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Abstract
Skeletal muscle strength and mass, major contributors to sprint/power athletic performance,

are influenced by genetics. However, to date, only a handful of genetic variants have been

associated with sprint/power performance. The ACVR1B A allele (rs rs2854464) has previ-

ously been associated with increased muscle-strength in non-athletic cohort. However, no

follow-up and/or replications studies have since been conducted. Therefore, the aim of the

present study was to compare the genotype distribution of ACVR1B rs2854464 between

endurance athletes (E), sprint/power (S/P) athletes, mixed athletes (M), and non-athletic con-

trol participants in 1672 athletes (endurance athletes, n = 482; sprint/power athletes, n = 578;

mixed athletes, n = 498) and 1089 controls (C) of both European Caucasians (Italian, Polish

and Russians) and Brazilians. We have also compared the genotype distribution according

to the athlete’s level of competition (elite vs. sub-elite). DNA extraction and genotyping were

performed using various methods. Fisher's exact test (adjusted for multiple comparisons)

was used to test whether the genotype distribution of rs2854464 (AA, AG and GG) differs

between groups. The A allele was overrepresented in S/P athletes compared with C in the

Caucasian sample (adjusted p = 0.048), whereas there were no differences in genotype dis-

tribution between E athletes and C, in neither the Brazilian nor the Caucasian samples

(adjusted p > 0.05). When comparing all Caucasian athletes regardless of their sporting

discipline to C, we found that the A allele was overrepresented in athletes compared to C

(adjusted p = 0.024). This association was even more pronounced when only elite-level ath-

letes were considered (adjusted p = 0.00017). In conclusion, in a relatively large cohort of ath-

letes from Europe and South America we have shown that the ACVR1B rs2854464 A allele
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is associated with sprint/power performance in Caucasians but not in Brazilian athletes. This

reinforces the notion that phenotype-genotype associations may be ethnicity-dependent.

Introduction
Skeletal muscle strength and mass are major contributors to elite athletic performance in a
variety of sport disciplines, especially those where explosive muscle contractions are critical
(e.g. sprint/power oriented disciplines) [1]. There is considerable variability in sprint, strength,
and power performance within athletes of similar age, body composition, and training history.
One possible explanation for this variability is the athletes’ genetic makeup [2]. The current
estimated heritability for muscle strength and muscle mass ranges from 31% to 78%, with large
differences between muscle groups, contraction velocities and muscle lengths [3,4].

To date, only a handful of genetic variants have been robustly associated with sprint/power
performance. Two candidate gene variants associated with sprint/power performance with rea-
sonable replication in different groups of elite sprint/power athletes are the ACTN3 R577X
[5,6] and the ACE I/D [7,8]. We have also recently shown that variants in the EPAS1 [9] and
theMCT1 genes [10] are associated with sprint/power performance in European athletes.
However, these studies require replication and verification in larger cohorts, and the consensus
shared between scientists is that there are many other undiscovered variants associated with
sprint/power performance.

A gene variant (rs2854464) within the Activin A Receptor type 1b gene (ACVR1B) has pre-
viously been associated with muscle-strength phenotypes [11]. Initial studies using microsatel-
lite markers and linkage analysis have identified linkage peaks associated with muscle strength
in the 12q12-14 chromosomal region [12,13]. The same research group has then used different
approaches to show that the ACVR1B rs2854464 A allele is associated with increased muscle
strength in healthy, non-athletic individuals [11]. To date, no follow-up and/or replications
studies have been conducted to confirm or refute these findings. Therefore, whether this gene
variant influence athletic performance and/or gains in muscle mass and strength in either elite
athletes or the general population remains unclear.

One of the major drawbacks in the field of Sports Genomics is the relatively low sample of
elite athletes and collaborative effort is required to move the field forward, and enhance our
understanding of the genes that influence athletic performance. The Athlome Project Consor-
tium [14] has been therefore recently established, and one of its aims is to identify gene variants
that contribute to elite performance in large-scale, collaborative efforts involving cohorts from
different countries.

