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Abstract. Ovarian germ cell tumors (OGCTs) and sex cord 
stromal tumors (SCSTs) are rare gynecologic tumors that are 
derived from germ and stromal cells, respectively. Unlike 
their epithelial counterparts, molecular pathogenesis of these 
tumor types is still poorly understood. Here, we character-
ized microRNA (miRNA) expression profiles of 9 OGCTs 
(2 malignant and 7 benign) and 3 SCSTs using small RNA 
sequencing. We observed significant miRNA expres-
sion variations among the three tumor groups. To further 
demonstrate the biological relevance of our findings, we 
selected 12 miRNAs for validation in an extended cohort of 
16 OGCTs (9 benign and 7 malignant) and 7 SCSTs by reverse 
transcription-quantitative polymerase chain reaction. Higher 
expression of miR‑373‑3p, miR‑372‑3p and miR‑302c‑3p and 
lower expression of miR‑199a‑5p, miR‑214‑5p and miR‑202‑3p 
were reproducibly observed in malignant OGCTs as compared 
to benign OGCTs or SCSTs. Comparing with benign OGCTs, 
miR‑202c‑3p and miR‑513c‑5p were more abundant in SCSTs. 
Additionally, we examined Beclin 1 (BECN1), a target of 
miR‑199a‑5p, in the clinical samples using western blot anal-
ysis. Our results show that BECN1 expression was higher in 
malignant OGCTs than benign OGCTs, which is concordant 
with their lower miR‑199a‑5p expression. This study suggests 
that these miRNAs may have potential value as tumor markers 
and implications for further understanding the molecular basis 
of these tumor types.

Introduction

Ovarian tumors are common with >200,000 women estimated 
to be diagnosed with ovarian cancer annually worldwide (1). 

Three main types are recognized according to the type of cell 
origin. Epithelial cancer is the most common form seen in the 
vast majority of cases. Germ cell tumors (GCTs) develop in the 
egg cells (oocytes) of ovary. Stromal cell tumors, arise from 
cells involved in ovarian steroid production (e.g., granulosa, 
theca and Leydig cells) (2).

Although non‑epithelial ovarian tumors are uncommon, 
they are histologically, genetically and clinically heteroge-
neous causing major challenges for treatment and clinical 
workup. Ovarian GCTs (OGCTs) typically affect young 
women (<30 years) (3). It is further subclassified based on 
histology and clinical behavior as: mature teratoma which 
is benign, and the malignant form immature teratomas and 
malignant OGCTs (including dysgerminoma, yolk sac tumor, 
embryonal carcinoma, choriocarcinoma and mixed GCT). 
Mature teratoma, which is the most common among all 
OGCTs, may contain a variety of well-differentiated tissues, 
such as hair, fat, teeth and bone. In rare cases, complex organs 
such as brain matter, eyes, torso, hands, feet and other limbs 
are formed in teratomas (4-7). Immature teratomas, on the 
other hand, contain incompletely differentiated tissues in 
addition to mature elements, and have worse prognosis (8). 
Malignant OGCTs are thought to arise from the pluripotent 
primordial germ cells, which can differentiate into various 
histologies. While dysgerminoma is composed of primitive 
undifferentiated germ cells, the other malignant OGCTs 
(non‑dysgerminomas) are categorized based on the degree of 
differentiation from their precursor cells that mimic embry-
onic and extra-embryonic tissues (3).

Patients with sex cord stromal tumor (SCST) can display 
various hormone-mediated syndromes and a variety of clinical 
features depending on their cellular origin. Tumors derived 
from ovarian cells (such as granulosa and theca cells) usually 
exhibit clinical features associated with excessive production 
of estrogen, while those derived from Sertoli and Leydig cells 
exhibit phenotypes resulting from elevated levels of androgens. 
The prognosis of SCST is generally good, although a minority 
of patients develop metastasis (9).

The molecular basis underlying the non‑epithelial ovarian 
tumors is still poorly understood. However, accumulating 
evidence indicate that both OGCTs and SCSTs may reflect the 
developmental changes of the germ and stromal cells in the 
ovary. For OGCTs, it is clear that most of the malignant tumors 
express pluripotency markers. They generally express high level 
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of POU class 5 homeobox 1 (POU5F1), v-KIT proto-oncogene 
receptor tyrosine kinase (KIT), Lin-28 homolog A (LIN28A) 
and Nanog homeobox (NANOG) (10,11). On the other hand, 
the benign tumors (mature teratomas) have complex expres-
sion patterns due to the cell composition of multiple cell types 
in different tumors (2).

For SCSTs, they express transcription factors that play 
important roles in sex determination, e.g.,  granulosa cell 
tumors express Forkhead box L2 (FOXL2) and Sertoli‑Leydig 
cell tumors express sex determining region Y box 9 (SOX9), 
which controls ovary and testis determination, respectively. The 
majority (97%) of ovarian adult granulosa cell tumors harbor 
somatic FOXL2 mutations (12), which promote granulosa cell 
survival (13) and tumorigenesis (14). On the other hand, somatic 
missense mutations of Dicer 1 ribonuclease III (DICER1) are 
found in 60% of the ovarian Sertoli-Leydig cell tumors (15). 
DICER1 plays an important role in microRNA (miRNA) 
processing. Its mutations in SCSTs cause selective processing 
of 3'-strand miRNAs (15). However, how these mutations result 
in sex cell fate decision or tumorigenesis remain unknown.

miRNAs are single-stranded RNAs of ~22 nucleotides 
in length, which regulate gene expression in many biological 
processes, including cell growth, differentiation and tumori-
genesis (16). Distinct miRNA expression profiles have been 
identified in a variety of tumor types associated with histolog-
ical subtypes and patient outcome, suggesting their potential 
use as biomarkers for diagnosis and prognosis (17). miRNA 
expression profiles have been investigated in some ovarian 
germ cell tumors. However, in all studies, the OGCTs were 
combined with their testicular counterparts for analysis (18-21). 
One of the reasons may due to the rarity of these tumor types 
and very few samples were analyzed. Although DICER1 is 
frequently mutated in SCSTs (15), miRNA expression profiles 
of this tumor type and how their expression profiles relate to 
OGCTs are yet to be investigated.

