
Non-thermal hot electrons ultrafastly
generating hot optical phonons in
graphite
Y. Ishida1,2, T. Togashi2, K. Yamamoto2,3, M. Tanaka1, T. Taniuchi1, T. Kiss1, M. Nakajima1, T. Suemoto1

& S. Shin1,2,4

1ISSP, University of Tokyo, Kashiwa-no-ha, Kashiwa, Chiba 277-8581, Japan, 2RIKEN SPring-8 Center, Sayo, Sayo, Hyogo 679-
5148, Japan, 3Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, 4CREST, Japan
Science and Technology Agency, Tokyo 102-0075, Japan.

Investigation of the non-equilibrium dynamics after an impulsive impact provides insights into couplings
among various excitations. A two-temperature model (TTM) is often a starting point to understand the
coupled dynamics of electrons and lattice vibrations: the optical pulse primarily raises the electronic
temperature Tel while leaving the lattice temperature Tl low; subsequently the hot electrons heat up the
lattice until Tel 5 Tl is reached. This temporal hierarchy owes to the assumption that the electron-electron
scattering rate is much larger than the electron-phonon scattering rate. We report herein that the TTM
scheme is seriously invalidated in semimetal graphite. Time-resolved photoemission spectroscopy (TrPES)
of graphite reveals that fingerprints of coupled optical phonons (COPs) occur from the initial moments
where Tel is still not definable. Our study shows that ultrafast-and-efficient phonon generations occur
beyond the TTM scheme, presumably associated to the long duration of the non-thermal electrons in
graphite.

O
ne of the most interesting observation in the ultrafast dynamics of graphite is that Tel in the sub-
picosecond temporal region stays somewhat low even though irradiated with an intense femtosecond
optical pulse.1 This led to the picture that the electronic energy is quasi-instantaneously transferred to the

COPs through strong electron-phonon couplings1 based on the TTM scheme.2–4 However, electron-phonon
coupling constant is reported to be moderately small in graphite,6 making the mechanism of the ultrafast COP
generation elusive. Subsequent studies also suggest the nearly instantaneous COP generation coupled to the
electron dynamics,7–14 which is considered to affect ballistic transports at high fields.15–19 Nevertheless, direct
observation of the electron distribution in the transient is limited,9, 12, 20, 21 and moreover, simultaneous detection
of the electron distribution and the phonons in the transient has been beyond reach. TrPES [Fig. 1(a)] is one of the
most powerful tools to investigate the dynamics of the electrons, since it can provide information of the transient
electron distributions in a wide energy range across the Fermi level (EF).4, 20–24 Furthermore, Liu et al.5 recently
reported that fingerprints of COPs occur in the photoemission spectra of graphite, as we shall explain below.
Therefore, it became possible to monitor simultaneously the electron distribution and the fingerprints of COPs
during the ultrafast dynamics of graphite by TrPES.

The fingerprints of COPs show up in the spectra recorded in a normal-emission geometry,5 that is, when we
detect the photoelectrons around C of the surface Brillouin zone of graphite [inset in Fig. 1(b)]. Since there are no
bands around C in the vicinity of EF, the signal consists of photoelectrons around K (K9) indirectly scattered into
the vicinity of C mainly by phonons. As we shall see later, signals of direct photoexcitations around the K (K9)
point indeed occur in the TrPES spectra recorded in the normal-emission geometry. A gap-like feature of
,70 meV occurs in the spectra near-EF at low T [Fig. 1(b)], since phonon absorption process is quenched
and phonon emission (energyloss) process dominates. With increasing T, phonon absorption process is
increased, and the spectral weight tails into higher energies resulting in an increase of the spectral intensity at
EF [Fig. 1(b)]. This is similar to anti-Stokes lines in Raman spectra gaining stronger intensity at higher tempera-
tures. Thus, we utilize the spectral intensity at EF in TrPES as a measure of the number of COPs in the transient.
The optical phonons monitored herein are assigned to the 67-meV out-of-plane and the ,150-meV in-plane
modes.5
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Results
TrPES spectra. Figure 2(a–f) show TrPES spectra of graphite, I(v, t),
recorded under a pump power p517 mW (a fluence of ,14 mJ/cm22)
at room temperature. A movie file is provided in Supplementary
Information. Overall, we observe that the electrons are pumped
from the occupied side to the unoccupied side and subsequent
recovery dynamics lasting over several tens of picoseconds: at t #