Therefore, the present study aimed to compare the genotype distribution of ACVR1B
rs2854464 between endurance athletes, sprint/power athletes, and non-athletic control partici-
pants in a large cohort (n = 1672 athletes, and n = 1089 controls) of both European Caucasians
(Italian, Polish and Russians) and Brazilians. Furthermore, the association between rs2854464
and athletic status (i.e., ‘elite’ and ‘sub-elite’ level) was also examined. In light of the previously
observed association between the ACVR1B A allele and muscle strength, we hypothesized that
the A allele would be associated with elite sprint/power performance.

Material and Methods
The study was conducted according to the Declaration of Helsinki. All participants have signed
an informed consent form prior to the study. The study was approved by the ethics committees
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of the University of Sao Paulo, Brazil, the Pomeranian Medical University, Poland, the Univer-
sity of Cagliari, Italy and the Ural State University of Physical Culture, Russia. The full dataset
used in this study can be found in S1 Table.

Participants
A total of 1672 athletes (endurance athletes, n = 482; sprint/power athletes, n = 578, mixed ath-
letes, n = 498), and 1089 non-athletic controls volunteered to participate in this study. Athletes
and controls were from four countries: Brazil (ncontrols = 257, nathletes = 474), Italy (ncontrols =
84, nathletes = 125), Poland (ncontrols = 500, nathletes = 350), and Russia (ncontrols = 248, nathletes =
723). Participants from the European countries (i.e., Italy, Poland, and Russia) were self-
reported unrelated Caucasians for� three generations, whereas the Brazilian athletes have
been treated as a different group given the admixture in the Brazilian population (see below in
‘population stratification’ section). Athletes were classified as endurance (E), sprint/power (S/
P) or mixed (M) athletes according to the characteristics of their sports disciplines (i.e., dis-
tance, duration and metabolic requirements) (Table 1). When categorization was not straight-
forward (e.g. if a runner, for example, was engaged in both the 800m (M) and 1500m (E)
distances), we classified the athlete as uncertain (U). All athletes were in the top 10 national
rank in their sports discipline and grouped as ‘elite level’ or ‘sub-elite (national) level’ according
to individual’s best personal performance, as previously described [9,15]. Athletes in the elite
group had participated in international competitions (e.g., World and Continental Champion-
ships, and/or Olympic Games), whilst those in the sub-elite group had only participated in
national-level competitions.

Exclusion criteria. We have excluded from the analysis: athletes that had only participated
in regional competitions (n = 7, all Brazilian); athletes whose genotype was undetermined
(n = 2, all Polish); athletes that were of non-European origin in the Italian, Polish or Russian
samples (n = 6, all Italian).

Population stratification. The Brazilian population is formed by extensive admixture
between Amerindians, Europeans and Africans, and is one of the most variable populations in
the world. Despite positive assortative mating by ancestry [16], self-reported ancestry remains
an unreliable criteria for the Brazilian population [17–19]. Thus, we have treated the Brazilian
cohort separately, regardless of their self-reported ethnicity.

Genotyping
Brazilian sample. Genomic DNA was isolated from buccal epithelium obtained from

mouthwashes. DNA was then extracted using chloroform, precipitated using ethanol and
resuspended with 1x Tris-EDTA (Invitrogen). DNA quantification and quality assessment
were performed using spectrophotometer (NanoDrop 2000, Thermo Scientific). Genotyping of
the ACVR1B rs2854464 polymorphism was performed by using a pre-designed specific Taq-
Man1 SNP Genotyping Assays (ID: C__15826374_10, Applied Biosystems, Foster city, CA,
USA), run and read performed in a Rotor Gene-Q real-time termocycler (Qiagen, Valencia,
CA, USA), using 15 ng of the DNA samples and appropriate primers fluorescently labeled
(FAM and VIC) MGB™ probes according to the manufacturer's instructions. A scatter plot was
used to plot the final end data points and thus discriminating the alleles.