In this study, we characterized miRNA profiles of 
OGCTs and SCSTs using small RNA (sRNA) sequencing, 
and compared the expression differences between malignant 
and benign OGCTs, as well as between SCSTs and OGCTs. 
We identified miRNA expression patterns associated with 
different tumor types, suggesting their potential use as a tool 
for defining their histological and biological differences.

Materials and methods

Clinical samples. This study included 23 frozen non‑epithelial 
ovarian tumors, consisting of 16 ovarian germ cell tumors 
(OGCT1-16) and 7 sex cord stromal tumors (SCST1-7). The 
age at diagnosis and the histological type of each tumor are 
given in Table I. All tumors were provided by the Cooperative 
Human Tissue Network, which is funded by the National 
Cancer Institute, USA. Other investigators may have received 
specimens from the same subjects. The study was approved by 
the Stanford Human Subjects Review Committee. All clinical 
samples were de-identified, therefore no written informed 
consent was required.

RNA isolation and quantification. mirVana miRNA isola-
tion kit (Thermo Fisher Scientific, Waltham, MA, USA) was 
used to extract sRNA and total RNA for cloning and reverse 

transcription-quantitative polymerase chain reaction (RT‑qPCR) 
analysis, respectively. RNA concentrations were determined 
by the NanoDrop ND-1000 spectrophotometer (NanoDrop 
Technologies, Wilmington, DE, USA).

sRNA library construction and sequencing. sRNA cloning 
was performed on 9 OGCTs (7 benign and 2 malignant) and 
3  SCSTs, using previously described methodologies  (22). 
Briefly, sRNAs were ligated with adenylated 3'-adaptor and 
purified on 12% denaturing polyacrylamide gel. Second 
ligation reaction was performed with 5'-adaptor, followed 
by gel purification. Complementary DNA (cDNA) synthesis 
was performed using the reverse transcription enzyme 
SuperScript II (Thermo Fisher Scientific) together with the 
reverse transcription primer. cDNA was then PCR amplified 
for 16-20 cycles with forward and reverse primers. sRNA-
sequencing libraries were sequenced by Solexa/Illumina 
sequencing platform (Illumina 1G Genome Analyzer; Illumina 
Inc., San Diego, CA, USA). The sequence of the adaptors and 
primers has been described previously (22). The sequencing 
data are available at Gene Expression Omnibus (accession no. 
GSE98536).

miRNA analysis. sRNA sequencing reads from each of 
the pooled libraries were separated based on their barcode 
sequence. Adaptor sequences were trimmed and filtered 
using the package Fastx-toolkit. The resulting dataset was 
aligned to miRBase database version 21 (http://www.mirbase.
org/) for mature miRNA using Bowtie short read aligner 
version 1.1.1 (23) with settings -f -n 0 -l 15 -k 200 -S -best 
-chunkmbs 128. All aligned reads were sorted and indexed 
by SAMtools version 1.1 (24). For miRNA quantification, the 
script HTSeq-count of the HTSeq version 0.6.1 was used (25). 
For clustering analysis, the miRNA counts were normalized 
by TMM (trimmed mean method) (26) and the normalized 
expression values were clustered based on Euclidean distance. 
For identification of differentially expressed miRNAs between 
two groups, the miRNA counts were normalized and analyzed 
by DESeq2 using default settings (27).

TaqMan RT‑qPCR. RT‑qPCR was performed to quantify the 
expression levels of miR‑373‑3p, miR‑372‑3p, miR‑302c‑3p, 
miR‑199a‑5p, miR‑125a‑5p, miR‑21, miR‑34a, miR‑202‑5p, 
miR‑513c‑5p, miR‑193a‑3p, miR‑214‑5p and let-7f, using 
TaqMan miRNA assays (Thermo Fisher Scientific). 
Approximately 120 ng of total RNA was reversed transcribed 
using the High-Capacity cDNA Reverse Transcription kit 
(Thermo Fisher Scientific). The synthesized cDNA was then 
diluted 2- to 10-fold prior to RT‑qPCR with TaqMan Universal 
PCR Master Mix without AmpErase UNG (Thermo Fisher 
Scientific). The amplification was performed using the Applied 
Biosystems 7500 Fast Real-time PCR system (Thermo Fisher 
Scientific) with the following conditions: an initial denatur-
ation at 95˚C for 10 min, 40 step cycles of denaturing at 95˚C 
for 15 sec and annealing at 60˚C for 60 sec. Each reaction 
was performed in triplicate. The average Ct-value of each 
analyzed miRNA was normalized to RNU6B, and reported 
as 2-∆CT. RNU6B was chosen as an endogenous control due 
to its stability in the samples analyzed (standard deviation of 
average Ct = 1.8; data not shown).



