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Abstract Alternans and arrhythmogenicity were studied in
hypokalaemic (3.0 mM K+) Langendorff-perfused murine
hearts paced at high rates. Epicardial and endocardial
monophasic action potentials were recorded and durations
quantified at 90% repolarization. Alternans and arrhythmia
occurred in hypokalaemic, but not normokalaemic
(5.2 mM K+) hearts (P<0.01): this was prevented by
treatment with lidocaine (10 μM, P<0.01). Fourier analysis
then confirmed transition from monomorphic to poly-
morphic waveforms for the first time in the murine heart.
Alternans and arrhythmia were associated with increases in
the slopes of restitution curves, obtained for the first time in
the murine heart, while the anti-arrhythmic effect of
lidocaine was associated with decreased slopes. Thus,
hypokalaemia significantly increased (P<0.05) maximal
gradients (from 0.55±0.14 to 2.35±0.67 in the epicardium
and from 0.67±0.13 to 1.87±0.28 in the endocardium) and
critical diastolic intervals (DIs) at which gradients equalled
unity (from −2.14±0.52 ms to 50.93±14.45 ms in the
epicardium and from 8.14±1.49 ms to 44.64±5 ms in the
endocardium). While treatment of normokalaemic hearts
with lidocaine had no significant effect (P>0.05) on either
maximal gradients (0.78±0.27 in the epicardium and 0.83±

0.45 in the endocardium) or critical DIs (6.06±2.10 ms and
7.04±3.82 ms in the endocardium), treatment of hypokalae-
mic hearts with lidocaine reduced (P<0.05) both these
parameters (1.05±0.30 in the epicardium and 0.89±0.36 in
the endocardium and 30.38±8.88 ms in the epicardium and
31.65±4.78 ms in the endocardium, respectively). We thus
demonstrate that alternans contributes a dynamic component
to arrhythmic substrate during hypokalaemia, that restitution
may furnish an underlying mechanism and that these
phenomena are abolished by lidocaine, both recapitulating
and clarifying clinical findings.
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Introduction

Correlations between beat-to-beat alternations in electrocar-
diographic QT interval (QT or T-wave alternans) and cardiac
arrhythmia have been described in classical work [13, 25]
and subsequently confirmed in both clinical studies [2, 28,
38] and experimental models [7, 33, 52]. Indeed, the
presence of such alternans provides a stronger predictor of
arrhythmic risk than is offered by signal-averaged electro-
cardiography and a prediction of a similar value to that
offered by invasive programmed stimulation procedures in
current use [10] (but see [45]). The association between
alternans and arrhythmogenicity is particularly marked at
high heart rates (short baseline cycle lengths, BCLs) [15,
49] and in conditions of congenital and acquired electrocar-
diographic QT, and therefore action potential, prolongation
[1, 34, 39, 46, 47, 64].
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The relationship between heart rate and alternans has
previously been analysed by constructing restitution curves
which plot relationships between action potential duration
(APD) and preceding diastolic interval (DI), as BCL is varied
[12]. Clinical and experimental studies then associated
alternans and arrhythmia observed at short BCLs with
steeply sloping restitution curves with gradients greater than
unity [14, 21, 24, 32]. The latter would reflect dispropor-
tionate decreases in mean APD with DI. Furthermore,
manoeuvres which decrease the slopes of restitution curves,
such as hyperkalaemia in a tachycardic canine endocardial
preparation [22] and certain cardiotropic drugs in canine and
porcine preparations [8, 31, 37], have been reported to both
suppress alternans and exert anti-arrhythmic effects. In
contrast, other studies have attributed such alternans to
alteration in Ca2+ cycling involving the sarcoplasmic
reticulum [35, 44, 54]. Whatever the underlying mechanism,
alternans results in temporal variations in the wavelengths of
propagating action potentials that could potentially lead to
reentry and arrhythmogenesis [55].

Hypokalaemia is an important clinical cause of acquired
QT prolongation and is associated with arrhythmia of
various degrees of spatial organisation [12, 30, 57]
suppressible by lidocaine [6, 36, 48]. The present study
uses the monophasic action potential (MAP) technique [19,
23] and an established Langendorff-perfused murine model
[18, 40–42] to explore the effects of hypokalaemia and of
lidocaine on alternans and arrhythmogenicity for the first
time in any species. These investigations of temporal
heterogeneities in recovery after depolarization are per-
formed on hearts paced at short BCLs, thereby compli-
menting recent work [40, 41] which contrastingly examined
the contribution of spatial heterogeneities at long BCLs.
This approach successfully demonstrates such phenomena
in parallel with the clinical situation and proceeds for the
first time to apply Fourier analysis to MAP waveforms
and to recordings obtained during hypokalaemia. This
analysis demonstrates evolution from a monomorphic to a
polymorphic pattern as has previously been reported in
other species [55, 58, 63], thereby further validating the
murine model. The presence or absence of alternans
and arrhythmogenicity is then related to alterations in
the slopes of restitution curves. Thus, while the relation-
ship between APD and BCL has previously been
determined [20], the present study reports restitution
curves relating APD to the preceding DI for the first time
in a murine system. Use of this murine system further
permits the comparison of findings with results obtained
from genetically modified examples [26].

Taken together, these novel findings implicate a dynamic
component to arrhythmic substrate under conditions of
hypokalaemia for which restitution may furnish a possible
underlying mechanism.

Materials and methods

Experimental animals

Mice were housed at 21±1°C with 12-h light/dark cycles,
were fed sterile chow (RM3 Maintenance Diet, SDS,
Witham, Essex, UK) and had free access to water. Wild-
type 129 Sv mice aged 3–6 months were used in all
experiments. All procedures complied with the UK
Animals (Scientific Procedures) Act 1986.

Solutions

Solutions were based on bicarbonate-buffered Krebs–
Henseleit solution (mM: NaCl 119, NaHCO3 25, KCl 4,
KH2PO4 1.2, MgCl2 1, CaCl2 1.8, glucose 10 and
Na-pyruvate 2; pH adjusted to 7.4) and were bubbled with
95% O2/5% CO2 (British Oxygen Company, Manchester,
UK). Hypokalaemic (3.0 mM K+) solutions were prepared
by reducing the amount of KCl added. Lidocaine-containing
solutions were prepared by adding lidocaine (Sigma-
Aldrich, Poole, UK) to a final concentration of 10 μM.