0 ps, the spectral intensity I(v, t) is increased in the unoccupied side;
at 0#t#0.20 ps, I(v, t) at v , 0.75 eV is decreased, whereas that at
v , 0 eV is increased; at t$0.20 ps, I(v, t) in the unoccupied side is
decreased. Here, t 5 0 ps has been determined utilizing the fast
response of ,20 fs observed at v . 0.8 eV,12 and the time
resolution [full width at half the maximum (FWHM)] is estimated
to be Dt50.43 ps, see Fig. 2(g).

We observe a plateau feature in the unoccupied side during the
pump [Fig. 2(b) and the movie file in Supplementary Information],
which is a hallmark of a non-thermal electron distribution.22 The
plateau turns over into an exponential tailing at t > 0.20 ps
[Fig. 2(f)], indicating that the electrons are distributed according to
the Fermi-Dirac function. That is, electronic thermalization occurs at
te , 0.2 ps so that Tel becomes definable thereafter. In metallic

materials, typical time scale for electronic thermalization is consid-
ered to be te , 10 fs or less,2 and if Dt ? te, one would not expect
to observe a non-thermal distribution of the hot electrons. In fact, in
the TrPES study of a metallic Bi2Sr2CaCu2O81d,4 Perfetti et al.
observed with Dt , 90 fs that the spectra mostly obey Fermi-Dirac
statistics even at t , 0 ps. The smallness of 1/te in graphite can be
attributed to the semimetallic band structure: Since electronic states
near EF occur only around K(K9) points of the surface Brillouin zone,
the available phase space for electron-electron scatterings becomes
vanishingly small in approaching EF particularly after the initial
avalanche of the hot electrons towards EF. This can act as a bottleneck
for the non-thermal electrons to relax into the thermal (Fermi-Dirac)
distribution.

The plateau observed just after the pump extends up to a cutoff at
v , 0.75 eV, as indicated by a bar in Fig. 2(b). This cutoff can be
understood as a fingerprint of direct photoexcitations occurring
around the K(K9) point: since the p- and p*-bands are nearly sym-
metric about EF as shown in the schematic in Fig. 2, direct excitations
are dominated by the transitions from v 5 2hn1/2 to 1hn1/2, and
therefore, the cutoff energy can be identified to v , hn1/250.75 eV.
Note that such a fingerprint of direct excitations would not be

Figure 2 | TrPES of graphite. Spectra recorded at 17-mW pump at t # 0 ps (a, b), 0 # t # 0.2 ps (c, d), and t $ 0.2 ps (e, f). Here, (b, d, f) are semi-

logarithmic plots of (a, b, c), respectively. Insets in (d) and (f) show spectra at t 5 0 ps recorded at various pump powers and temperatures, respectively.

(g) Spectral weight between 0.8 – 1.0 eV as a function of t overlaid with a Gaussian. (h) Spectral weight under 0.75 – 1.8 eV (above the cutoff; circle) and

under 0.0 – 1.8 eV (in the unoccupied side; square) at t 5 0 ps as a function of pump power overlaid with first and second order polynomial functions,

respectively. The schematic in (c) shows direct excitations from the p bands to the p* bands.