INTERNATIONAL JOURNAL OF ONCOLOGY  52:  55-66,  2018 57

Western blotting. Western blotting was performed on 7 SCSTs, 
9  benign and 7  malignant OGCTs. Total protein lysates 
were prepared using NP-40 lysis buffer (Thermo Fisher 
Scientific) with addition of 1 mM phenylmethanesulfonyl 
(Sigma‑Aldrich, St. Louis, MQ, USA) and protease inhibitor 
(complete protease inhibitor cocktail; Sigma-Aldrich). The 
concentrations were measured using the Pierce BCA Protein 
assay kit (Thermo Fisher Scientific). Protein lysates of 30 µg 
were separated in NuPAGE Novex 4-12% Bis-Tris gel and 
transferred to nitrocellulose membranes. The membranes 
were blocked with 5% skim milk diluted in Tris-buffered 
saline/0.05% Tween-20 prior to incubation with anti-BECN1 
rabbit polyclonal (Novus Biologicals; dilution 1:1,000) or 
anti-GAPDH rabbit monoclonal (Cell Signaling Technology; 
dilution at 1:1,000) antibodies overnight at 4˚C. Anti-rabbit 
IgG-HRP (Cell Signaling Technology; dilution at 1:2,000) 
was used as a secondary antibody. Signals were detected 
using the Novex ECL HRP chemiluminescent substrate 
reagent (Thermo Fisher Scientific) and LI-COR Odyssey Fc 
Imaging system (LI-COR Biosciences, Lincoln, NE, USA) 
and quantified using Image Studio Lite version 5.2 (LI-COR 
Biosciences).

Statistical analysis. All statistical tests were performed using 
Statistical Package for the Social Sciences (SPSS) version 24 
(IBM, Armonk, NY, USA), unless specified otherwise. 
Kruskal-Wallis test was used for comparisons among three 
sample groups, and Mann‑Whitney U test was used for 
two groups. A difference of P<0.05 was considered to indicate 
a statistically significant difference.

Results

miRNA expression profiles in non‑epithelial ovarian tumors by 
sRNA sequencing. To assess the miRNA profiles of non‑epithe-
lial ovarian tumors, we performed sRNA sequencing of 
9 OGCTs and 3 SCSTs. In total, we obtained 2,949,836 reads 
for OGCTs (benign, 919,886; malignant,  2,029,950) and 
1,198,120 reads for SCSTs. On average, 213,678 reads from 
the malignant OGCT libraries, 259,915 reads from the benign 
OGCT libraries and 262,386 reads from the SCST libraries 
were mapped to mature miRNAs from miRBase release 21.

To determine whether miRNA expression profiles were 
distinct among the three non‑epithelial ovarian tumor groups, 
we performed unsupervised clustering of the samples and 

Table I. Non-epithelial ovarian tumors included in the study.

	 Tumor classification	 Analysed by
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Sample no.	 Age at diagnosis (year)	 Diagnosis	 Subclassification	 Type	 sRNA seq	 RT‑qPCR

OGCT1	 19	 OGCT	 Dysgerminoma	 Malignant	 -	 RT‑qPCR
OGCT2	 21	 OGCT	 Dysgerminoma	 Malignant	 -	 RT‑qPCR
OGCT3	 41	 OGCT	 Dysgerminoma	 Malignant	 -	 RT‑qPCR
OGCT4	 73	 OGCT	 Dysgerminoma	 Malignant	 sRNA seq	 RT‑qPCR
OGCT5	 24	 OGCT	 Yolk sac tumor	 Malignant	 -	 RT‑qPCR
OGCT6	 17	 OGCT	 Yolk sac tumor	 Malignant	 -	 RT‑qPCR
OGCT7	 28	 OGCT	 Primitive germ cell tumor	 Malignant	 sRNA seq	 RT‑qPCR
OGCT8	 26	 OGCT	 Mature teratoma	 Benign	 sRNA seq	 RT‑qPCR
OGCT9	 64	 OGCT	 Mature teratoma	 Benign	 sRNA seq	 RT‑qPCR
OGCT10	 47	 OGCT	 Mature teratoma	 Benign	 sRNA seq	 RT‑qPCR
OGCT11	 58	 OGCT	 Mature teratoma	 Benign	 -	 RT‑qPCR
OGCT12	 77	 OGCT	 Mature teratoma	 Benign	 sRNA seq	 RT‑qPCR
OGCT13	 47	 OGCT	 Mature teratoma	 Benign	 sRNA seq	 RT‑qPCR
OGCT14	 51	 OGCT	 Mature teratoma	 Benign	 sRNA seq	 RT‑qPCR
OGCT15	 54	 OGCT	 Mature teratoma	 Benign	 sRNA seq	 RT‑qPCR
OGCT16	 18	 OGCT	 Mature teratoma	 Benign	 -	 RT‑qPCR
SCST1	 84	 SCST	 Signet ring-stromal tumor	 Benign	 sRNA seq	 RT‑qPCR
SCST2	 45	 SCST	 Fibrothecoma	 Benign	 sRNA seq	 RT‑qPCR
SCST3	 46	 SCST	 Sex cord stromal tumor	 Malignant	 sRNA seq	 RT‑qPCR
SCST4	 15	 SCST	 Granulosa cell tumor	 Malignant	 -	 RT‑qPCR
SCST5	 48	 SCST	 Granulosa cell tumor	 Malignant	 -	 RT‑qPCR
SCST6	 15	 SCST	 Sertoli leydig cell tumor	 Malignant	 -	 RT‑qPCR
SCST7	 20	 SCST	 Granulosa cell tumor	 Malignant	 -	 RT‑qPCR