Italian sample. Genomic DNA was isolated from buccal swab, and extracted using Qiamp
minikit according to the manufacturer's instructions. All samples were amplified with a classical
PCR (Applied Biosystem) using the following primers: FORWARD-GCTTGCTGGTGCCTCTTTTC;
REVERSE-CTTCACATTCCTCGGCCCTT. PCR products were sequenced by Macrogen through
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Table 1. Classification of the athletes' disciplines.

Endurance (E) Sprint/power (S/P) Mixed (M) Uncertain (U)

Biathlon Archery Badminton Running (800-1500m)

Canoeing marathon Artistic gymnastics Bandy Speed skating (500-3000m)

Cross-country skiing Wrestling Boxing Speed skating (500-5000m)

Cycling endurance Canoeing speed Canoeing (200-1000m) Speed skating (500-10000m)

Marathon Cycling (1000m) Decathlon Speed skating (1500-3000m)

Mountain cycling Cycling (2000m) Fencing Speed skating (1500-5000m)

Racewalking (20000m) Discus throw Figure skating Speed skating (3000-5000m)

Road cycling Diving Futsal Swimming (100-200m)

Rowing (2000m) Gymnastics Handball Swimming (200-400m)

Rowing (5000m) Hammer throw Heptathlon

Rowing (2000-10000m) High jump Ice hockey

Running (1500m) Javelin throw Judo

Running (3000m) Jump Karate

Running (1500-3000m) Jump/Running (100-200m) Kickboxing

Running (5000m) Long jump Pentathlon

Running (1500-5000m) Mogul skiing Rhythmic Gymnastics

Running (5000-10000m) Pole vault Running (800m)

Running (>10000m) Powerlifting Soccer (midfielder)

Shooting Rowing (200-500m) Speed skating (3000m)

Speed skating (5000m) Rowing (200-1000m) Swimming (200m)

Speed skating (5000-10000m) Rowing (500m) Taekwondo

Speed skating (10000m) Rowing (1000m) Volleyball

Speed skating stayer Running (100m) Water polo

Steeple-chase Running (200m)

Swimming (400-800m) Running (100-200m)

Swimming (800m) Running (400m)

Swimming (800-1500m) Running (100-400m)

Swimming (1500m) Shot put

Swimming (>5000m) Skating

Triathlon Ski-cross

Walking Ski jumping

Slalom skiing

Slopestyle

Snowboard-cross

Soccer (defender)

Speed skating (500m)

Speed skating (500-1000m)

Speed skating (500-1500m)

Speed skating (1000m)

Speed skating (1500m)

Speed skating (1000-1500m)

Swimming (50m)

Swimming (50-100m)

Swimming (100m)

Throw

Weightlifting

doi:10.1371/journal.pone.0156316.t001
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forward primers. For replication and genotype verification, 10% of samples were genotyped in
duplicates.

Polish sample. Buccal epithelium was used to isolate genomic DNA with the GenElute
Mammalian Genomic DNAMiniprep Kit (Sigma, Hamburg, Germany). In all the cohorts,
genotypes were determined in duplicates using a Real-Time PCR-based allelic discrimination
system (CFX96, Bio-Rad, USA) with Taqman probes. To discriminate ACVR1B rs2854464
alleles, TaqMan Pre-Designed SNP Genotyping Assays were used, similarly to those used in
the Brazilian cohort.

Russian sample. Buccal epithelium or peripheral blood was used to isolate genomic DNA
with the GeneJET™ Genomic DNA Purification Kit (Thermo Fisher Scientific Inc).

Genotyping of the ACVR1B rs2854464 polymorphism was performed with a TaqMan1

SNP genotyping assay similar to the assay used in the Brazilian and Polish cohort. K562 DNA
High Molecular Weight from Promega Corp. (Cat # DD2011, Madison, WI, USA) served as a
positive control sample. The ACVR1B rs2854464 genotype of the K562 DNA was A/G.

