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Abstract: Mitochondrial encephalomyopathies (MEMP) are heterogeneous multisystem disorders
frequently associated with mitochondrial DNA (mtDNA) mutations. Clinical presentation varies
considerably in age of onset, course, and severity up to death in early childhood. In this study,
we performed molecular genetic analysis for mtDNA pathogenic mutation detection in Serbian
children, preliminary diagnosed clinically, biochemically and by brain imaging for mitochondrial
encephalomyopathies disorders. Sanger sequencing analysis in three Serbian probands revealed two
known pathogenic mutations. Two probands had a heteroplasmic point mutation m.3243A>G in the
MT-TL1 gene, which confirmed mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-
like episode syndrome (MELAS), while a single case clinically manifested for Leigh syndrome had an
almost homoplasmic (close to 100%) m.8993T>G mutation in the MT-ATP6 gene. After full mtDNA
MITOMASTER analysis and PhyloTree build 17, we report MELAS’ association with haplogroups U
and H (U2e and H15 subclades); likewise, the mtDNA-associated Leigh syndrome proband shows a
preference for haplogroup H (H34 subclade). Based on clinical–genetic correlation, we suggest that
haplogroup H may contribute to the mitochondrial encephalomyopathies’ phenotypic variability
of the patients in our study. We conclude that genetic studies for the distinctive mitochondrial
encephalomyopathies should be well-considered for realizing clinical severity and possible outcomes.

Keywords: MELAS; leigh syndrome; mtDNA; sanger sequencing; mutations; haplogroups

1. Introduction

Mitochondrial encephalomyopathies (MEMP) are clinically and genetically hetero-
geneous group of neurometabolic disorders resulting from abnormal mitochondrial func-
tion [1]. They are represented with various clinical syndromes sharing the oxidative
phosphorylation deficiency due to alteration in the enzymes essential to the production of
ATP in mitochondria. In general, MEMPs are caused by mutations in genes that control
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mitochondrial function (mitochondrial or nuclear genome), and can be expressed in many
tissues [2]. The unifying feature of MEMP is progressive neurodegeneration of the cen-
tral nervous system, causing encephalopathy that affects cognition, movement, strength,
coordination, sensation, vision, or autonomic control. Non-nervous system tissues such
as muscle tissue may also be prominently affected [3–5]. These disorders include mito-
chondrial encephalopathy, lactic acidosis, and stroke like-episodes (MELAS) syndrome,
myoclonic epilepsy with ragged red fibers (MERRF) syndrome, Kearns–Sayre syndrome
(KSS), maternally inherited Leigh syndrome (MILS), and neuropathy, ataxia, and retinitis
pigmentosa (NARP) syndrome. The mtDNA mutations that cause these disorders are
generally heteroplasmic, and the age of disease onset is relatively early [6–9]. More than
200 mtDNA mutations were discovered associated with MEMP and novel mutations are
still being reported [10]. Pathogenic mtDNA changes could be maternally inherited or
arise de novo [11–13].

Leigh syndrome (also called Leigh disease and sub-acute necrotizing encephalomyelopa-
thy, OMIM 25600, LS) is considered the most common progressive and severe neurode-
generative disorder in children with onset within the first months or years of life. LS is
characterized by psychomotor regression with progressive loss of mental and movement
abilities and may result in fatal encephalopathy [14,15]. The disorder could be associated
with mutations in more than 75 genes that have been identified in both the nuclear and
mitochondrial genome; about 20% of LS cases are caused by mtDNA mutations [16–18].
Point mutations at m.8993T>G or the less severe m.8993T>C in MT-ATP6 gene in the
complex V are the most frequent LS-associated mtDNA changes. LS occurs when mu-
tation load is greater than 90%, with subsequent substitution of the highly evolutionary
conserved leucine at position 156 to either an arginine or a proline [19–21], affecting the
protein component of the F1F0-ATPase that directly blocks ATP generation [22]. Further-
more, both mutations are associated with NARP syndrome when mutation load is around
50–60% [23,24].

MELAS (OMIM# 540000) is an example of MEMPs related to mitochondrial tRNA
gene changes. In this syndrome, the predominant mtDNA mutations are in mitochondrial
tRNALeu, invariably as heteroplasmics [25,26]. More than 80% of all cases of MELAS are
caused by a substitution of m.3243A>G in the MT-TL1 gene. This nucleotide replacement
disrupts the correct 3D folding structure of tRNALeu by affecting the anticodon wobble
base pair of mt-tRNA molecules by reducing the capacity for amino-acylation and methy-
lation. Besides that, this mutation interferes with the 16S RNA molecule transcription and
termination site with subsequent accumulation of unprocessed RNA [27–29]. Percentages
of mutant mtDNA cause different degrees of the energetic defects which are presented clin-
ically by variable phenotypes of MELAS, with central nervous system involvement when
the mutant is present at higher percentages including stroke-like episodes, seizures, cortical
blindness, and dementia. MELAS is also accompanied by features of myopathy, recurrent
headaches, short stature, and episodic vomiting resulting from lactic acidosis [30–32].