Preparation

A Langendorff perfusion protocol previously adapted for
murine hearts [3] was used. In brief, mice were killed by
cervical dislocation [Schedule 1: UK Animals (Scientific
Procedures) Act 1986]. Hearts were then quickly excised
and placed in ice-cold bicarbonate-buffered Krebs–Henseleit
solution. A short section of aorta was cannulated under the
surface of the solution and attached to a custom-made
21-gauge cannula filled with the same solution using an
aneurysm clip (Harvard Apparatus, Edenbridge, Kent, UK).
Fresh Krebs–Henseleit solution was then passed through
200- and 5-μm filters (Millipore, Watford, UK) and warmed
(37°C) using a water jacket and circulator (Techne model C-
85A, Cambridge, UK) before being used for constant-flow
retrograde perfusion at 2–2.5 ml/min using a peristaltic
pump (Watson-Marlow Bredel model 505S, Falmouth,
Cornwall, UK). Hearts were only regarded as suitable for
experimentation if they regained a healthy pink colour and
began to contract spontaneously on rewarming.

Electrophysiological measurements

An epicardial MAP electrode (Hugo Sachs, Harvard
Apparatus) was placed against the basal left ventricular
epicardium. A small access window was created in the
interventricular septum to allow access to the left ventric-
ular endocardium [5]. A custom-made endocardial MAP
electrode comprising two twisted strands of high-purity
Teflon-coated silver wire of 0.25-mm diameter (Advent

654 Pflugers Arch - Eur J Physiol (2008) 455:653–666



Research Materials, UK) was constructed. The Telflon coat
was removed from the distal 1 mm of the electrode, which
was then galvanically chlorided to eliminate DC offset,
inserted and placed against the septal endocardial surface.
MAPs were amplified, band-pass-filtered (0.5 Hz to 1 kHz:
Gould 2400S, Gould-Nicolet Technologies, Ilford, Essex,
UK) and digitised at a sampling frequency of 5 kHz
(micro1401, Cambridge Electronic Design, Cambridge,
UK). Analysis of MAPs in both the time and frequency
domains was performed using Spike II (Cambridge
Electronic Design).

Experimental protocol

A bipolar platinum stimulating electrode (1 mm inter-pole
spacing) was placed on the basal surface of the right
ventricular epicardium. Square-wave stimuli (Grass S48
stimulator, Grass-Telefactor, Slough, UK) of 2-ms duration
and amplitudes of twice the excitation threshold were
initially applied to hearts at a constant baseline cycle length
of 125 ms until MAPs showed stable baselines, rapid
upstroke phases that reached consistent amplitudes and
smooth repolarisation phases [19] and for at least 10 min.
Hearts were then exposed to test solutions for 20 min while
stimulation was continued before subsequent recordings
were made.

In initial experiments, MAPs were recorded during
regular stimulation at baseline cycle lengths of 130, 100
and 70 ms. Hearts were then subjected to an adapted
dynamic pacing protocol [9]. This comprised cycles each
consisting of 100 stimuli delivered over a range of BCLs.
Steady states were consistently reached during the first 50
responses in each cycle, and thus, mean epicardial and
endocardial APD90 values and DIs were calculated from the
final 50 action potentials of each cycle. With each
successive cycle, BCL was decremented by 5-ms steps
from an initial value of 175 ms. Cycles were continued
until a reproducible sequence of consistently shaped wave-
forms was no longer obtained. These data were then used to
construct restitution curves.

All data are presented as means±standard errors of the
means and include the number of hearts studied. Comparisons
between data sets used analysis of variance (significance
threshold set at P≤0.05). Curve fitting of particular function
to data sets used a Levenberg–Marquardt algorithm
(OriginPro 7.5, OriginLab, MA, USA).

Results

The experiments explored the consequences of increases
in heart rate for arrhythmogenicity in hypokalaemic

murine hearts, thereby extending a previous report that
considered the effect of bradycardia [41]. They thus
studied identical experimental groups, first exposing
hearts to normokalaemic (5.2 mM K+) and hypokalaemic
(3.0 mM K+) test solutions before and after addition of
lidocaine (10 μM) for 20 min during regular stimulation at
a BCL of 125 ms. Experiments then proceeded to study
electrical activity through a range of steady state BCLs to
assess propensity to spontaneous arrhythmia. Electrical
traces from arrhythmic hearts were then quantitatively
analysed in the frequency domain to empirically charac-
terise their kinetics. Finally, hearts were subjected to a
dynamic pacing protocol which explored the effect of
varying BCLs [21] and permitted the analysis of alternans
and its relationship to arrhythmogenicity.

Alternans and arrhythmic activity occur in hypokalaemic
hearts paced at a reduced baseline cycle length

The first series of experiments recorded MAPs [23] from the
epicardia of hearts paced at BCLs of 130, 100 or 70 ms over
30-min recording periods (five hearts in each case; Fig. 1).
This demonstrated a tendency to both alternans, as reflected
in alternating short-long-short sequences in action potential
duration, and arrhythmogenesis at the shortest BCLs,
corresponding to the highest heart rates, specifically in the
hypokalaemic hearts and not in the other groups. Thus,
MAPs obtained from normokalaemic hearts whether paced
at BCLs of 130, 100 or 70 ms demonstrated consistent
waveforms and stable rhythms during 30-min recording
periods (five hearts in each case; Fig. 1a). In contrast, while
recordings from hypokalaemic hearts paced at BCLs of 130
and 100 ms demonstrated stable rhythms (five out of five
hearts), alternans leading to periods of arrhythmic activity
occurred during pacing at a BCL of 70 ms in all five cases
(P<0.01 as compared to normokalaemic hearts; Fig. 1b).
However, neither alternans nor arrhythmic activity occurred
in either normokalaemic or hypokalaemic hearts treated with
lidocaine during pacing at any BCL (five hearts in each case;
P<0.01 as compared to hypokalaemic hearts not treated with
lidocaine; Fig. 1c and d, respectively), confirming the anti-
arrhythmic effect of lidocaine described in earlier studies
[6, 41, 42, 48].

Electrophysiological waveforms after the initiation
of arrhythmic activity

When arrhythmic activity was observed in those hypo-
kalaemic hearts paced at a BCL of 70 ms, this showed
progressive degeneration from a regular monomorphic to
a disorganised polymorphic pattern (four hearts), in
common with earlier reports from the larger, porcine
and human, hearts [16, 58, 63].
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This trend was quantitatively apparent in a spectral
analysis performed using a fast Fourier transform method
[4] on ∼10-s sequences of MAP waveforms recorded from
the epicardia and endocardia of hypokalaemic hearts to
which a Hanning window had first been applied. These
waveforms had been sampled at a rate of 5 kHz with low-
and high-frequency filter cutoffs of 0.5 Hz and 1 kHz,
respectively. Each transform was performed on 16,384
(=216) points to give a spectral resolution of 0.30 Hz up to
a maximum, Nyquist, frequency of 2.5 kHz. Relative root

mean square powers were then extracted from the real and
imaginary parts of the transforms.