Figure 1 | TrPES system. (a) A schematic of the TrPES system. (b) Spectra of graphite recorded in normal-emission geometry. The increase of the

intensity at EF with increasing T is due to the increased population of the COPs.5 Inset of (b) shows the surface Brillouin zone of graphite, and the area

probed in the normal-emission geometry is indicated by a circle.
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detected if te = Dt. Therefore, the ,0.75-eV cutoff strengthens the
conclusion that the duration of the non-thermal electron distribution
is detected in the present study.

With increasing p, the cutoff is blurred [inset in Fig. 2(d)], so that
the unoccupied side of the spectra becomes featureless and the line
shape becomes similar to the TrPES spectra of graphite reported
previously.21 The intensity above the cutoff at t 5 0 ps grows quad-
ratically with p while the intensity in the unoccupied side grows
linearly with p [Fig. 2(h)]. The latter indicates that the number of
electrons excited by the pump is proportional to p at least up to
78 mW, whereas the former indicates that the excited electrons are
further scattered above the cutoff by other excitations such as the hot
electrons themselves or hot phonons, since such scatterings occur
roughly proportional to the square of the population of the excited
particles. The intensity and the sharpness of the cutoff are almost

independent of T [inset of Fig. 2(f)], indicating that the blurring of
the cutoff is not related to the thermally populated excitations in the
initial state.

We now turn to the variation of the spectral weight around EF,
which serves as the fingerprints of COPs in the transient, as explained
previously. One can see that the variation starts from the beginning
of the transient in accord with the reports of the nearly instantaneous
generation of the COPs in graphite.8, 11, 14 Our findings therefore
show that the ultrafast COP generation takes place from the temporal
region where the hot electrons are not thermalized [see, Fig. 2(a) and
the movie file in Supplementary Information]. After t , 0.2 ps, the
intensity at EF starts to decrease, see Fig. 2(e), indicating that the COP
generation is mosltly accomplished within t= 0.2 ps. The results are
in strong contrast to the TTM scheme, where COPs are assumed to
be cool at the beginning and then gradually heated up by the elec-
trons that are thermalized.

Analysis of TrPES spectra. First, we investigate how the total elec-
tronic energy dissipates with time. As I(v, t) reflects the occupied
density of states (DOS),

Ð?
0 vI v, tð Þdv is a measure of the excess

electronic energy, and we plot this as a function of t in Fig. 3(a). Here,
DI(v, t) 5 I(v, t) 2 I(v, 25 ps). The energy dissipation occurs with
two time scales having distinct pump-power dependences: at t = 1 ps,
the energy dissipation rate positively depends on p, whereas at
t > 1 ps, it is independent of p. The fast dynamics at t = 1 ps is
attributed to the net energy flow from the hot electrons to the hot
COPs through electron-phonon scatterings, since this channel is
increased quadratically with p due to the increased populations of
the hot electrons and hot COPs. Note that the scatterings among
the hot electrons cannot account for the loss of the electronic

Figure 3 | Decay rates. (a) Electronic energy (see text) vs t for various

pump powers. Each curve has an arbitrary offset. Dashed line represents

the time resolution. (b) The spectra of decay time and decay rate (left and

right axes, respectively) of the slow component.

Figure 4 | Optical-phonon broadenings during the transient. (a) TrPES spectra recorded under 52-mW pump (left) and the simulated spectra (right).

(b) Fitting parameters. (c) A plot of the fitting parameters s2 and a with respect to Tel for t . 1.0 ps.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 1 : 64 | DOI: 10.1038/srep00064 3



energy.25 At t , 1 ps, the electrons and COPs reach quasi-equilibrium
(Tel 5 TCOP) after a sufficient number of scatterings, and the electron-
COP composite dissipates its energy to the heat bath such as acoustic
phonons,26 and hence the p-independent energy dissipation at t >
1 ps.