Several specific mtDNA haplogroups have been associated with different neurode-
generative mitochondriopathies, among them LHON, which is caused by mtDNA muta-
tions [33,34], as well as Parkinson’s disease [35], and Alzheimer’s disease [36], which are
associated with mitochondrial dysfunction. Furthermore, haplogroup studies have shown
significant roles of both diagnostic features [37] and therapeutic susceptibility [38,39] in
various conditions, encouraging targeted mtDNA mutations testing jointly with mtDNA
haplogroup determination. However, previous studies did not confirmed the association
with MELAS and Leigh syndromes [40].

Here, we present results of the molecular-genetic study for pathogenic mtDNA pri-
mary mutations in Serbian probands preliminary diagnosed as MEMP and correlations
of genetic data with clinical phenotypes of the probands. Additionally, we analysed
mtDNA haplotypes of detected mutations and constructed the phylogenic tree according
to previously described concepts [41,42].
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2. Patients and Methods
2.1. Patients

Three Serbian unrelated children included in this study showed features for MEMP
syndromes revealed by their clinical evaluation; two of them were suspected for MELAS
(proband 1 and proband 2) and one for LS (proband 3). In all cases family history was
negative. Probands were recruited from child neurology units at the Clinic for Neurology
and Psychiatry for Children and Youth, and Institute for Health Protection of Mother and
Child of Serbia, Belgrade, Serbia. Detailed neurological assessments including standard-
ized testing procedures and biochemical and neuroimaging investigations were conducted.
All molecular genetic analyses were performed in the laboratory for genetic and molec-
ular diagnostics of neurological disorders, Neurology Clinic, Clinical Centre of Serbia,
Belgrade, Serbia.

2.2. Ethical Considerations

Conveniently informed consent was obtained from probands’ parents which was then
reviewed by the ethical committee (Number: 2650/VI-1, approved on 26 June 2018) of the
Faculty of Medicine, University of Belgrade, who provided ethical approval for this study.

2.3. Molecular Genetic Methods

DNA for genetic analyses was extracted from 5 mL peripheral blood samples follow-
ing the manufacturer’s protocol (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA.
Targeted Sanger sequencing to check for m.3243A>G and m.8993T>G pathogenic variants
as major causes of MELAS and Leigh syndrome, respectively, was initially performed. PCR
was used to amplify specific mitochondrial DNA fragments by using appropriated primers
according to Taylor et al., 2001 [43]. MELAS point mutation m.3243A>G is within the
mtDNA fragment encompassed with forward primer 5′-GGATCAGGACATCCCGATG-3′

(MT 5F), and a reverse primer 5′-CACCTCTAGCCTAGCCGTT-3′ (MT 5R). Leigh syn-
drome point mutation m.8993T>G is located inside the mtDNA fragment surrounded
with forward primer 5′- ACAATCCTAGGCCTACCCG-3′ (MT 14F), and reverse primer
5′-CCACCAATCACATGCCTATC-3′ (MT 14R). PCR was performed by adding 1 µL of
patient DNA sample to a total volume of 12.5 µL solution containing 10× DreamTaq Buffer,
0.2 mM deoxynucleoside triphosphates (dNTPs), 0.5 mM of appropriate both forward and
reverse primers, 0.5 U of DreamTaq DNA Polymerase (Thermo Fisher Scientific, Waltham,
MA, USA) and 15 µg of Bovine Serum Albumin (BSA). The purified fragments were cleaned
up by ExoSAP-enzymatic reaction. Fluorescence-based cycle sequencing was performed
by applying a BigDye Terminator v3.1 Cycle Sequencing Kit according to the standard
protocols, and more purification was done by alcohol-based nucleic acid ethanol precipi-
tation. Capillary electrophoresis has been used for automated DNA sequencing on ABI
Prism 3500 Genetic Analyzer (Applied Biosystems, Waltham, MA, USA). The more detailed
description of procedures is previously provided in Dawod et al., 2020 [44].

2.4. Haplogroups Analysis and Phylogenetic Tree Reconstruction

Our probands with detected mtDNA primary mutations m.3243A>G and m.8993T>G
pathognomonic for LS and MELAS, respectively, underwent entire mtDNA sequencing
by using the appreciated primers mentioned in previous studies [44]. We determined
the predicted haplogroups for all included probands by MITOMASTER analysis (https:
//www.mitomap.org/foswiki/bin/view/MITOMASTER/WebHome, accessed on 15 August
2021) [45]. All defined haplotypes were assigned regarding the PhyloTree build 17 for
Phylogenetic tree reconstruction (https://www.phylotree.org/ accessed on 25 August
2021) [46].