Figure 2 thus compares typical waveforms in both the
time (a) and frequency (b) domains. Waveforms recorded
during the first ∼5 min after the initiation of arrhythmic
activity were monomorphic in appearance (A in Fig. 2a).
This was confirmed by spectral analysis which similarly
demonstrated a single identical dominant frequency peak of
18.9±1.8 Hz in both epicardial and endocardial recordings
with harmonics whose frequencies were integral multiples of

5.2 mM K+ 3.0 mM K+
a b

A
Baseline cycle 

length = 130 ms

B
Baseline cycle 

length = 100 ms

C
Baseline cycle 
length = 70 ms

MAP
V

300 ms

5.2 mM K+ + lidocaine 3.0 mM K+ + lidocaine

c d

A
Baseline cycle 

length = 130 ms

B
Baseline cycle 

length = 100 ms

C
Baseline cycle 
length = 70 ms

MAP
V

300 ms

Fig. 1 Effect of baseline cycle
length on presence of alternans
and initiation of arrhythmic
activity. Epicardial monophasic
action potential recordings
obtained from hearts exposed
to normokalaemic (5.2 mM K+,
a) and hypokalaemic
(3.0 mM K+, b) test solutions,
and normokalaemic (c) and
hypokalaemic (d) test solutions
containing lidocaine (10 μM)
during regular stimulation at
baseline cycle lengths of 130
ms (A), 100 ms (B) and 70 ms
(C). Vertical lines
indicate the timing
of stimuli
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a dominant fundamental frequency and any given heart
showed at least two such peaks (∼38.4, ∼57.6, ∼76.8 Hz,
A in Fig. 2b).

In contrast, waveforms recorded ≥10 min after the
initiation of arrhythmic activity were consistently poly-
morphic in appearance (B in Fig. 2a), with spectral analysis
(B in Fig. 2b) further demonstrating dissimilar epicardial
and endocardial frequency spectra. The dominant frequency
peak was then at 27.6±5.6 Hz in the epicardium, while that
in the endocardium was 26.5±5.8 Hz. Furthermore, the
higher order peaks, whether recorded from the epicardium
or the endocardium, occurred at irregular frequency
intervals that were not multiples of the dominant frequency.

Alternans occurs in the epicardia and endocardia
of hypokalaemic hearts paced at a baseline
cycle length of 70 ms

As illustrated in C in Fig. 1b, hypokalaemic hearts paced at a
BCL of 70 ms demonstrated alternans. Figure 3 goes on to
show mean APD90 values of the alternating, odd-numbered
(filled bars) and even-numbered (open bars) action poten-
tials, and the difference between these values, giving the
magnitude of any alternans (hashing), recorded from the
epicardia (a) and endocardia (b) under normokalaemic (A)
and hypokalaemic (B) conditions and under such conditions
during treatment with lidocaine (C and D, respectively).

A

B

MAP
V

200 ms

0 50 100 150 200 250 300

Frequency (Hz)

0 50                 100 150 200 250 300

Frequency (Hz)

Epicardium

Endocardium

Epicardium

Endocardium

a bFig. 2 Progression from mono-
morphic to polymorphic
arrhythmic activity. Epicardial
and endocardial monophasic
action potential recordings
obtained from hearts exposed to
hypokalaemic (3.0 mM K+) test
solution 5 min (A) and 10 min
(B) after initiation of arrhyth-
mic activity in the time (a) and
frequency (b) domains
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In normokalaemic hearts (five hearts), alternans was not
observed, the difference between the mean APD90 values of
odd-number and even-numbered action potentials not
reaching significance (P>0.05) in either the epicardium
(4.7±2.7 ms) or the endocardium (5.6±1.7 ms). In contrast,
alternans did occur in hypokalaemic hearts (five hearts), the
difference between the mean APD90 values of odd-number
and even-numbered action potentials being statistically
significant (P<0.01) in both epicardium (14.9±3.8 ms)
and endocardium (15.6±1.8 ms). Treatment with lidocaine
had no significant (P>0.05) effect on normokalaemic
hearts (five hearts): The difference between the mean
APD90 values of odd-number and even-numbered action
potentials remained statistically insignificant (P>0.05) in
both epicardium (2.7±3.4 ms) and endocardium (2.5±4.6
ms). In contrast, treatment with lidocaine eliminated alter-
nans in hypokalaemic hearts (five hearts). Hence, the
difference between the mean APD90 values of odd-number

and even-numbered action potentials did not reach signifi-
cance (P>0.05) in either epicardium (4.1±4.6 ms) or
endocardium (2.4±3.2 ms).

The dynamic pacing protocol initiates alternans
in hypokalaemic hearts at short baseline cycle lengths

The above findings concerning the presence or absence of
alternans at the shortest BCL studied above prompted a
detailed exploration of the effect of BCL upon the alternans
phenomenon. To assess this relationship, hearts were
subjected to a dynamic pacing protocol [21] consisting of
cycles each lasting 100 stimuli at through a range of BCLs.
In these procedures, steady states were consistently reached
within the first 50 responses. Accordingly, mean values of
epicardial and endocardial APD90 and DI were obtained
from the final 50 action potentials. BCL was decremented
in 5-ms steps with each cycle from an initial value of 175
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Fig. 3 Alternans during stimula-
tion at a baseline cycle length of
70 ms. Durations of successive
odd (filled bars) and even
(open bars) numbered action
potentials (at 90% repolarisation,
APD90) and the difference
between these values, giving the
magnitude of alternans (hashing)
in the epicardia (a) and
endocardia (b) of hearts exposed
to normokalaemic (5.2 mM K+,
A) and hypokalaemic (3.0 mM
K+, B) test solutions and
normokalaemic (C) and
hypokalaemic (D) test solutions
containing lidocaine (10 μM)
during regular stimulation at a
baseline cycle length
of 70 ms
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ms until a reproducible sequence of consistently shaped
action potential waveforms could no longer be obtained.