No., number; OGCT, ovarian germ cell tumor; SCST, sex cord stromal tumor; sRNA seq, small RNA sequencing; RT‑qPCR, reverse 
transcription-quantitative polymerase chain reaction.
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miRNA expression based on Euclidean distance. As shown in 
the dendrogram in Fig. 1A, the benign OGCTs and SCSTs were 

closely related but separated from the two malignant OGCTs, 
suggesting distinct miRNA expression patterns in malignant 

Figure 1. Clustering analysis of miRNA expression in 9 OGCTs (7 benign and 2 malignant) and 3 SCSTs. (A) Unsupervised clustering of the samples based 
on miRNA expression identified two major groups: one group with both malignant OGCTs and the other group consisted of both benign OGCTs and SCSTs. 
(B) Clustering of miRNA expression illustrates miRNA expression signatures associated with tumor types, which are further highlighted in (C-E). Clustered 
miRNA expression patterns associated with malignant OGCTs (C), benign OGCTs (D) and SCSTs (E). Each row represents the relative expression for a single 
miRNA and each column shows the expressions for a single sample. The red or yellow color indicates relatively high or low expression, respectively. OGCTs, 
ovarian germ cell tumors; SCSTs, sex cord stromal tumors.
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OGCTs and more similar miRNA expression profiles between 
benign OGCTs and SCSTs.

To illustrate whether specific miRNA expression signa-
tures were distinct among these tumor groups, we performed 
hierarchical clustering of the miRNA expressions (Fig. 1B). 
Notably, several miRNAs were apparently unique to specific 
tumor types (Fig.  1C-E). For malignant OGCTs, several 
miR‑548 family, miR‑302 and miR‑371~373 clusters were more 
abundant, while several let-7 family members were lower than 
the benign OGCTs and SCSTs (Fig. 1C). For benign OGCTs, 
the miRNA expression patterns were not homogenous among 
the same tumor type (Fig. 1D). However, miR‑193b‑5p/3p, 
miR‑320a/b and miR‑22‑5p were frequently more abundant in 
the benign OGCTs as compared to the malignant OGCTs and 
SCSTs. Similarly, we also observed heterogeneous miRNA 
expression profiles among the three SCSTs. However, miR‑202 
and miR‑506~514 cluster were higher in at least two SCSTs 
and absent or lower expression in the malignant and benign 
OGCTs (Fig. 1E).

Differentially expressed miRNAs among the three tumor 
types. We applied DESeq2 analysis to identify differentially 
expressed miRNAs between malignant and benign OGCTs. 
The analysis identified 128 and 59 miRNAs with higher 
and lower expression respectively, in the malignant OGCTs 
compared to the benign OGCTs (false discovery rate <0.5; 
data not shown). Notably, miR‑302~367 and miR‑371~373 
clusters were among the differentially expressed miRNAs that 
had higher expression in the malignant tumors compared to 
the benign tumors. Additionally, expression of several let-7 
family members was lower in the malignant than the benign 
OGCTs.

For comparison between malignant OGCTs and SCSTs, 
we identified 120 miRNAs with higher expression and 

154 miRNAs with lower expression in the malignant OGCTs 
compared to SCSTs (data not shown). Among the differen-
tially expressed miRNAs, lower expression of miR‑202‑5p, 
miR‑506~514 cluster and let-7 family, as well as higher expres-
sion of miR‑302 and miR‑371~373 cluster in the malignant 
OGCTs were also noted in the clustering data (Fig. 1C and E).

Strikingly, the number of differentially expressed miRNAs 
between SCSTs and benign OGCTs was much fewer, 
i.e.,  11  miRNAs had lower expression and 22 had higher 
expression in the benign OGCTs than the SCSTs (data not 
shown). Notably, all 11 miRNAs with lower expression and 
13 out of the 22 miRNAs with higher expression in the benign 
OGCTs were overlapped in both comparisons between SCSTs 
and malignant or benign OGCTs (Fig. 2), suggesting that 
these miRNAs may be specific for SCSTs. Comparing with 
SCSTs, 141 miRNAs with higher expression and 109 with 
lower expression were unique for malignant OGCTs, while 
only 9 miRNAs with higher expression were unique for benign 
OGCTs (Fig. 2 and Table II).

Validation of differentially expressed miRNAs by RT‑qPCR. To 
validate the sRNA sequencing findings, we selected 12 miRNAs 
(i.e., miR‑373‑3p, miR‑372‑3p, miR‑302c‑3p, miR‑199a‑5p, 
miR‑125a‑5p, miR‑21, miR‑34a, miR‑202‑5p, miR‑513c‑5p, 
miR‑193a‑3p, miR‑214‑5p and let-7f ) for RT‑qPCR in an 
extended cohort of samples, which consisted of 16 OGCTs 
(9 benign and 7 malignant) and 7 SCSTs. These miRNAs were 
selected from different comparisons, and because of their 
involvement in testicular GCTs (miR‑373‑3p, miR‑372‑3p, 
miR‑302c‑3p, miR‑21, miR‑513c‑5p, miR‑199a‑5p, miR‑214‑5p 
and let-7f) (11,19,20,28‑32) or other tumor types (miR‑125a‑5p, 
miR‑34a, miR‑193a‑3p and miR‑202‑5p) (33‑35).