2.5. Bioinformatics Analysis

Alignment and comparison of mtDNA variants were adapted with rCRS “the Revised
Cambridge Reference Sequence” (accession NC_012920) by Sequencer DNA Sequence

https://www.mitomap.org/foswiki/bin/view/MITOMASTER/WebHome
https://www.mitomap.org/foswiki/bin/view/MITOMASTER/WebHome
https://www.phylotree.org/
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Analysis Software [47]. The MITOMAP database system for the human mitochondrial
genome (http://www.mitomap.org/MITOMAP accessed on 15 August 2021) and GenBank
for Human Mitochondrial Genome Database (http://www.ncbi.nlm.nih.gov/Genbank/
index.html, accessed 15 August 2021) were used for analysis of the detected variants [48,49].

The pathogenicity of nonsynonymous mtDNA sequence changes in mtDNA coding
regions have been determined by protein-based metrics using in silico predictive soft-
ware. We used the Polymorphism PolyPhen-2 database (Polymorphism Phenotyping v2,
http://genetics.bwh.harvard.edu/pph2/, accessed on 19 August 2021) and PROVEAN
(Protein Variation Effect Analyzer, http://provean.jcvi.org accessed on 19 August 2021) for
predicting effects of substitution of amino acids on protein function [50,51]. Meanwhile,
PANTHER (Protein ANalysis THrough Evolutionary Relationships, (http://pantherdb.
org/panther/summaryStats.jsp accessed on 19 August 2021) was tested as a source for
evolutionary history classification of protein sequences [52]. The pathogenic character-
istics of mutations in tRNA of mtDNA were evaluated by the MitoTIP scoring system
(https://www.mitomap.org/MITOMAP/MitoTipInfo accessed on 19 August 2021) [53].
Furthermore, the Mamit-tRNA database that contains mammalian mitochondrial tRNAs
was tested as it provides extensive documentation of polymorphisms and mutations in mi-
tochondrial tRNA genes related to human mitochondrial disorders and deciphering the 2D
cloverleaf secondary structures of mitochondrial tRNA (http://mamit-tRNA.u-strasbg.fr
accessed on 19 August 2021) [54].

3. Results
3.1. Mutational Genetic Analysis

Heteroplasmic mtDNA mutation m.3243A>G in the MT-TL1 gene, which encodes
mitochondrial tRNALeu, has been detected in two probands which were clinically corre-
sponding to MELAS diagnosis (proband 1 and proband 2). Mutation m.8993T>G in the
MT-ATP6 gene (F-ATPase protein 6) specific for Leigh disease was detected in proband 3;
this mutation was almost homoplasmic (close to 100%) (Figure 1).
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Figure 1. Electropherogram is showing m.8993T>G homoplasmic mutation and m.3243A>G hetero-
plasmic mutation. Reference sequence is on the top.

In silico predictive software was used for determination of the pathogenic characteris-
tics of mtDNA mutations, nonsynonymous change m.8993T>G in MT-ATP6 gene causing
substitution of a hydrophobic leucine residue into a charged arginine residue (L156R) in
a highly conserved part of the ATP6 subunit that it has probably damaging effect on the
protein function with a score of 0.998 on HumVar Polymorphism PolyPhen-2 database,
as well on evolutionary history classification of protein sequences by PANTHER software.
Concurrently, PROVEAN showed this amino acid substitution is deleterious on protein
function. On another side, different specified informatics predictors were used for assess-
ment of mitochondrial tRNA variant m.3243A>G in the MT-TL1 gene such as MitoTIP is
accessed within MITOMAP, besides, Mamit-tRNA databases, both of them have proven
m.3243A>G is a pathogenic mutation in the D-loop of the mt-tRNALeu with a probably
damaging impact on its structure (Table 1).

http://www.mitomap.org/MITOMAP
http://www.ncbi.nlm.nih.gov/Genbank/index.html
http://www.ncbi.nlm.nih.gov/Genbank/index.html
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org
http://pantherdb.org/panther/summaryStats.jsp
http://pantherdb.org/panther/summaryStats.jsp
https://www.mitomap.org/MITOMAP/MitoTipInfo
http://mamit-tRNA.u-strasbg.fr
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Table 1. Informatics predictors for m.3243A>G and m.8993T>G mutations.