Figure 4a–d shows typical recordings obtained from the
epicardia of individual hearts under the four sets of
experimental conditions during the dynamic pacing pro-
tocol at BCLs of 170, 130, 90, 85, 80, 75 and 70 ms when
such steady states had been achieved. Figure 5a–d shows
the corresponding relationships between the durations of
successive odd- and even-numbered action potentials
obtained from these same hearts during the dynamic
pacing protocol over the full range of BCLs studied.
Thus, alternans was not observed under normokalaemic
conditions even at the shortest BCL studied (Fig. 4a),
resulting in points falling on the line y=x (Fig. 5a).
Conversely, alternans occurred under hypokalaemic con-
ditions at short BCLs (Fig. 4b), resulting in such points
falling below the line of equality (Fig. 5b). In contrast,
alternans did not occur in either normokalaemic or
hypokalaemic hearts during exposure to lidocaine (Fig. 4c
and d), again resulting in points falling on the line of
equality (Fig. 5c and d).

Alterations in the slopes of restitution curves correlate
with pro- and anti-arrhythmic effects

The findings described above prompted the construction
and analysis of restitution curves relating APD90 and the
preceding DI given by the difference between the BCL and
the preceding APD90 [21, 29, 32, 55]. Alternans and
arrhythmia have previously been associated with increases
in the slopes of such restitution curves reflecting dispro-
portionate decreases in mean APD90 with DI. Such curves
(data points, left ordinate) were plotted using the APD90

(left ordinate) and DI data obtained from the epicardia
(circles, Fig. 6A) and endocardia (squares, Fig. 6B) of
hearts under these conditions (a–d, respectively).

Under all conditions, both epicardial and endocardial
APD90 decreased as DI decreased. However, the slope of
this relationship was greater under hypokalaemic (A and B
in Figs. 6b) than under normokalaemic conditions (A and B
in Figs. 6a). This paralleled both the alternans and
arrhythmic activity that were observed under the hypoka-
laemic conditions. Such increases in the slopes of restitu-
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Fig. 4 Effect of baseline cycle length on action potential
waveforms. Epicardial monophasic action potential recordings
obtained from hearts exposed to normokalaemic (5.2 mM K+, a)
and hypokalaemic (3.0 mM K+, b) test solutions and normokalae-

mic (c) and hypokalaemic (d) test solutions containing lidocaine
(10 μM) during stimulation at baseline cycle lengths of 170, 130,
90, 85, 80, 75 and 70 ms. Vertical lines indicate the timing of
stimuli
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tion curves were observed even when the DI was so short
such that stimuli were delivered before 90% repolarisation
was achieved. This would tend to result in the underesti-
mation of APD90, and hence, the underestimation of the
slopes of restitution curves.

Exposure to lidocaine had little effect on the slopes of
the corresponding curves obtained under normokalaemic (A
and B in Figs. 6c), but markedly decreased the slopes of
curves obtained under hypokalaemic conditions (A and B in
Figs. 6d), in precise agreement with its corresponding
effects in suppressing alternans and arrhythmia.

Restitution curves yield parameters predictive
of arrhythmogenicity

The restitution curves obtained above proved amenable to
quantitative analyses that has been described on previous
occasions. For example, the simplest, mono-exponential
growth function that has been used to describe data of this
kind [13] takes the form:

y ¼ y0 þ A 1� e�x=t
� � ð1Þ

where y represents APD90, x represents DI and y0 and A and
t are constants obtained by least squares fitting to the
experimental values of APD90 and DI in each case. Such
curve-fits are used merely to empirically describe the data
and should not be taken to imply any particular underlying
mechanistic process. The corresponding gradient is then
given by:

dy

dx
¼ A

t
� e�x=t ð2Þ

and assumes its maximum value at the shortest BCL.
Figure 6 plots the original APD90 and DI values and

superimposes optimisations of Eq. 1 to these data (solid
lines, left-hand ordinates). Such optimisations gave reduced
χ2 values indicative of better fits to data points obtained
under normokalaemic than hypokalaemic conditions. It also
shows the corresponding gradients derived from constants
obtained from the optimisations (Eq. 2: broken lines, right-
hand axes). Shaded regions where present indicate the
range of DIs below a critical DI (DI < critical DI) at which
these gradients exceed unity, obtained from Eq. 2:

critical DI ¼ �t � 1n t
A

� �
ð3Þ

Such a phenomenon is associated with an alternans
initiated by incomplete recovery of one action potential and
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the consequent shortening of its subsequent DI. This would
result in a disproportionate shortening of the subsequent
action potential which would consequently permit its full
recovery and a lengthening of the DI that follows, thereby
reinitiating the cycle and resulting in a progressive decrease in
mean APD90 relative to mean DI with decreasing BCL [29].

The resulting alternans would assume an amplitude
determined by the gradient of the restitution curve at the
given BCL, whether the latter is determined by altered
external pacing rates or local ventricular arrhythmic
activity. A BCL that gives a gradient of >1 will then
initiate a shortening not only of mean APD90 but also of

mean APD90 relative to mean DI. The resulting shortening
of action potential wavelength would then predispose to
reentry and arrhythmogenesis.

These parameters successfully predict the pro-arrhythmic
effect of hypokalaemia

Figure 7 goes on to show these maximum gradients (a) and
values of the critical DI (b) derived from the computed A
and t values in epicardia (filled bars) and endocardia (open
bars). Under normokalaemic conditions (Fig. 7A) A and t
took values of 56.3±2.4 ms and 58.4±9.8 ms in the
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Fig. 6 Restitution curves obtained
from epicardia and endocardia.
Restitution curves plotting action
potential duration (at 90% repolar-
ization, APD90) against preceding
diastolic interval (DI) obtained
from the epicardia (circles, A) and
endocardia (squares, B) of hearts
exposed to normokalaemic (5.2
mM K+, a) and hypokalaemic (3.0
mM K+, b) test solutions and
normokalaemic (c) and hypoka-
laemic (d) test solutions containing
lidocaine (10 μM). Curves are
fitted with mono-exponential
growth functions obtained by
least-squares fitting to the experi-
mental values of APD90 and DI
(solid lines, left ordinates).
Gradients were obtained by dif-
ferentiation of the fitted functions
(broken lines, right axes). Shaded
boxes indicate ranges of DI values
at which such gradients
exceed unity
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epicardium and 73.8±1.7 ms and 65.2±8.4 ms in the
endocardium, with reduced χ2 values from least-squares
regression of χ2

R=1.4 and 1.2, respectively. This gave
maximal gradients of 0.55±0.14 in the epicardium and
0.67±0.13 in the endocardium and critical DI values
of −2.14±0.52 ms and 8.14±1.49 ms, respectively. None
of the experimental DI values realised the critical DI in
either the epicardium or the endocardium, paralleling the
absence of arrhythmic activity (Fig. 2a).