In the comparison between malignant and benign OGCTs, 
8 of the 12 miRNAs were concordant between the sRNA 

Figure 2. Venn diagrams illustrating the number of differentially expressed miRNAs between malignant and benign OGCTs as compared to SCSTs. (A) Number 
of miRNAs with higher expression. (B) Number of miRNAs with lower expression in the malignant or benign OGCTs. The common differentially expressed 
miRNAs are shown in the box, while the unique differentially expressed miRNAs for malignant or benign OGCTs are given in Table II. OGCTs, ovarian germ 
cell tumors; SCSTs, sex cord stromal tumors.
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Table II. Unique differentially expressed miRNAs in malignant and benign OGCT as compared to SCST.

Differentially expressed miRNAs compared to SCST

Higher in malignant OGCT
miR‑373‑3p	 miR‑376b‑3p	 miR‑519e‑5p	 miR‑520c‑3p	 miR‑155‑5p	 miR‑148a‑3p
miR‑372‑3p	 miR‑9‑5p	 miR‑654‑3p	 miR‑758‑3p	 miR‑544a	 miR‑501‑5p
miR‑182‑5p	 miR‑377‑3p	 miR‑18a‑3p	 miR‑1296‑5p	 miR‑190a‑5p	 miR‑185‑5p
miR‑183‑5p	 miR‑363‑3p	 miR‑381‑5p	 miR‑519c‑3p	 miR‑505‑3p	 miR‑15b‑5p
miR‑767‑3p	 miR‑629‑3p	 miR‑183‑3p	 miR‑543	 miR‑93‑3p	 miR‑433‑3p
miR‑371a‑3p	 miR‑18a‑5p	 miR‑361‑3p	 miR‑494‑3p	 miR‑149‑5p	 miR‑15a‑5p
miR‑302b‑5p	 miR‑3180‑3p	 miR‑545‑3p	 miR‑146b‑5p	 miR‑769‑5p	 miR‑339‑3p
miR‑7‑5p	 miR‑655‑3p	 miR‑345‑5p	 miR‑590‑5p	 miR‑20a‑5p	 miR‑340‑3p
miR‑3529‑3p	 miR‑18b‑5p	 miR‑1277‑3p	 miR‑409‑3p	 miR‑92a-1‑5p	 miR‑93‑5p
miR‑96‑5p	 miR‑373‑5p	 miR‑1248	 miR‑154‑5p	 miR‑134‑5p	 miR‑378a‑5p
miR‑767‑5p	 miR‑136‑5p	 miR‑652‑5p	 miR‑625‑3p	 miR‑487b‑3p	 miR‑181d‑5p
miR‑105‑5p	 miR‑5585‑3p	 miR‑210‑3p	 miR‑31‑3p	 miR‑30e‑5p	 miR‑505‑5p
miR‑367‑3p	 miR‑493‑3p	 miR‑3679‑5p	 miR‑512‑3p	 miR‑16-2‑3p	 miR‑493‑5p
miR‑135b‑5p	 miR‑372‑5p	 miR‑299‑3p	 miR‑377‑5p	 miR‑876‑5p	 miR‑130b‑3p
miR‑380‑3p	 miR‑20b‑5p	 miR‑339‑5p	 miR‑324‑5p	 miR‑651‑5p	 miR‑92b‑3p
miR‑154‑3p	 miR‑376a‑5p	 miR‑548b‑5p	 miR‑30d‑5p	 miR‑19a‑3p	 miR‑16‑5p
miR‑539‑3p	 miR‑515‑5p	 miR‑382‑5p	 miR‑421	 miR‑127‑5p	 miR‑301a‑3p
miR‑381‑3p	 miR‑548d‑5p	 miR‑379‑3p	 miR‑519b‑3p	 miR‑342‑3p	 miR‑374a‑5p
miR‑425‑5p	 miR‑329‑3p	 miR‑517a‑3p	 miR‑92b‑5p	 miR‑485‑5p	 miR‑34a‑5p
miR‑495‑3p	 miR‑181c‑5p	 miR‑517b‑3p	 miR‑187‑3p	 miR‑423‑3p	 miR‑21‑5p
miR‑302a‑5p	 miR‑302d‑5p	 miR‑103a‑3p	 miR‑519a‑3p	 miR‑550a‑3p	 miR‑19b‑3p
miR‑485‑3p	 miR‑548y	 miR‑103b	 miR‑337‑3p	 miR‑550b-2‑5p
miR‑9‑3p	 miR‑484	 miR‑107	 miR‑454‑3p	 miR‑3065‑5p
miR‑409‑5p	 miR‑487a‑3p	 miR‑1323	 miR‑941	 miR‑127‑3p