Mitochondriopathies MELAS Leigh Disease

Mutation m.3243A>G m.8993T>G

Gene RNA Gene
MT-TL1

Protein Coding gene
MT-ATP6

Codon number − 156

Amino acid change tRNA Leu Leu-Arg

Mitomap Confirmed-Pathogenic Confirmed-Pathogenic

MitoTIP Pathogenic −
Mamit-tRNA Pathogenic −

UniProt ID − P00846

Polyphen Prediction − probably damaging

PANTHER − probably damaging

PROVEAN − Deleterious (−5.180)
MT-ATP6: mitochondrially encoded ATP synthase membrane subunit 6; MT-TL1: Mitochondrially Encoded
TRNA-Leu (UUA/G) 1; Arg: Arginine; Leu: leucine.

3.2. MITOMASTER Analysis

In our study, entire mtDNA sequencing for all included Serbian probands was carried
out for haplogroup analysis, and fasta-formatted files were submitted to MITOMASTER.
The results showed that the most frequent MELAS m.3243A>G mutation was associ-
ated with both haplogroup H and U, while a single case of mtDNA-associated Leigh
syndrome showed predilection for haplogroup H. Furthermore, our analysis reported
forty-four polymorphic variants that scattered all over mtDNA fragments at m.55T>C,
m.56insC, m.73A>G, m.143G>A, m.152T>C, m.263A>G, m.315insC, m.508A>G, m.739C>T,
m.750A>G, m.1438A>G, m.1811A>G, m.2706A>G, m.3116C>T, m.3720A>G, m.3847T>C,
m.4769A>G, m.5390A>G, m.5426T>C, m.6045C>T, m.6152T>C, m.6253T>C, m.7028C>T,
m.8860A>G, m.10876A>G, m.11197C>T, m.11467A>G, m.11719G>A, m.12308A>G,
m.12372G>A, m.13020T>C, m.13359G>A, m.14766C>T, m.15326A>G, m.15519T>C,
m.15907A>G, m.15948A>G, m.16051A>G, m.16093T>C, m.16129G>C, m.16183A>C,
m.16189T>C, m.16291C>T and m.16519T>C; most of them presented in different frequen-
cies in different haplogroups (Table 2).

Table 2. Polymorphic mtDNA variants detected in Serbian probands with mitochondrial encephalomyopathies.

Probands Haplogroup Variants Locus Nucleotide
Changes

A.A
Changes

PhyloTree Build 17
in HG Branch

Mitomaster Frequencies
in HG Branch

P1 U2e 73 MT-CR A>G CR Reported 96.46%
(MELAS) 152 MT-CR T>C CR Reported 90.26%

263 MT-CR A>G CR Reported 96.46%
508 MT-CR A>G CR Reported 94.39%
739 MT-RNR1 C>T rRNA Not reported 0.29%
750 MT-RNR1 A>G rRNA Reported 100.00%
1438 MT-RNR1 A>G rRNA Reported 98.82%
1811 MT-RNR2 A>G rRNA Reported 94.39%
2706 MT-RNR2 A>G rRNA Reported 99.11%
3116 MT-RNR2 C>T rRNA Not reported 22.71%
3720 MT-ND1 A>G Q138Q Reported 98.23%
4769 MT-ND2 A>G M100M Reported 98.52%
5390 MT-ND2 A>G M307M Reported 98.52%
5426 MT-ND3 T>C H319H Reported 98.52%
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Table 2. Cont.

Probands Haplogroup Variants Locus Nucleotide
Changes

A.A
Changes

PhyloTree Build 17
in HG Branch

Mitomaster Frequencies
in HG Branch

6045 MT-COI C>T L48L Reported 98.52%
6152 MT-COI T>C V83V Reported 98.23%
7028 MT-COI C>T A375A Reported 98.80%
8860 MT-ATP6 A>G T112A Reported 99.41%

10,876 MT-ND4 A>G L39L Reported 99.11%
11,197 MT-ND4 C>T G146G Not reported 22.42%
11,467 MT-ND4 A>G L236L Reported 98.82%
11,719 MT-ND4 G>A G320G Reported 99.40%
12,308 MT-TL2 A>G tRNA Reported 98.80%
12,372 MT-ND5 G>A L12L Reported 99.70%
13,020 MT-ND5 T>C G228G Reported 99.11%
13,359 MT-ND5 G>A M341M Not reported 0.00%
14,766 MT-CYB C>T T7I Reported 99.70%
15,326 MT-CYB A>G T194A Reported 99.70%
15,907 MT-TT A>G tRNA Reported 98.82%
16,051 MT-CR A>G CR Reported 96.75%
16,129 MT-CR G>C CR Reported 95.28%
16,183 MT-CR A>C CR Not considered 75.52%
16,189 MT-CR T>C CR Reported 84.36%

P2 H15 55 MT-CR T>C CR Reported 63.33%
(MELAS) 56 MT-CR insC CR Not reported 6.67%