Hypokalaemia (Fig. 7B) significantly (P<0.05) increased
the slopes of both epicardial and endocardial curves,
concurring with the arrhythmogenic findings. Thus, A and
τ took values of 166.7±5.63 ms and 29.3±8.29 ms in the
epicardium and 133.3±8.0 ms and 29.8±2.1 ms in the
endocardium, with χ2

R values of 8.2 and 2.5, respectively.
This gave significantly (P<0.05) increased maximum
gradients of 2.35±0.67 in the epicardium and 1.87±0.28 in

the endocardium and significantly (P<0.05) increased the
critical DI values of 50.93±14.45 ms and 44.64±5 ms,
respectively. The critical DI was realised by the observed
data points in both epicardium and endocardium. Further-
more, the DIs at which this occurred were in full agreement
with the corresponding DIs at which alternans was observed.
Thus, in the epicardium, alternans occurred during pacing at
BCLs of ≤95 ms, corresponding to DIs of 46.7±3.6 ms,
while in the endocardium, alternans occurred during pacing
at BCLs of ≤75 ms, corresponding to DIs of 44.0±5.7 ms.

These parameters also predict the anti-arrhythmic effect
of lidocaine

Lidocaine had no significant (P>0.05) effect on these
values when applied to normokalaemic hearts (Fig. 7C).
Thus, A and t took values of 81.1±3.05 ms and 56.92±
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Fig. 7 Maximum gradients
and critical diastolic intervals
obtained from restitution
curves. Maximum gradients (a)
and critical diastolic intervals at
which gradients equalled unity
(b) obtained from epicardial
(filled bars) and endocardial
(open bars) restitution
curves shown in Fig. 6
under normokalaemic
(5.2 mM K+, A) and hypoka-
laemic (3.0 mM K+, B)
conditions and under normoka-
laemic (C) and hypokalaemic
(D) conditions during exposure
to lidocaine (10 μM). Asterisks
indicate values that are signifi-
cantly (P<0.05) larger than
those recorded in
normokalaemic hearts
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10.29 ms in the epicardium and 104.47±13.69 ms and
97.17±36.22 ms in the endocardium, with χ2

R values of
5.37 and 10.47, respectively. This gave maximum gradients
of 0.78±0.27 in the epicardium and 0.83±0.45 in the
endocardium and the critical DI values of 6.06±2.10 ms
and 7.04±3.82 ms, respectively, which were not realised
even at the shortest BCLs studied.

In contrast, treatment of hypokalaemic hearts with
lidocaine (Fig. 7D) significantly (P<0.05) reduced the
slopes of both epicardial and endocardial restitution
curves, in parallel with its anti-arrhythmic effect. Thus A
and t took values of 109.90±11.95 ms and 37.36±5.97 ms
in the epicardium and 231.72±44.70 ms and 27.60±4.44
ms in the endocardium, with χ2

R values of 6.83 and 15.68,
respectively. This gave significantly decreased (P<0.05)
maximal gradients of 1.05±0.30 in the epicardium and
0.89±0.36 in the endocardium and significantly decreased
(P<0.05) critical DI values of 30.38±8.88 ms and 31.65±
4.78 ms, respectively. The critical DI was realised only at
the shortest BCLs studied and then only in the epicardium,
in parallel with the substantial reduction in arrhythmoge-
nicity produced by this drug.

Slopes of restitution curves thus precisely correlate with
the presence or absence of alternans and arrhythmogenesis
under all the conditions explored in the hypokalaemic
Langendorff-perfused murine heart.

Discussion

Electrical alternans, beat-to-beat alternation in action
potential duration in turn reflected in alternation in
electrocardiographic QT interval (QT or T-wave alternans),
is most commonly seen at high heart rates and has been
associated with arrhythmogenesis in both clinical [2, 25,
28, 38] and experimental [7, 33, 52] studies. This
association is especially marked in situations of preexisting
action potential, and therefore electrocardiographic QT,
prolongation [39, 46, 47, 49, 64] as might occur in the
congenital long QT syndromes.

Alternans phenomena have classically been analysed by
the construction of restitution curves relating action potential
duration to the preceding diastolic interval as heart rate is
varied [29]. Restitution curves of slopes greater than unity
have been associated with alternations in action potential
durations of progressively increasing magnitude [14, 21, 24,
29, 32]. In contrast alternans has more recently been
associated with disruption of normal cellular Ca2+

homeostasis leading to alternating short-long-short pulses
of release from sarcoplasmic reticular stores [35, 44, 54].
Irrespective of the underlying mechanism, any spatial
discordance in either phase or magnitude of alternans between
myocardial regions would lead to spatial repolarisation

gradients that might cause reentry and arrhythmogenesis [53,
56]. Furthermore, any resulting decrease in action potential
wavelength, given by the product of action potential duration
and conduction velocity, to less than a critical value, might
break up the propagating wave of excitation and lead to
reentry and arrhythmogenesis [55].

Relationships between restitution curve slopes, alternans
and arrhythmogenicity at high heart rates have been estab-
lished in canine preparations made to model congenital long
QTsyndrome type 2 (LQT2) by application of the IKr blocking
agent E-4031 [27, 61]. Correspondingly, there is a known
association between sudden arousal, presumably resulting in
increased heart rate, and arrhythmogenesis in human LQT2
[59]. This association has also been established in clinical
hypokalaemia [11]. This common and pathophysiologically
important condition similarly results in decreased repolarising
K+ currents, together with action potential, and therefore
electrocardiographic QT, prolongation [17, 62].

The experiments reported recorded MAP technique [19,
23] from an established intact hypokalaemic murine
model [18, 40–42] and explored for alternans and
arrhythmogenicity and the relationship between these
before proceeding to study the effect of lidocaine upon
these phenomena. Such studies of temporal heterogene-
ities in recovery were made at short BCLs in contrast to
recent work [40, 41] which examined spatial heterogene-
ities at long BCLs. The murine system utilised facilitates
the introduction of genetic modifications [26] and may
therefore permit future comparisons with models replicat-
ing congenital arrhythmic syndromes. Indeed, alternans, in
association with arrhythmogenicity, has previously been
demonstrated in a murine model of LQT5 [50].

