, implicitly, by constant released
drug amount.

In addition to these, for long time intervals, a fourth phase
has been identified, namely, degradation phase (IV), in which
polymer fragments derived from the polymer matrix bonds
to released drug molecules, and, consequently, a decrease of
the released drug amount is observed (Figure 1) [7, 8].

The main drawback of the above equations is that they
have been demonstrated from Fick’s second law, considering
diffusion dominant, ignoring all other phenomena, and,
moreover, assuming the release medium homogeneous and
isotropic in relation to diffusion.

The use of these approximations, necessary to reduce the
number of variables from the equations system that char-
acterizes the system evolution, in order to determine its
solutions, is not justified in reality. Actually, it indicates the
“failure” of the classical models [1–6] and therefore the
“incapacity” of some mathematical procedures based on
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the assumption of dynamic variables differentiability, in the
analysis of complex phenomena involved in drug delivery.

However, this situation can be overcome applying non-
standard mathematical procedures based either on the non-
differentiability of the dynamic variables (remaining still trib-
utary to differential methods) through fractal type theories or
on invariance groups (any “unspecified potentiality” has the
concrete expression in the existence of an invariance group).

In the present paper, we will explain the last procedure,
namely, being given an “actual situation” in the form of
semiempirical Higuchi law for the one-axial case; we will
express “not actual” situations (potentialities) in the form
of a Higuchi type law for the three-axial case, as concrete
expression of Lie’s group existence.

2. A Correlation between the One-Axial
and Three-Axial Cases

The Higuchi equation is the hull of a parabolas family of the
form

𝑀2 (𝑡) = 𝑎2 (𝑡 + 𝑏) , (9)

where 𝑎 and 𝑏 are constants dependent both on the external
constrains (temperature, pressure, etc.) and on the structure
of the polymeric matrices. In the selection of expression
(9) the fact that this expression is universal was taken into
account, meaning that it is valid for any polymeric matrices,
no matter the shape, structure, and so on, and, also, it is
valid for any “constrain” type rate, from the “burst type
effect” domain to equilibrium plateau. Moreover, it involves
an intrinsic isotropy, which does not correspond to reality, the
drug release mechanism having a high degree of anisotropy.
Still, one can establish a correlation between the one-axial
case, associated with the isotropy hypothesis and the three-
axial case, associated with anisotropy, as we will show next.

If we center around the parabolas family from (9), then
it is clear that it must make its mark on a possible experi-
mental plane geometry (𝑀, 𝑡).This geometry can be founded
on a parametric group which must make the form from
relation (9) invariant. This group can be best revealed if the
homogenous coordinates (𝑀, 𝑡) are used in the form [9]

𝑥1
𝑥 = 𝑥2

𝑦 = 𝑥3
1 , (10)

where
𝑥 = 𝑡 + 𝑏
𝑦 = 𝑀

𝑎
(11)

case in which (9) becomes

𝑥22 − 𝑥1𝑥3 = 0. (12)

In this situation, the conic from (12) accepts the canonic
parameterization [9]:

𝑥1
𝜏2 =

𝑥2
𝜏 = 𝑥3

1 , (13)

where 𝜏 is a real parameter and its invariance group is
the three-parameter group generated by the homographic

transformation of the 𝜏 parameter. If this transformation is
written under a more convenient form

𝜏 = 𝜏 + 𝛼1
1 − 𝛼2 − 𝛼3 , (14)

which highlights the unit transformation for 𝛼1 = 𝛼2 = 𝛼3 =0, then using (13) the following transformation relations for
the parameters 𝑥1 and 𝑥2 result:

𝑥1 = 𝑥1 + 2𝛼1𝑥2 + 𝛼21
𝛼23𝑥1 − 2𝛼3 (1 − 𝛼2) 𝑥2 + (1 − 𝛼2)2

,

𝑥2 = −𝛼3𝑥1 + (1 − 𝛼2 − 𝛼1𝛼3) 𝑥2 + 𝛼1 (1 − 𝛼2)
𝛼23𝑥1 − 2𝛼3 (1 − 𝛼2) 𝑥2 + (1 − 𝛼2)2