143 MT-CR G>A CR Not reported 0.00%
263 MT-RNR1 A>G CR Reported 80.00%
750 MT-RNR1 A>G rRNA Reported 100.00%
1438 MT-RNR2 A>G rRNA Reported 96.70%
2706 MT-ND1 A>G rRNA Reported 95.60%
3847 MT-ND2 T>C L181L Reported 96.67%
4769 MT-COI A>G M100M Reported 96.70%
6253 MT-COI T>C M117T Reported 96.67%
7028 MT-ATP6 C>T A375A Reported 97.80%
8860 MT-CYB A>G T112A Reported 96.67%

15,326 MT-CR A>G T194A Reported 96.70%

P3 H34 152 MT-CR T>C CR Not reported 90.91%
(LS) 263 MT-CR A>G CR Reported 100.00%

315 MT-CR insC CR Not reported 45.46%
508 MT-RNR1 A>G CR Not reported 0.00%
750 MT-RNR1 A>G rRNA Reported 100.00%
1438 MT-RNR1 A>G rRNA Reported 100.00%
4769 MT-ND2 A>G M100M Reported 100.00%
8860 MT-ATP6 A>G T112A Reported 100.00%

15,326 MT-CYB A>G T194A Reported 100.00%
15,519 MT-CYB T>C L258P Reported 100.00%
15,948 MT-TT A>G tRNA Not reported 0.00%
16,093 MT-CR T>C CR Not reported 45.46%
16,291 MT-CR C>T CR Reported 90.91%
16,519 MT-CR T>C CR Reported 100.00%

This table shows haplogrouping analysis for two MELAS probands (P1 and P2) and one Leigh syndrome proband (P3). Mitomaster analysis
for complete mtDNA sequences detected numerous mtDNA haplotypes for haplogroups (U2e, H15 and H34) in different frequencies, of
which almost all are reported on the PhyloTree build 17 in specific haplogroup branches, with the exception of m.16183A>C, which was not
considered for phylogenetic reconstruction. A.A: amino acid; HG: haplogroup; LS: Leigh syndrome; MELAS: mitochondrial myopathy,
encephalopathy, lactic acidosis, and stroke-like episodes; MT-ATP6: mitochondrially encoded ATP synthase membrane subunit 6; MT-CO1:
mitochondrially encoded cytochrome c oxidase 1; MT-CR: mitochondrial control region; MT-CYB: mitochondrially encoded cytochrome b;
MT-ND1, MT-ND2, MT-ND3, MT-ND4 and MT-ND5: mitochondrially encoded NADH:Ubiquinone Oxidoreductase Core Subunit 1, 2, 3, 4
and 5 respectively; MT-RNR1 and MT-RNR2: Mitochondrially Encoded 12S and 16S, respectively; MT-TL2: mitochondrially encoded tRNA
leucine; MT-TT: mitochondrially encoded tRNA threonine; P: proband.

3.3. Phylogenetic Tree Construction

All detected variants are represented for more explication and construction of the
phylogenetic tree compared with the rCRS haplogroup (H2a2a) for establishment of the
haplogroup affiliation and motifs, following the nomenclature of mtDNA tree Build 17
(Figure 2).
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Figure 2. Phylogenetic reconstruction is presenting full mtDNA Sanger sequencing of three Serbian
probands have mitochondrial encephalomyopathies mutations. The tree was rooted by following the
nomenclature of mtDNA tree Build 17. ! Indicates back mutation, () indicates recurrent mutation;
rCRS indicates Revised Cambridge Reference Sequence; nc, s, ns, t, r1 and r2 indicate non-coding
region, synonymous, nonsynonymous, transfer RNA, ribosomal RNA1, and 2 variants, respectively.
Primary mitochondrial encephalomyopathies mutations are shown in bold, 3243 for MELAS and 8993
for Leigh syndrome. Underlining indicates variants specific for haplogroups reported on Mitomaster
analysis vs. PhyloTree Build 17.