While the murine heart is well established as a model for
human disease, it must be noted that important interspecies
differences exist. Thus, differences between humans and
mice in the kinetics of the ion channels carrying the key
repolarising currents (the delayed rectifier and slowly-
inactivating delayed rectifier currents, IKr and IKs, in
humans and the transient outward current, Ito in mice)
result in shorter ventricular AP and the absence of a plateau
phase in mice [2]. However, in both species, these key
repolarising currents are K+-sensitive [6, 11, 16], making
the murine heart well suited to modelling clinical
hypokalaemia. Furthermore, in both species, depolarisation
is rapid and attributable to the same fast Na+ current (INa,f)
[4], making our model well suited to the study of Na+-
channel-blocking agents such as lidocaine. While both
species share similar differences in AP duration between
epicardium and endocardium [7], M cells appear to be
absent in the murine heart [1]. Nonetheless, relationships
between APD and refractory period are similar between the
two species [3, 8], and transmural conduction velocities are
almost identical [5, 10]. With these caveats in mind,
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similarities between human and murine hearts make our
murine model well suited for the study of the basic
mechanisms of arrhythmogenicity.

First, we confirm that alternans is absent in control
normokalaemic hearts and that this is associated with the
maintenance of stable rhythms even at short BCLs. Secondly,
we report alternans in association with arrhythmogenesis at
short BCLs for the first time in hypokalaemic murine hearts,
in full agreement with previous clinical and experimental
studies in other species [2, 7, 33, 38, 52].

Thirdly, we associate such alternans with increases in the
slopes of restitution curves above unity [29, 55]. Fourthly,
we demonstrate for the first time in any experimental model
that exposure to the class I agent lidocaine reduces the
slopes of restitution curves and suppresses alternans in
association with its anti-arrhythmic effect. Taken together,
these observations implicate a restitution mechanism in
driving alternans in these hypokalaemic preparations.
Furthermore, this extends previous reports that the anti-
arrhythmic effects of both class III and IV agents are
associated with decreases in the slopes of restitution curves
[8, 31, 37]. This contrasts with a previous report that found
lidocaine to have no effect on restitution curves obtained
using an extrasystolic stimulation procedure or alternans
phenomena in a normokalaemic excised canine papillary
muscle preparation [43].

Fifthly, we show that such alternans and steeply sloping
restitution curves are associated with the temporal evolution
of the normal regular pattern of cardiac excitation into
arrhythmic activity. The latter, in turn, was processed by a
spectral Fourier transform analysis of MAP waveforms
performed for the first time in any cardiac system.
Arrhythmic MAP waveforms were initially monomorphic,
and their corresponding spectra contained a single domi-
nant frequency and integral multiple harmonics identical in
epicardial and endocardial recordings. Such monomorphic
arrhythmic waveforms subsequently degenerated into poly-
morphic waveforms whose spectra showed dissimilar
epicardial and endocardial dominant frequencies and larger
higher order peaks that were not integral multiples of the
dominant frequency in full agreement with previous results
from the porcine heart [63]. Spectra with similar features
have previously been obtained from volume-conducted
electrograms and pseudoelectrograms (as opposed to
MAPs) from murine hearts during both monomorphic and
polymorphic arrhythmic activity [51].

Taken together, these results recapitulate in a murine
system arrhythmogenic patterns classically described in
clinical situations [16, 58] and implicate a dynamic
component to arrhythmic substrate under conditions of
hypokalaemia for which restitution may furnish a possible
underlying mechanism. Furthermore, they disprove previous
suggestions that small hearts are unable to sustain such

arrhythmias [9, 60], and thus further validate the murine
heart as a model for the study of clinical arrhythmia. The
present findings might therefore form a basis for further
explorations of the relationships between heart rate, restitu-
tion slopes, alternans and arrhythmogenicity in other states of
QT prolongation, whether attributable to congenital or
acquired factors.

Acknowledgements We thank the James Baird Fund, the Frank
Elmore Fund, the Medical Research Council, the Wellcome Trust, the
British Heart Foundation and Downing College, Cambridge for their
generous support.

References

1. Aiba T, Shimizu W, Inagaki M, Noda T, Miyoshi S, Ding WG,
Zankov DP, Toyoda F, Matsuura H, Horie M, Sunagawa K
(2005) Cellular and ionic mechanism for drug-induced long QT
syndrome and effectiveness of verapamil. J Am Coll Cardiol
45:300–307

2. Armoundas AA, Osaka M, Mela T, Rosenbaum DS, Ruskin JN,
Garan H, Cohen RJ (1998) T-wave alternans and dispersion of the
QT interval as risk stratification markers in patients susceptible to
sustained ventricular arrhythmias. Am J Cardiol 82:1127–1129,
A9

3. Balasubramaniam R, Grace AA, Saumarez RC, Vandenberg JI,
Huang CL (2003) Electrogram prolongation and nifedipine-
suppressible ventricular arrhythmias in mice following targeted
disruption of KCNE1. J Physiol 552:535–546

4. Bracewell RN (2000) The Fourier transform and its applications.
McGrawHill, New York

5. Casimiro MC, Knollmann BC, Ebert SN, Vary JC Jr, Greene AE,
Franz MR, Grinberg A, Huang SP, Pfeifer K (2001) Targeted
disruption of the Kcnq1 gene produces a mouse model of Jervell
and Lange–Nielsen Syndrome. Proc Natl Acad Sci U S A 98:
2526–2531

6. el-Sherif N, Zeiler RH, Craelius W, Gough WB, Henkin R (1988)
QTU prolongation and polymorphic ventricular tachyarrhythmias
due to bradycardia-dependent early afterdepolarizations. After-
depolarizations and ventricular arrhythmias. Circ Res 63:286–305

7. Euler DE (1999) Cardiac alternans: mechanisms and pathophysio-
logical significance. Cardiovasc Res 42:583–590

8. Garfinkel A, Kim YH, Voroshilovsky O, Qu Z, Kil JR, Lee MH,
Karagueuzian HS, Weiss JN, Chen PS (2000) Preventing
ventricular fibrillation by flattening cardiac restitution. Proc Natl
Acad Sci U S A 97:6061–6066

9. Garrey W (1914) The nature of fibrillary contraction of the heart:
its relation to tissue mass and form. Am J Physiol 33:397–414

10. Gold MR, Bloomfield DM, Anderson KP, El-Sherif NE, Wilber
DJ, Groh WJ, Estes NA 3rd, Kaufman ES, Greenberg ML,
Rosenbaum DS (2000) A comparison of T-wave alternans, signal
averaged electrocardiography and programmed ventricular stimu-
lation for arrhythmia risk stratification. J Am Coll Cardiol
36:2247–2253