Lower in malignant OGCT
miR‑206	 let-7b‑5p	 miR‑199a‑3p	 miR‑195‑3p	 miR‑200b‑3p	 miR‑502‑3p
miR‑509‑3p	 let-7c‑5p	 miR‑199b‑3p	 miR‑30c-1‑3p	 miR‑615‑3p	 miR‑125a‑5p
miR‑508‑3p	 let-7a‑5p	 miR‑1294	 let-7f‑5p	 miR‑199b‑5p	 miR‑30a‑5p
miR‑30c-2‑3p	 let-7d‑3p	 miR‑98‑3p	 miR‑1299	 miR‑1270	 miR‑145‑3p
miR‑542‑5p	 miR‑574‑3p	 miR‑508‑5p	 miR‑135a‑5p	 miR‑1180‑3p	 miR‑193a‑5p
miR‑204‑5p	 let-7f-2‑3p	 miR‑214‑5p	 miR‑664a‑3p	 miR‑744‑5p	 miR‑99b‑5p
miR‑211‑5p	 miR‑874‑5p	 miR‑125b-1‑3p	 miR‑1271‑5p	 miR‑365a‑3p	 miR‑660‑5p
miR‑1269a	 miR‑143‑3p	 miR‑99a‑5p	 miR‑10b‑5p	 miR‑365b‑3p	 miR‑532‑5p
miR‑450a-2‑3p	 miR‑133a‑5p	 miR‑30b‑3p	 miR‑95‑3p	 miR‑331‑5p	 miR‑29b-2‑5p
miR‑506‑5p	 let-7b‑3p	 miR‑196a‑5p	 miR‑196b‑5p	 miR‑140‑5p	 miR‑181a‑5p
miR‑483‑5p	 miR‑214‑3p	 miR‑30a‑3p	 miR‑574‑5p	 miR‑26a‑5p	 miR‑29a‑3p
let-7c‑3p	 miR‑675‑5p	 miR‑100‑5p	 miR‑23a‑3p	 let-7d‑5p	 miR‑29c‑3p
miR‑133a‑3p	 miR‑1	 miR‑509‑3‑5p	 miR‑23b‑3p	 miR‑125a‑3p	 miR‑30b‑5p
miR‑375	 miR‑193b‑5p	 miR‑30e‑3p	 miR‑122‑5p	 miR‑191‑5p	 miR‑186‑5p
miR‑133b	 miR‑125b‑5p	 miR‑98‑5p	 miR‑664a‑5p	 miR‑184
miR‑135a‑3p	 miR‑3609	 miR‑199a‑5p	 miR‑539‑5p	 miR‑221‑5p
let-7e‑5p	 miR‑99a‑3p	 miR‑532‑3p	 miR‑26a-2‑3p	 miR‑423‑5p
miR‑4500	 let-7f-1‑3p	 miR‑30d‑3p	 miR‑32‑3p	 miR‑3184‑3p
miR‑450a-1‑3p	 let-7e‑3p	 miR‑708‑3p	 miR‑28‑3p	 miR‑1306‑5p

Higher in benign OGCT
miR‑1247‑5p	 miR‑203a	 miR‑338‑3p	 miR‑145‑5p	 miR‑10a‑5p	 miR‑22‑3p
miR‑199b‑5p	 miR‑320a	 miR‑320b

miRNA, microRNA; OGCT, ovarian germ cell tumor; SCST, sex cord stromal tumor.
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sequencing and the RT‑qPCR results (Table III and Fig. 3). 
miR‑373‑3p, miR‑372‑3p and miR‑302c‑3p had higher expres-
sion, whereas miR‑199a‑5p, miR‑214‑5p and miR‑202‑3p had 
lower expression in the malignant OGCTs compared to the 
benign OGCTs (P<0.05; Mann‑Whitney U test). miR‑21 and 
miR‑125a‑5p were not differentially expressed between the 
two groups using both sRNA sequencing and RT‑qPCR.

Similarly, 7 and 10 out of the 12 miRNAs were concor-
dant in both methods for the comparisons between SCSTs 
and malignant or benign OGCTs, respectively (Table III and 
Figs. 4 and 5). Three miRNAs (miR‑372‑3p, miR‑373‑3p and 
miR‑302c‑3p) were higher and four miRNAs (miR‑513c‑5p, 
miR‑202‑3p, miR‑199a‑5p and miR‑214‑5p) were lower in the 
malignant OGCTs compared to the SCSTs (Fig. 4A), while 

Table III. Evaluation of 12 selected miRNAs using sRNA sequencing and RT‑qPCR methods.

	 Malignant vs. benign OGCTsa	 Malignant OGCTs vs. SCSTsb	 Benign OGCTs vs. SCSTsb

	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  
miRNA	 sRNA seq	 RT‑qPCR	 Concordance	 sRNA seq	 RT‑qPCR	 Concordance	 sRNA seq	 RT‑qPCR	 Concordance

miR‑372‑3p	 Higher	 Higher	 Yes	 Higher	 Higher	 Yes	 Equal	 Equal	 Yes
miR‑373‑3p	 Higher	 Higher	 Yes	 Higher	 Higher	 Yes	 Equal	 Equal	 Yes
miR‑302c‑3p	 Higher	 Higher	 Yes	 Higher	 Higher	 Yes	 Higher	 Equal	 No
miR‑199a‑5p	 Lower	 Lower	 Yes	 Lower	 Lower	 Yes	 Equal	 Equal	 Yes
miR‑214‑5p	 Lower	 Lower	 Yes	 Lower	 Lower	 Yes	 Equal	 Equal	 Yes
miR‑202‑3p	 Lower	 Lower	 Yes	 Lower	 Lower	 Yes	 Lower	 Lower	 Yes
miR‑513c‑5p	 Equal	 Lower	 No	 Lower	 Lower	 Yes	 Lower	 Lower	 Yes
let-7f	 Lower	 Equal	 No	 Lower	 Equal	 No	 Equal	 Equal	 Yes
miR‑21	 Equal	 Equal	 Yes	 Higher	 Equal	 No	 Equal	 Equal	 Yes
miR‑34a	 Higher	 Equal	 No	 Higher	 Equal	 No	 Equal	 Equal	 Yes
miR‑125a‑5p	 Equal	 Equal	 Yes	 Lower	 Equal	 No	 Equal	 Equal	 Yes
miR‑193a‑3p	 Higher	 Equal	 No	 Higher	 Equal	 No	 Higher	 Equal	 No

aHigher and lower refer to expression in the malignant OGCTs compared to the benign OGCTs. bHigher and lower refer to expression in 
malignant or benign OGCTs as compared to SCSTs. miRNA, microRNA; OGCT, ovarian germ cell tumor; SCST, sex cord stromal tumor; 
sRNA seq, small RNA sequencing; RT‑qPCR, reverse transcription-quantitative polymerase chain reaction.