3.4. Genotype-Phenotype Relationship

Clinical evaluation, laboratory data and brain imaging of positive m.3243A>G and
m.8993T>G probands revealed phenotype features of mitochondrial encephalomyopathies
(Table 3). Neurological impairment was the most common feature indicating that two
probands (P1 and P2) meet the clinical diagnostic criteria for MELAS with onset during the
second decade of life and one single case for Leigh syndrome (P3) with age of onset being
within a few months of birth. MELAS probands experienced epileptic seizures, psychosis,
muscle weakness, hemiparesis, altered conscious, dementia and associated headache and
vomiting, while the Leigh proband presented with symptoms of psychomotor retardation
preceded by respiratory viral infection, severe early onset of series epileptic attacks with
breaks of 10 min between the attacks up to 30 epileptic attacks per day associated with
twitches of the left-sided extremities, sometimes followed by twitches of the left half of the
face with deviation of the eyes and the head to the right side, other symptoms of speech
delay and muscle weakness.
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Neurological assessments were done to estimate frequencies of epileptic attacks,
sluggishness of the motor system, muscle weakness, generalized dystonia, dementia,
and marked irritability in behaviour. Milestone developmental progression for early
childhood assessment was also carried out. Furthermore, laboratory assessment of lactate
in blood and cerebrospinal fluid (CSF) was estimated, which showed marked elevation.
Brain magnetic resonance imaging (MRI) revealed an expended right ventricle of the brain
with an extensive zone of the oedematous cortex and areas of abnormal high signal on
Fluid Attenuated Inversion Recovery (FLAIR) images, with changes of T2-weight (T2W)
which corresponded to MELAS diagnosis, whereas the specific imaging finding for LS
is reported as subcortical necrotizing encephalopathy with symmetrical lesions of basal
ganglia, and the brain stem as mesencephalon, tectum, substantia nigra and hypoplasia
pons with atrophy of the vermis and cerebellar hemisphere. Necrosis was accompanied by
mild lateral ventricular dilatation; moreover, cortex hyperintensity on T2- weighted MR
imaging was recorded.

Table 3. Clinical evaluation for MELAS and Leigh probands.

Clinical Evaluation MELAS Leigh Disease

Proband P1 P2 P3
Gender Male Male Female

Age at onset of the disease 14 years old 12 years old Few months after birth
Duration of the disease 1 month 9 years 4 years

Family history of MEMP − – –
Epileptic seizures + + +

Psychosis + + −
Psychomotor retardation – − +

Confusion + − −
Behaviour changes + + +

Dementia − + −
Episodes like stroke − − −

Headache + − −
Eye deviation during seizures − − +

Speech delay − − +
Hemiparesis + + −

Muscle weakness + + +
Muscle twitches + − +

Associated vomiting + + −
Preceding infection − + +

Lactate acidosis + + +
MRI changes + + +

Leigh patients had a severe early onset of epileptic attacks with breaks of 10 min
between attacks. Up to 30 epileptic attacks per day had been recorded, which were associ-
ated with twitches of the left-sided extremities and sometimes followed by twitches of the
left half of the face with deviation of the eyes and the head to the right side. Meanwhile,
the MELAS probands experienced psychiatric symptoms, epileptic attacks, muscle weakness
and hemiparesis. All probands showed significant laboratory and brain image changes.

4. Discussion

Disorders of mitochondrial encephalomyopathies are the most frequent group of
inherited neurogenetic disorders, caused by point mutations in mtDNA that disrupt the
formation of mitochondrially encoded respiratory chain subunits and therefore cause
respiratory chain dysfunction. MEMP mainly presented clinically by different pheno-
types [55–57]. By direct Sanger sequencing of mtDNA in this study, our genetic analysis
reported the first sporadic case of mtDNA-associated Leigh syndrome disclosed in a four
year old Serbian girl (P3) who was diagnosed according to the criteria declared by Rah-
man et al. for a neurodegenerative disease with psychomotor developmental retardation,
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sluggishness of the motor system, muscle weakness, sever epileptic attacks, nystagmus,
dystonia and regression in infancy as a results of basal ganglia and/or brainstem damage
accompanied by the characteristic features of hyperintense lesions on T2-weighted on MRI
and biochemical lactosidosis [58,59]. By our molecular genetic sequencing, we precisely
diagnosed mtDNA-associated Leigh syndrome by our finding of a nearly homoplasmic
m.8993T>G mutation that correlates the severity of the disease; m.8993T>G was detected
in protein-coding gene MT-ATP6 causing replacement of the strongly conserved leucine to
an arginine at position 156 in complex V with subsequent blocking of the terminal step in
oxidative phosphorylation. The pathogenicity of this amino acid substitution in MT-ATP6
(UniProt ID P00846) was checked according to in silico software predictors; PolyPhen-2 and
PANTHER considered m.8993T>G probably damaging, along with PROVEAN L156R pre-
diction, which was deleterious (−5.18). Herein, our case showed irrelevant family history
and we could not proceed with complete mtDNA sequence analysis for her family. As it is
known, heteroplasmic mutation can be transmitted with different mutation loads between
generations, exhibiting inter-individual variation of symptoms in the same family [13,60].
Moreover, phenotypic heterogeneity has been recorded in m.8993T>G carriers [61,62].
Our study supports the literature which displays the occurrence of m.8993T>G mutation
in sporadic cases with rapid segregation toward homoplasmy [63–65]; it is noticeable in a
single generation and reported in about 1/5 LS cases [66]. Other differential diagnoses for
LS were excluded [67–69].