,
(15)

from which a continuous two variables with three-parameter
group can be observed. The Lie algebra [10] is given by the
operators

𝐿1 = 2𝑦 𝜕
𝜕𝑥 + 𝜕

𝜕𝑦 ,

𝐿2 = 2𝑥 𝜕
𝜕𝑥 + 𝑦 𝜕

𝜕𝑦 ,

𝐿3 = 2𝑥𝑦 𝜕
𝜕𝑥 + (2𝑦2 − 𝑥) 𝜕

𝜕𝑦 ,

(16)

with the commutation relations:
𝐿1, 𝐿2 = 𝐿1,
𝐿2, 𝐿3 = 𝐿3,
𝐿3, 𝐿1 = −2𝐿2,

(17)

where inhomogeneous coordinates were taken into account
in order to simplify the writing.

As it should be, the conics in (12) appear in this situation
as (16) group’s invariant varieties with two parameters, and
this is why they are invariant only with regard to the first two
operators from (16). The issue at hand is not to find the two-
parameter invariant varieties families, but to find the three-
axial that holds three parameters: the main masses, that is,
the eigenvalues of the mass tensor. Now the masses evolution
group remains to be solved, which must be isomorphic to the
group from (16). In order to highlight it wemust note that the
main masses are the solution to the secular equation of the
respective matrix, which can be written as [9]

𝑀3 + 3𝑎1𝑀2 + 3𝑎2𝑀+ 𝑎3 = 0, (18)

where 3𝑎1, 3𝑎2, and 𝑎3 are the orthogonal invariants of the
masses matrix. If the masses state varies from 𝑀1, 𝑀2, and𝑀3 to 𝑀1, 𝑀2, and 𝑀3 then an algebra theorem [9] shows
that, between the secular equations, which have the respective
values as roots, a linear relation takes place, generated by the
homographic transformation

𝑀 = 𝑎𝑀 + 𝑏
𝑐𝑀 + 𝑑 (19)
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which gives a three-parameter group but in three variables.
By writing the roots of the curve from relation (18) in the
Barbilian form [11–13],

𝑀 = ℎ + 𝜀𝑖ℎ𝑘
1 + 𝜀𝑖𝑘 , (20)

where 𝜀3𝑖 = 1, ℎ, ℎ are quantities conjugated one to the other, 𝑘
is a one-module complex factor, the transformation from (19)
induces the quantities ℎ, ℎ, and 𝑘 is the real transformations

ℎ = 𝑎ℎ + 𝑏
𝑐ℎ + 𝑑 ,

ℎ = 𝑎ℎ + 𝑏
𝑐ℎ + 𝑑 ,

𝑘 = 𝑐ℎ + 𝑑
𝑐ℎ + 𝑑𝑘,

(21)

which forma three variableswith three-parameter group, that
is, the Barbilian group [14].

This group is simple transitive, with the infinitesimal
generators given by the operators [14]

𝐴1 = 𝜕
𝜕ℎ + 𝜕

𝜕ℎ
𝐴2 = ℎ 𝜕

𝜕ℎ + ℎ 𝜕
𝜕ℎ

𝐴3 = ℎ2 𝜕𝜕ℎ + ℎ2 𝜕𝜕ℎ + (ℎ − ℎ) 𝑘 𝜕
𝜕𝑘

(22)

which reveals for the associated Lie algebra a structure that is
identical with the one from (17).Therefore the two groups are
isomorphic, and operators (16) and (22) are generated by the
one and the same algebra (12). Moreover, group (22), being
simple transitive, is definitely measurable, its elementary
measure being given by the differential three-form [14]:

𝑑ℎ ∧ 𝑑ℎ ∧ 𝑑𝑘
(ℎ − ℎ)2 𝑘 . (23)

Using the elementary probability

𝑑𝑃 = 𝑑ℎ ∧ 𝑑ℎ ∧ 𝑑𝑘
(ℎ − ℎ)2 𝑘 (24)

probabilities theory can be a priori constructed in the space
of field variables (ℎ, ℎ, 𝑘).