Figure 3. RT‑qPCR analysis of miRNA expression in 9 benign and 7 malignant OGCTs. The boxplots show the relative expression of individual miRNAs 
normalized to RNU6B. P-values were calculated using the Mann‑Whitney U test. P<0.05 was considered to indicate a statistically significant difference. 
OGCTs, ovarian germ cell tumors; RT‑qPCR, reverse transcription-quantitative polymerase chain reaction.
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only miR‑202c‑3p and miR‑513c‑5p were lower in the benign 
OGCTs than the SCSTs (Fig. 4B). Eight miRNAs (miR‑372‑3p, 
miR‑373‑3p, miR‑199a‑5p, miR‑214‑5p, let-7f, miR‑21, miR‑34a 
and miR‑125a‑5p) were not differentially expressed between 
benign OGCTs and SCSTs using both methods. Comparing 
the three groups, 7 miRNAs (miR‑302c‑3p, miR‑373‑3p, 
miR‑372‑3p, miR‑513c‑5p, miR‑199a‑5p, miR‑202‑3p and 
miR‑214‑5p) were significant using Kruskal-Wallis test 
(P<0.01; Fig.  5), suggesting their diagnostic potential in 
ovarian non‑epithelial tumors.

Evaluation of BECN1 expression in non‑epithelial ovarian 
tumors. Beclin 1 (BECN1) is one of the known direct targets 
of miR‑199a‑5p (36,37) and it plays an important role in germ 
cell survival and proliferation (38,39). We therefore examined 
BECN1 expression in 16 OGCTs (7 malignant and 9 benign) 

and 7 SCSTs using western blot analysis. The results showed 
that BECN1 was the most abundant in all malignant OGCTs 
analyzed, moderate to high levels in SCSTs, and very low or 
undetectable levels in benign OGCTs (Fig. 6). For quantification, 
we excluded two samples, OGCT14 and OGCT11, due to low 
concentrations of the protein lysates. BECN1 expression was 
significantly different among the three groups (Kruskal‑Wallis 
test, P<0.001), and the significant difference was observed in 
the comparison between malignant and benign OGCTs.

Discussion

miRNAs play important roles in gene regulation of many 
cellular processes that contribute to cancer development and 
progression. Despite miRNA expression and function have 
been characterized in a broad range of tumor types, miRNA 

Figure 4. Validation of differentially expressed miRNAs between 7 malignant or 9 benign OGCTs and 7 SCSTs by RT‑qPCR. Boxplots illustrating the relative 
miRNA expression levels (A) between malignant OGCTs and SCSTs, and (B) between benign OGCTs and SCSTs. All miRNA expressions were normalized 
to RNU6B. P<0.05 was considered to indicate a statistically significant difference by Mann‑Whitney U test. OGCTs, ovarian germ cell tumors; SCSTs, sex 
cord stromal tumors; RT‑qPCR, reverse transcription-quantitative polymerase chain reaction.
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profiles of non‑epithelial ovarian tumors are still scarce. In this 
study, we characterized miRNA expression pattern of OGCTs 
and SCSTs using sRNA sequencing. Our analysis of miRNA 
profiles indicated similarities and differences of expression 
level in these tumor types.

We observed higher expression of miR‑302 and miR‑371~373 
cluster in malignant OGCTs, which is consistent with previous 
studies (18-21,40). Although the clinical significance of these 
miRNAs in OGCT has not been investigated, these miRNAs 
appear as potential serum biomarkers for diagnosis and 
follow-up of malignant testicular GCTs (TGCTs) (29,30,41,42). 
Importantly, miR‑372 and miR‑373 have been demonstrated as 
oncogenes in TGCTs (28), and miR‑302 can regulate stemness, 
differentiation and tumorigenesis (43-47).

Similarly, lower expressions of miR‑199a and miR‑214 
were also observed in malignant TGCTs (32,48). miR‑199a-2 
(one of the two loci encoding miR‑199a) and miR‑214 are 
derived from the same cluster located on chromosome 1q24.3, 
and their expressions are regulated by the same promoter and 
transcription factor (49). Previous studies have shown that 
the promoter of this locus is frequently hypermethylated in 
malignant testicular tumors leading to decreased expressions 
of miR‑199a and miR‑214 (48,50,51). miR‑199a‑5p has been 
reported to act as a tumor suppressor in TGCTs by suppressing 
cell proliferation, migration, invasion and metastasis, possibly 
through its targets podocalyxin-like (PODXL) and MAF BZIP 
transcription factor B (MAFB) (48,51). Although miR‑214 
has been demonstrated to directly regulate proteasome 26S 
subunit, non‑ATPase 10 (PSMD10) in TGCT (32), its func-
tional role remains undetermined. Contrary to their reduced 
expression in OGCTs, increased expression of miR‑199a and 
miR‑214 is found in epithelial ovarian cancer (52). miR‑199a 
has been shown to regulate nuclear factor κB (NF-κB) activity 
via targeting inhibitor of nuclear factor κB kinase subunit 
beta (IKKβ) (53), while miR‑214 can induce cell survival 
and cisplatin resistance by targeting phosphatase and tensin 
homolog (PTEN) in ovarian carcinoma cells (52,54).