11. Habbab MA, el-Sherif N (1992) TU alternans, long QTU, and
torsade de pointes: clinical and experimental observations. Pacing
Clin Electrophysiol 15:916–931

12. Helfant RH (1986) Hypokalemia and arrhythmias. Am J Med
80:13–22

13. Hering HE (1909) Experimentelle studien an saugethieren uber
das electrocardiogram. Z Exp Pathol Ther 7:363–378

664 Pflugers Arch - Eur J Physiol (2008) 455:653–666



14. Karagueuzian HS, Khan SS, Hong K, Kobayashi Y, Denton T, Mandel
WJ, Diamond GA (1993) Action potential alternans and irregular
dynamics in quinidine-intoxicated ventricular muscle cells. Implica-
tions for ventricular proarrhythmia. Circulation 87:1661–1672

15. Kaufman ES, Mackall JA, Julka B, Drabek C, Rosenbaum DS
(2000) Influence of heart rate and sympathetic stimulation on
arrhythmogenic T wave alternans. Am J Physiol Heart Circ
Physiol 279:H1248–1255

16. Kempf FC Jr, Josephson ME (1984) Cardiac arrest recorded on
ambulatory electrocardiograms. Am J Cardiol 53:1577–1582

17. KilleenMJ, Gurung IS, Thomas G, Stokoe KS, Grace AA, Huang CL
(2007) Separation of early afterdepolarizations from arrhythmogenic
substrate in the isolated prefused hypokalaemic murine heart through
modifiers of calcium homeostasis. Acta Physiol PMID:17524066 (in
press)

18. Killeen M, Thomas G, Gurung I, Goddard C, Fraser J, Mahaut-
Smith M, Colledge H, Grace A, Huang C (2007) Arrhythmogenic
mechanisms in the isolated perfused hypokalemic murine heart.
Acta Physiologica 189:33–46

19. Knollmann BC, Katchman AN, Franz MR (2001) Monophasic
action potential recordings from intact mouse heart: validation,
regional heterogeneity, and relation to refractoriness. J Cardiovasc
Electrophysiol 12:1286–1294

20. Knollmann BC, Schober T, Petersen AO, Sirenko SG, Franz M
(2007) Action potential characterization in intact mouse heart:
steady-state cycle length dependence and electrical restitution. Am
J Physiol 292:H614–H621

21. Koller ML, Riccio ML, Gilmour RF Jr (1998) Dynamic restitution
of action potential duration during electrical alternans and
ventricular fibrillation. Am J Physiol 275:H1635–1642

22. Koller ML, Riccio ML, Gilmour RF Jr (2000) Effects of [K+]o on
electrical restitution and activation dynamics during ventricular
fibrillation. Am J Physiol Heart Circ Physiol 279:H2665–2672

23. Lab MJ, Woollard KV (1978) Monophasic action potentials,
electrocardiograms and mechanical performance in normal and
ischaemic epicardial segments of the pig ventricle in situ.
Cardiovasc Res 12:555–565

24. Lee JJ, Kamjoo K, Hough D, Hwang C, Fan W, Fishbein MC,
Bonometti C, Ikeda T, Karagueuzian HS, Chen PS (1996)
Reentrant wave fronts in Wiggers’ stage II ventricular fibrillation.
Characteristics and mechanisms of termination and spontaneous
regeneration. Circ Res 78:660–675

25. Lewis T (1911) Notes upon alternation of the heart. QJM 4:
141–144

26. London B (2001) Cardiac arrhythmias: from (transgenic) mice to
men. J Cardiovasc Electrophysiol 12:1089–1091

27. Moss AJ, Kass RS (2005) Long QT syndrome: from channels to
cardiac arrhythmias. J Clin Invest 115:2018–2024

28. Nearing BD, Huang AH, Verrier RL (1991) Dynamic tracking of
cardiac vulnerability by complex demodulation of the T wave.
Science 252:437–440

29. Nolasco JB, Dahlen RW (1968) A graphic method for the study of
alternation in cardiac action potentials. J Appl Physiol 25:191–196

30. Nordrehaug JE (1985) Malignant arrhythmia in relation to serum
potassium in acute myocardial infarction. Am J Cardiol 56:
20D–23D

31. Omichi C, Zhou S, Lee MH, Naik A, Chang CM, Garfinkel A,
Weiss JN, Lin SF, Karagueuzian HS, Chen PS (2002) Effects of
amiodarone on wave front dynamics during ventricular fibrillation
in isolated swine right ventricle. Am J Physiol Heart Circ Physiol
282:H1063–1070

32. Pak HN, Hong SJ, Hwang GS, Lee HS, Park SW, Ahn JC, Moo
Ro Y, Kim YH (2004) Spatial dispersion of action potential
duration restitution kinetics is associated with induction of
ventricular tachycardia/fibrillation in humans. J Cardiovasc
Electrophysiol 15:1357–1363

33. Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS
(1999) Mechanism linking T-wave alternans to the genesis of
cardiac fibrillation. Circulation 99:1385–1394

34. Platt SB, Vijgen JM, Albrecht P, Van Hare GF, Carlson MD,
Rosenbaum DS (1996) Occult T wave alternans in long QT
syndrome. J Cardiovasc Electrophysiol 7:144–148

35. Pruvot EJ, Katra RP, Rosenbaum DS, Laurita KR (2004) Role
of calcium cycling versus restitution in the mechanism of
repolarization alternans. Circ Res 94:1083–1090

36. Rehnqvist N, Ericsson CG, Eriksson S, Olsson G, Svensson G
(1984) Comparative investigation of the antiarrhythmic effect of
propafenone (Rytmonorm) and lidocaine in patients with ventric-
ular arrhythmias during acute myocardial infarction. Acta Med
Scand 216:525–530

37. Riccio ML, Koller ML, Gilmour RF Jr (1999) Electrical
restitution and spatiotemporal organization during ventricular
fibrillation. Circ Res 84:955–963

38. Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN,
Cohen RJ (1994) Electrical alternans and vulnerability to
ventricular arrhythmias. N Engl J Med 330:235–241

39. Rosenbaum MB, Acunzo RS (1991) Pseudo 2:1 atrioventricular
block and T wave alternans in the long QT syndromes. J Am Coll
Cardiol 18:1363–1366

40. Sabir IN, Fraser JA, Cass TR, Grace AA, Huang C (2007) A
quantitative analysis of the effect of cycle length on arrhythmo-
genicity in hypokalaemic Langendorff-perfused murine hearts.
Pflugers Arch PMID:17437126 (in press)