Further analysis of the spectra also supports that the recovery
dynamics at t > 1 ps is characterized by Tel 5 TCOP and decay rates
independent of p. First, we derive the decay-rate spectrum for the
slower component 1/t2(v), which is obtained by fitting I(v, t) at each
energy with a double exponential function (Supplementary Infor-
mation). As shown in Fig. 3(b), 1/t2(v) is independent of p and is
quasi-linear to v at v = 0.3 eV. Second, we quantify the spectral
shape by simulating the spectrum as I v, tð Þ~a tð Þ

Ð
G v{v0, s2 tð Þð

zs2
RÞD v0ð Þf v0, Tel tð Þð Þdv0. Here, G v, s2zs2

R

� �
is a Gaussian with

FWHM of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zs2

R

p
, f(v, Tel) is the Fermi-Dirac function, a(t) is a

scaling factor, and D(v) is a DOS. The Gaussian broadening
accounts for the spectral weight accumulating from lower energies,
so that s2 becomes a measure of the number of the COPs in the
transient. The spectra are nicely reproduced throughout the transient
[Fig. 4(a) and Supplementary Information], and the fitting para-
meters are summarized in Fig. 4(b) and (c). One can see that s2

and a for t . 1.0 ps scales with Tel and does not explicitly depend
on p. This indicates that the number of the COPs at t . 1.0 ps is a
function of Tel, i.e., TCOP 5 Tel, and that the spectral shape at
t . 1.0 ps is determined only by Tel, which is the temperature of
the electron-COP composite.

Discussion
We experimentally find that the electronic distribution is non-
thermal at t = 0.2 ps, and also find evidence that the COP genera-
tion is mostly accomplished within this initial temporal region. This
strongly indicates that the mechanism of the ultrafast COP genera-
tion is beyond the TTM scheme, see Fig. 5. Since the duration of the
non-thermal electron distribution is longer than that in the TTM
scheme, the high-energy electrons, which is considered to be favor-
able for generating high-energy COPs,27 indeed have more chance to
generate COPs before they degrade into low-energy thermalized
electrons. Therefore, not only the largeness of the electron-phonon
couplings but also the long durations of the non-thermal electron

distribution may be crucial for understanding the ultrafast-and-
efficient generation of the COPs in graphite. It is interesting to note
that a break-down of TTM was also suggested in YBa2Cu3O7–d,28 in
which the DOS becomes vanishingly small around EF in the d-wave
superconducting state, similar to the case for graphite. Therefore,
coupled dynamics directly involving the non-thermal electrons
may be sought in materials that have vanishingly small DOS around
EF, for example in neutral graphene,29 in nodal superconductors,28

and on the surface of topological insulators.30 Alternatively, we do
not exclude the possibility that the hot COPs and hot electrons are
co-generated by the pump, which may be viewed as a counterpart of
the breakdown of adiabatic Born-Oppenheimer approximation:31 in
as much as the electrons cannot follow the motion of the lattice,
COPs are simultaneously generated when the electronic excitation
takes place. Whichever the case may be, our study reveals that there is
a unique mechanism of ultrafast COP generation where the concept
of temperatures is broken.

Methods
The TrPES apparatus consists of an amplified Ti:sapphire laser system delivering
hn1 5 1.5 eV pulses of 170-fs duration with 250-kHz repetition and a hemispherical
analyzer,32 see Fig. 1(a). A portion of the laser is converted into hn4 5 5.9 eV probing
pulses using two non-linear crystals, b-BaB2O4 (BBO), and the time delay t from the
pump is controlled by a delay stage. The pump and probe pulses are p-polarized and
have spot diameters of ,0.8 and ,0.3 mm, respectively, at the sample position. The
intensity of the probe pulse is minimized to avoid space charge effects. Multi-photon
photoemission due to the pump pulse is not observed in the dataset presented herein.
EF is referenced to the Fermi cutoff of gold and the energy resolution sR is 11 meV.
The base pressure of the photoemission chamber is 1 3 10210 Torr, and highly-
oriented pyrolitic graphite is cleaved in situ.
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