This function quadratic root can be assimilated to the
wave function analogue [15] and it will satisfy an equation of
Schrödinger type that defines the fractal space-time geodesics
[16].

The issue now at hand is to find the invariant varieties
families of group (16) with three parameters, having group
(22) associated as a parameters group. In our opinion these
functions can provide an answer to the problem of the
correlation between the one-axial behavior of the mass-time
curve and the mass induced in the complex system by the
one-axial experimental “strain.”

These varieties families (joint invariant functions) will be
solutions of the Stoka equations [17, 18]:

2𝑦𝜕𝑓𝜕𝑥 + 𝜕𝑓
𝜕𝑦 + 𝜕𝑓

𝜕ℎ + 𝜕𝑓
𝜕ℎ = 0

2𝑥𝜕𝑓𝜕𝑥 + 𝑦𝜕𝑓𝜕𝑦 + ℎ𝜕𝑓𝜕ℎ + ℎ𝜕𝑓𝜕ℎ = 0

2𝑥𝑦𝜕𝑓𝜕𝑥 + (2𝑦2 − 𝑥) 𝜕𝑓𝜕𝑦 + ℎ2 𝜕𝑓𝜕ℎ + ℎ2 𝜕𝑓𝜕ℎ
+ (ℎ − ℎ) 𝑘𝜕𝑓𝜕𝑘 = 0.

(25)

This system admits solutions of the form

𝑓 (𝛼0, 𝑘20) = const. , (26)

where

𝛼0 =
√𝑥 − 𝑦2 (ℎ − ℎ)
𝑥 − (ℎ − ℎ) 𝑦 + ℎℎ

𝑘20 = 𝑘2 𝑥 − 2𝑦ℎ + ℎ
2

𝑥 − 2𝑦ℎ + ℎ2 .
(27)

It can be observed that the last of these integrals is a one-
module complex one. In principle, 𝑓 can be any function
which is continuous and derivable in its variables. It is not
yet known what kind of interpretation can a general solution
such as (26) have, but some specific integrals values from
relation (27) can still be interpreted.Thus, if the experimental
one-axial constrain is monotonous, then (27) must fulfill the
condition 𝑦2 = 𝑥, fact which leads to the specific value 𝑥 = 0.
In this case, the second relation (27) gives

𝑘0 = 𝑘𝑦 − ℎ𝑦 − ℎ , (28)

from which we can write 𝑦 as

𝑦 = ℎ𝑘 − ℎ𝑘0
𝑘 − 𝑘0 . (29)

The result we obtained in this case is important mainly
because it shows that𝑦 can be identified in a specific case with
one of the main masses values. Indeed, if 𝑘0 ≡ (−1, −𝜀, −𝜀2)
then the situation from (20) is again reached. Therefore, we
can state that in both these specific cases the mass in the one-
axial constrain can be considered as one of the internalmasses
eigenvalues. However we can draw more from (29). If this
equation is written for 𝑘0 = −1,

𝑦 = ℎ + ℎ𝑘
1 + 𝑘 , (30)

and ℎ, ℎ, and 𝑘 are explicitly written with regard to the main
mass and also the system of (20) is solved with regard to ℎ, ℎ,
and 𝑘, then the following relations can be found:

ℎ = −𝑀2𝑀3 + 𝜀𝑀3𝑀1 + 𝜀
2𝑀1𝑀2

𝑀1 + 𝜀𝑀2 + 𝜀2𝑀3 ,

𝑘 = 𝑀1 + 𝜀2𝑀2 + 𝜀𝑀3
𝑀1 + 𝜀𝑀2 + 𝜀2𝑀3 .