Comparing with both malignant and benign OGCTs, two 
miRNAs (miR‑202‑3p and miR‑513c‑5p) are significantly 
higher in SCSTs. Expression of miR‑202‑3p is detected specif-
ically in gonads, and predominantly in the granulosa (55) 
and Sertoli cells (56), supporting that this miRNA is specific 
for SCSTs. Additionally, miR‑202‑3p is tightly linked to sex 
hormone secretion and sex differentiation (57‑59), suggesting 
its important role in gonadal development and differentia-
tion. Indeed, miR‑202‑3p prevents spermatogonial stem cell 
differentiation by suppressing multiple cell cycle regulators 
and RNA binding proteins (60). miR‑202‑3p expression is 
also correlated with the expression level of testis-associated 
(e.g., SOX9) and ovary-associated genes (e.g., FOXL2) (57), 
in which both SOX9 and FOXL2 are commonly expressed in 
SCSTs. FOXL2 is a transcription factor required for granu-
losa cell differentiation and ovary development (61), and its 
somatic mutation has been linked to the development of 
adult granulosa cell tumors of the ovary (12). The mutation 
can protect granulosa cells from apoptosis (13) and promote 
tumorigenesis through enhanced glycogen synthase kinase 3β 
(GSK3β)-mediated S33 phosphorylation (14). Further studies 
are yet to be conducted to determine the expression relation-
ship between miR‑202‑3p and FOXL2 and the functional role 
of miR‑202‑3p in the development of SCST.

miR‑513c‑5p is one of the miR‑513 subfamily that belongs 
to the miR‑506~514 cluster. Although hardly anything is 
known about the functional role of miR‑513c‑5p, the miRNA 
cluster has been demonstrated as an oncogene or a tumor 
suppressor depending on cellular context. In melanoma, 
this cluster can promote melanocyte transformation and 
melanoma growth (62). On the other hand, it has been shown 
to suppress cell growth and induce senescence in ovarian 
carcinoma (63), and inhibit NF-κB pathway in TGCT (31). 
Notably, the miR‑506~514 cluster can be induced by Forkhead 
box protein O1 (FOXO1) (64). FOXO1 is a transcription factor 
that plays important roles in regulation of apoptosis, cell cycle 
progression, insulin signaling and metabolic homeostasis in 

Figure 5. Significant differentially expressed miRNAs among the three 
non‑epithelial ovarian tumor types. The boxplots show relative miRNA 
expression levels in 7 SCSTs, 9 benign and 7 malignant OGCTs, as deter-
mined by RT‑qPCR. RNU6B was used for normalization. Statistical 
significance was calculated by Kruskal-Wallis test. P<0.05 was considered 
to indicate a statistically significant difference. OGCTs, ovarian germ cell 
tumors; SCSTs, sex cord stromal tumors; RT‑qPCR, reverse transcription-
quantitative polymerase chain reaction.
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response to oxidative stress (65). FOXO1 is expressed in gran-
ulosa cells of growing follicles (66), and is critical in granulosa 
cell fate decisions and follicle growth (67,68). Importantly, 
Liu et al, showed that inactivation of the two FOX proteins 
FOXO1 and FOXO3 expression in mouse granulosa cells 
can promote ovarian granulosa cell tumor development, and 
coordinate PTEN depletion enhances the granulosa cell tumor 
occurrence in FOXO1/3 depletion mice (69). Together, it is 
tempting to speculate that miR‑506~514 cluster may contribute 
to the development of SCST (in particular the granulosa cell 
tumor subtype) through FOXO1/PTEN pathways.

We also observed increased expression of BECN1, a 
target of miR‑199a‑5p, in malignant OGCTs, suggesting its 
importance in ovarian germ cell maintenance and/or tumori-
genesis. In line with such speculation, BECN1 is required to 
control germ cell proliferation/survival (38,39) and cell cycle 
progression (38,70). BECN1 is one of the key regulators of 
autophagy, an evolutionally conserved regulatory pathway of 
cellular degradation and recycling (71). Autophagy has been 
shown to play important roles in germ cell function in multiple 
organisms, including mouse (72), fish (73), worm (74,75), 
moss (76) and sea urchin (77). Although the role of BECN1 or 
autophagy in human germ cell tumorigenesis remains unclear, 
Rossi  et  al demonstrated that mitogen-activated protein 
kinase 15 (MAPK15)-mediated autophagy can promote cell 
proliferation and prevent DNA damage accumulation in 
TGCTs (78). On the other hand, BECN1 expression is lower in 
malignant epithelial ovarian cancers than their non‑malignant 
counterparts (79), and induction of autophagy in ovarian 
carcinoma cells can lead to tumor suppression (80). Together, 
autophagy may function as a tumor suppressor in ovarian 
epithelial tumors and an oncogene in OGCTs.

In conclusion, we showed that different non‑epithelial 
ovarian tumors have distinct miRNA expression pattern, 
implying their role in tumorigenesis and their potential values 
as diagnostic markers. Our data also provide the starting 

points to elucidate the molecular mechanisms underlying the 
pathogenesis of these tumor types.
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