41. Sabir IN, Fraser JA, Killeen MJ, Grace AA, Huang C (2007)
The contribution of refractoriness to arrhythmic substrate in
hypokalaemic Langendorff-perfused murine hearts. Pflugers
Arch 454:209–222

42. Sabir IN, Killeen MJ, Goddard CA, Thomas G, Gray S, Grace
AA, Huang CL (2007) Transient alterations in transmural
repolarization gradients following premature ventricular depolari-
zations in arrhythmogenic hypokalaemic Langendorff-perfused
murine hearts. J Physiol 581:277–289

43. Saitoh H, Bailey JC, Surawicz B (1989) Action potential duration
alternans in dog Purkinje and ventricular muscle fibres: further
evidence in support of two different mechanisms. Circulation
80:1421–1431

44. Sato D, Shiferaw Y, Garfinkel A, Weiss JN, Qu Z, Karma A
(2006) Spatially discordant alternans in cardiac tissue: role of
calcium cycling. Circ Res 99:520–527

45. Saumarez RC, Pytkowski M, Sterlinski M, Hauer RN, Derksen R,
Lowe MD, Szwed H, Huang CL, Ward DE, Camm AJ, Grace AA
(2006) Delayed paced ventricular activation in the long QT
syndrome is associated with ventricular fibrillation. Heart Rhythm
3:771–778

46. Schwartz PJ, Malliani A (1975) Electrical alternation of the T-
wave: clinical and experimental evidence of its relationship with
the sympathetic nervous system and with the long Q-T syndrome.
Am Heart J 89:45–50

47. Shimizu W, Antzelevitch C (1999) Cellular and ionic basis for
T-wave alternans under long-QT conditions. Circulation 99:
1499–1507

48. Shimizu W, Tanaka K, Suenaga K, Wakamoto A (1991)
Bradycardia-dependent early afterdepolarizations in a patient with
QTU prolongation and torsade de pointes in association with
marked bradycardia and hypokalemia. Pacing Clin Electrophysiol
14:1105–1111

49. Surawicz B, Fisch C (1992) Cardiac alternans: diverse
mechanisms and clinical manifestations. J Am Coll Cardiol
20:483–499

50. Thomas G, Killeen MJ, Gurung IS, Hakim P, Balasubramaniam
RN, Goddard CA, Grace AA, Huang CL (2007) Mechanisms of
ventricular arrhythmogenesis in mice following targeted disrup-

Pflugers Arch - Eur J Physiol (2008) 455:653–666 665



tion of KCNE1 modelling long QT syndrome 5. J Physiol
578:99–114

51. Vaidya D, Morley GE, Samie FH, Jalife J (1999) Reentry and
fibrillation in the mouse heart. A challenge to the critical mass
hypothesis. Circ Res 85:174–181

52. Verrier RL, Nearing BD (1994) Electrophysiologic basis for T
wave alternans as an index of vulnerability to ventricular
fibrillation. J Cardiovasc Electrophysiol 5:445–461

53. Walker ML, Rosenbaum DS (2003) Repolarization alternans:
implications for the mechanism and prevention of sudden cardiac
death. Cardiovasc Res 57:599–614

54. Walker ML, Wan X, Kirsch GE, Rosenbaum DS (2003)
Hysteresis effect implicates calcium cycling as a mechanism of
repolarization alternans. Circulation 108:2704–2709

55. Weiss JN, Chen PS, Qu Z, Karagueuzian HS, Garfinkel A (2000)
Ventricular fibrillation: how do we stop the waves from breaking?
Circ Res 87:1103–1107

56. Weiss JN, Karma A, Shiferaw Y, Chen PS, Garfinkel A, Qu Z (2006)
From pulsus to pulseless: the saga of cardiac alternans. Circ Res
98:1244–1253

57. Whelton PK (1984) Diuretics and arrhythmias in the Medical
Research Council trial. Drugs 28(Suppl 1):54–65

58. Wiggers CJ (1930) Studies of ventricular fibrillation caused by
electric shock, II: cinematographic and electrocardiographic

observation of the natural process in the dog’s heart. Its inhibition
by potassium and the revival of coordinated beats by calcium. Am
Heart J 5:351–365

59. Wilde AA, Jongbloed RJ, Doevendans PA, Duren DR, Hauer RN,
van Langen IM, van Tintelen JP, Smeets HJ, Meyer H, Geelen JL
(1999) Auditory stimuli as a trigger for arrhythmic events
differentiate HERG-related (LQTS2) patients from KVLQT1-
related patients (LQTS1). J Am Coll Cardiol 33:327–332

60. Winfree AT (1994) Electrical turbulence in three-dimensional
heart muscle. Science 266:1003–1006

61. Yamauchi S, Yamaki M, Watanabe T, Yuuki K, Kubota I,
Tomoike H (2002) Restitution properties and occurrence of
ventricular arrhythmia in LQT2 type of long QT syndrome.
J Cardiovasc Electrophysiol 13:910–914

62. Yang T, Roden DM (1996) Extracellular potassium modulation of
drug block of IKr. Implications for torsade de pointes and reverse
use-dependence. Circulation 93:407–411

63. Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM (2000)
Distribution of excitation frequencies on the epicardial and
endocardial surfaces of fibrillating ventricular wall of the sheep
heart. Circ Res 86:408–417

64. Zareba W, Moss AJ, le Cessie S, Hall WJ (1994) T wave
alternans in idiopathic long QT syndrome. J Am Coll Cardiol
23:1541–1546

666 Pflugers Arch - Eur J Physiol (2008) 455:653–666


	Restitution analysis of alternans and its relationship to arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts
	Abstract
	Introduction
	Materials and methods
	Experimental animals
	Solutions
	Preparation
	Electrophysiological measurements
	Experimental protocol

	Results
	Alternans and arrhythmic activity occur in hypokalaemic hearts paced at a reduced baseline cycle length
	Electrophysiological waveforms after the initiation of arrhythmic activity
	Alternans occurs in the epicardia and endocardia of hypokalaemic hearts paced at a baseline cycle length of 70 ms
	The dynamic pacing protocol initiates alternans in hypokalaemic hearts at short baseline cycle lengths
	Alterations in the slopes of restitution curves correlate with pro- and anti-arrhythmic effects
	Restitution curves yield parameters predictive of arrhythmogenicity
	These parameters successfully predict the pro-arrhythmic effect of hypokalaemia
	These parameters also predict the anti-arrhythmic effect of lidocaine

	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