(31)
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These can be related to the above-mentioned parameters
by means of relations:

𝑘 = 𝑒−3𝑖𝜉

ℎ = 1
3 (𝑀1 +𝑀2 +𝑀3) +

1
√6 {(𝑀1 −𝑀2)

2

+ (𝑀2 −𝑀3)2 + (𝑀1 −𝑀3)2}1/2 (sin 3𝜉
− 𝑖 cos 3𝜉) ,

(32)

where

tan 𝜉 = 2𝑀1 −𝑀2 −𝑀3
√3 (𝑀2 −𝑀3) (33)

is the “anisotropy” angle.
If we use (32) in (30), we obtain the following:

𝑦 = 1
3 (𝑀1 +𝑀2 +𝑀3) +

1
√2 {(𝑀1 −𝑀2)

2

+ (𝑀2 −𝑀3)2 + (𝑀1 −𝑀3)2}1/2 sin 𝜉.
(34)

The first term of (34) corresponds to the average drug
mass released on the main directions, while the second term
corresponds to the average drugmass released on the “mixed”
directions. In other words, the first term reflects the linear
evolution of the release system, that is, the dominance of
individual effects and isotropy, in the first moments of the
release (burst effect phase), while the second term reflects
the nonlinear evolution, that is, dominance of collective
effects and anisotropy, at higher time moments (swelling and
equilibrium phases).

The dominance of the linear effects, which implies the
functionality of the relation

𝑦 → 𝑀1 = 𝑎 (𝑡 + 𝑏)1/2 (35)

results from (34) through the annulment of release system
anisotropy, that is, imposing the restriction

sin 𝜉 → 0,
2𝑀1 → 𝑀2 +𝑀3.

(36)

On the contrary, “reconsidering” the nonlinear behavior
(but still remaining tributary to the linear one) through a
proper choice of normalization parameters, the functionality
of a relation of the following type can be induced:

𝑦 = 𝐴 (𝜏)1/2 sn (𝐵 (𝜏)1/2 ; 𝑠) , (37)

where sn is the Jacobi elliptic function of module 𝑠 [19], 𝜏 is
the normalized time, and 𝐴 and 𝐵 are constants specific for
the release system. The module 𝑠 of the elliptic function sn is
a measure of system nonlinearity and, implicitly, a measure
of the release degree; thus, one can also explain the release
mechanism. Two extreme situations can be made explicit by
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Figure 2: Graphical representations of relation (37), in three-
dimensional format (a) and contour plot format (b).

the elliptic function degenerations as functions of its module
values:

𝑦 = 𝐴 (0) (𝜏)1/2 sin (𝐵 (0) (𝜏)1/2) , for 𝑠 → 0,
𝑦 = 𝐴 (1) (𝜏)1/2 tanh (𝐵 (1) (𝜏)1/2) , for 𝑠 → 1.

(38)

We present the graphical representations of relation
(37), in three-dimensional (Figure 2(a)) and contour plot
(Figure 2(b)) formats. Table 1 reveals the curves of equally
concentration for the released drug.

3. Conclusions

Accepting the Higuchi semiempirical law for the one dimen-
sional case, it is generalized to the three-axial case based
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Table 1: Plane sections through 3D plot, for different values of system nonlinearity 𝑠, can be linked to experimental drug release kinetics, that
is, for different drug release mechanisms [7].
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on concept of joint invariant functions at the simultaneous
actions of two isomorphic groups SL(2R). In this context, a
new release law, independent of the polymer matrix and/or
drug types, is deducted and validated by the experimental
data from the literature. Thereby, also the behavior of biolog-
ical structures is explained, with a high nonlinear character,
under the action of drug delivery systems [20–27].
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of pyrazinamide and its complex combinations with copper(II)
benzoate,” Revista de Chimie, vol. 57, no. 8, pp. 859–861, 2006.
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