Furthermore, our results revealed a pathogenic heteroplasmic m.3243A>G mutation
in the MT-TL1 gene with a defect in the protein synthesis of mitochondrial tRNALeu in two
teenage sporadic Serbian children (P1 and P2) who experienced MELAS symptoms. Upon
our diagnosis for MELAS cases, it fully fit the Japanese criteria for phenotypic and labora-
tory findings required for definitive MELAS diagnosis through our reporting of more than
two clinical findings of stroke-like episodes, including headache with vomiting, seizures
and hemiplegia, which appeared in childhood following a period of normal development
with undistinguished family history, plus two evidences of mitochondrial dysfunction
detected by high lactate levels in plasma and the decisive molecular finding of m.3243A>G
mutation [70]. Otherwise, our MELAS diagnosis did not followed Hirano’s diagnostic
criteria by lacking clinical–brain imaging correlation for definite diagnosis of stroke-like
episodes [71], which can sometimes be missed within variable ages as mentioned in previ-
ous literatures [72,73]; the other systemic symptoms and signs of mitochondrial disorder,
such as short stature, diabetes mellitus, deafness, ophthalmoplegia or heart failure were
not observed. On the other hand, “silent” m.3243A>G mutation carriers were reported in
previous studies; they commonly present with autonomic dysfunction [74] and less neu-
ropsychiatric symptoms [75,76], without an overt full MELAS clinical picture. They have a
lower mortality than MELAS probands [77]; for that, strict follow up of their metabolite
biomarkers is recommended for predicting their potentiality for MELAS [78] and encourag-
ing a stress-free life and ketogenic diet for keeping healthy mitochondria [79]. In our study,
relatives of the probands were unavailable for analysis. The pathogenicity of m.3243A>G
in MT-TL1 was confirmed by software specific for mitochondrial tRNA mutations, MitoTIP
recorded m.3243A>G as possibly pathogenic (54.30%), and Mamit-tRNA databases for
more detailed tRNA 2-D structures also substantiated m.3243A>G pathogenicity.

The strong genotype–phenotype correlations in MELAS and Leigh disease have been
discussed in the literature. Our LS proband’s phenotype is consistent with Sofou et al.’s
2018 study regarding the onset of disease and severity of m.8993T>G mutation in MT-
ATP6 which is preferentially presented with repeated epileptic attacks [80]. Phenotype
diversity of Leigh disease has been reported for m.8993T>C mutation in the same MT-ATP6
gene [81]; noticeably, other unusual presentations rather than neurological ones were
found with other mitochondrial and nuclear-encoded genes, causing Leigh disease to be
ocular and gastrointestinal with MT-ND mutations [82,83], cardiac with NDUF [84,85]
and renal with SURF1 and ACAD9 gene defects [86,87]. Previous studies have reported
many mitochondrial mutations causing classic MELAS without any detectable phenotypic
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specificity [88,89]; exceptional renal diseases were detected in association with m.3243 and
m.13513G>A as a first manifestation of MELAS [90,91]. Furthermore, MELAS m.3243 was
associated with uncommon presentations such as cardiac and ketoacidosis [92,93].

Evolutionary European mtDNA haplogroups were detected by MITOMASTER anal-
ysis in our patients, in which MELAS showed preference for U and H haplogroups with
collection of their associated haplotypes. In Proband one, thirty three different homo-
plasmic sequence variants were identified; twenty eight of them are haplotypes for hap-
logroup U2e regarding PhyloTree build 17, included defining mutational haplogroup U
markers at m.11467A>G, m.12308A>G and m.12372G>A, and ancestral markers motifs
at m.73A>G, m.263A>G, m.750A>G, m.1438A>G, m.2706A>G, m.4769A>G, m.7028C>T,
m.8860A>G, m.11719G>A, m.14766C>T and m.15326A>G. All were found to be widely
distributed across our sample. Furthermore, the characteristic mutation m.1811A>G for
U’2’3’4’7’8’9 the common ancestor of haplogroup U was detected, with subdivision to
European U2e on the basis of our finding of characteristic non-coding variants at m.152T>C,
m.508A>G, m.15907A>G, m.16051A>G, m.16129G>C and m.16189T>C and the synony-
mous SNPs at m.3720A>G, m.5390A>G, m.5426T>C, m.6045C>T, m.6152T>C, m.10876A>G
and m.13020T>C. The other five variants were detected in our analysis at m.739C>T,
m.3116C>T, m.11197C>T, m.13359G>A and m.16183A>C, which are considered nonspecific
to haplogroup U2e regarding PhyloTree build 17, although all of them with the exception
of m.13359G>A have lower frequencies in haplogroup U2e by Mitomaster analysis (0.29%,
22.71%, 22.42% and 75.52%, respectively) (GenBank ID KY930472.1 and AY339545.1); in-
terestingly, three of them, m.739C>T, m.3116C>T and m.13359G>A, were detected as
polymorphisms and pathogenic mutations in different other diseases associated with
aminoglycoside-induced hearing loss [94–97], whereas haplotypes for haplogroup H, a sub-
class of haplogroup HV, were shown to be associated with the second MELAS proband.
Ancestral marker motifs were detected at m.263A>G, m.750A>G, m.1438A>G, m.4769A>G,
m.8860A>G, m.15326A>G, and m.16519C>T; haplogroup H selected markers were detected
at m.2706G>A and m.7028C>T. This MELAS proband was characterized as the H15 sub-
class, and we detected variants for haplogroup H15 at m.55T>C and m.6253T>C which
further subdivided to H15b in the presence of m.3847T>C. In addition we detected two
other non-coding variants: insertion C at m.56, which has very low frequency in association
to haplogroup H15b on MITOMASTER (GenBank ID KF162889.1), and m.143G>A that did
not reported previously in association to that haplogroup. Our results are consistent with
European haplogroups [98], and also in agreement with Caucasian and Spanish population
studies for MELAS m.3243A>G mutation which reported its association with both the
most represented haplogroup H and haplogroup U without any predilection for affect-
ing MELAS phenotypic expression [40,99]; however, another study reported MELAS low
representation on haplogroup J in French patients [100]. In contrast to this, the Spanish
population did not show any haplogroup preference [40]. Concerning the geographical
variations effect, we can notice that the native American haplogroup B2 was exhibited
in Mexican MELAS females [101]; likewise, Eastern Asian haplogroups were detected in
Chinese MELAS pedigrees [102] and in Indian MELAS patients [103].

The Leigh disease proband exhibited a preference for haplogroup H, subclade H34 cor-
roborated by detection of non-synonymous substitution at m.15519T>C and m.16291C>T.
Further, full sequence analysis detected other polymorphic variants m.152T>C, 315insC
and 16093T>C not reported on PhyloTree build 17, but published before on Mitomaster
haplogroup H34 (GenBank ID JQ702662.1 and KY797254.2). Furthermore, analysis revealed
two variants m.508A>G and m.15948 A>G which is not reported on either the PhyloTree
build 17 or Mitomaster for that group; the m.15948 in MT-TT is a conventional tRNA in
the acceptor stem domain of threonine and the transition of A to G is considered possibly
benign (29.90%) by MitoTIP. Our results are in line with other previous reported Leigh
pedigrees that have showed more preference for subclades of haplogroup H; for example,
H1r1 in Spanish pedigree harbouring the LS m.1555A>G Mutation in MT-RNR1 [104],
and an Indian Leigh case study harbouring m.8993T>C mutation in the MT-ATP6 gene,
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which was found defining SNP for haplogroup H [105]. Haplogroup heterogeneity for
Leigh syndrome has been reported in association with different Leigh-causing mutations;
for instance, H13 has been found in association with MILS ATP6 mutant cell lines. Other-
wise, our reporting is not in accordance with other studies that have observed susceptibility
of Leigh disease on other haplogroups rather than haplogroup H, such as N9a, B5 and
Y in Chinese patients [106,107], and haplogroup U5b on mutant cell lines [108]; all are
descended from the macro-haplogroup N. Asian haplogroup M is also reported in another
Indian Leigh case as harbouring m.8936T>A in the MT-ATP6 gene [109].

Herein, our suggestion that haplogroup H may increase risk to Leigh disease is
due to the early onset of severe symptoms in our proband according to Hong et al.’s
classification, presented with delayed development under 1 year of age, followed by up
to 30 epileptic seizure attacks per day and motor weakness [110]; our prospect is also
supported by other literatures which indicated that haplogroup H increases the tendency
for other neurodegenerative disorders such as Alzheimer’s disease [111,112], Parkinson’s
disease [113], Huntington’s disease [114], amyotrophic lateral sclerosis [115] and multiple
sclerosis [116], and is also involved in other non-neurological degenerative disorders such
as aortic stenosis [117], diabetes mellitus [118] and osteoarthritis [119,120].

5. Conclusions

Mitochondrial encephalomyopathies in Serbian children presented with specific phe-
notypes according to the age of onset should be taken into consideration for molecular
genetic screening. Our results underscore the importance of recognizing the pathogenic
mtDNA mutations and their related mitochondrial haplogroup background, aiming for
better definitive diagnosis and assisting in the development of pathogenicity-based thera-
peutic approaches.
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