Statistical analyses
Hardy—Weinberg equilibrium (HWE). χ2 analysis was used to confirm whether the con-

trol group from each of the four samples met HWE expectations.
Distribution of rs2854464 genotypes between groups. Fisher's exact test was used to test

whether the rs2854464 genotype distribution (AA, AG and GG) differs between groups. To
eliminate the possibility of false positive results, p-values were adjusted for multiple compari-
sons as proposed by Benjamini and Hochberg [20]. Significance was set at p< 0.05.

Results

HWE and genotype distribution in the control sample
The genotype distribution of all control groups were in HWE (χ2 test, all p> 0.05). Moreover,
the Italian, Polish and Russian controls had similar genotype distributions (Fisher's exact test,
all p> 0.05, S1 Fig). Thus, to increase statistical power and to reduce the number of performed
tests, we pooled the Italian, Polish and Russian samples together and referred to this sample as
the "Caucasian sample". Genotype distributions of the individual cohorts are available in S1 Fig
and Table 2.

Endurance athletes vs. controls
There were no differences in genotype distribution between E athletes and C, in neither the
Brazilian nor the Caucasian samples (Fisher's exact test, all adjusted p> 0.05, Table 2, Fig 1).

Sprint/power athletes vs. controls
The A allele was overrepresented in S/P athletes compared with C in the Caucasian sample
(Fisher's exact test, adjusted p = 0.048, Table 2, Fig 1). However, no difference was observed
when comparing elite-level S/P athletes vs. C (Fisher's exact test, adjusted p = 0.17, Table 2,
Fig 1).

In contrast to what was observed in the Caucasian sample, there was a trend towards an
underrepresentation of the A allele in S/P athletes compared to C in the Brazilian sample.
(Fisher's exact test, adjusted p-value = 0.058, Table 2, Fig 1).
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All athletes vs. controls
When comparing all Caucasian athletes regardless of their sporting discipline (E, S/P, M and
U) to C, we found that the A allele was overrepresented in athletes compared to C (Fisher's
exact test, adjusted p = 0.024, Table 2, Fig 1). This association was even more pronounced
when only elite-level athletes were considered (Fisher's exact test, adjusted p = 0.00017,
Table 2, Fig 1).

There were no differences in genotype distributions between all athletes and C in the Brazi-
lians sample (Fisher's exact test, adjusted p = 0.35, Table 2, Fig 1).

Discussion
Sprint/power performance, as well as muscle strength and mass are influenced by genetics [5];
yet, only a few genetic variants associated with either elite sprint/power performance and/or
muscle strength and muscle mass have been identified to date. The rs2854464 polymorphism
within the Activin A Receptor type 1b gene was recently shown to be associated with muscle

Table 2. Genotype distributions in the four studied samples.

Brazilians Brazilians elite

AA AG GG AA AG GG

Control 111 (43%) 107 (42%) 39 (15%) 111(43%) 107 (42%) 39 (15%)

Endurance 100 (44%) 103 (46%) 23 (10%) 49 (43%) 54 (48%) 10 (9%)

Sprint/power 57 (32%) 97 (54%) 26 (14%) 41 (37%) 56 (50%) 15 (13%)

Mixed 0 0 0 0 0 0

Uncertain 28 23 10 9 9 4

All athletes 185 (40%) 223 (48%) 59 (12%) 99 (40%) 119 (48%) 29 (12%)

Italian Caucasian Italian Caucasian elite

AA AG GG AA AG GG

Control 42 (50%) 36 (43%) 6 (7%) 42 (50%) 36 (43%) 6 (7%)

Endurance 14 (58%) 8 (33%) 2 (9%) 11 (52%) 8 (38%) 2 (10%)

Sprint/power 35 (49%) 32 (45%) 4 (6%) 22 (51%) 19 (44%) 2 (5%)

Mixed 11 (52%) 9 (43%) 1 (5%) 9 (47%) 9 (48%) 1 (5%)

Uncertain 0 1 0 0 0 0

All athletes 60 (51%) 50 (43%) 7 (6%) 42 (51%) 36 (43%) 5 (6%)

Polish Caucasian Polish Caucasian elite

AA AG GG AA AG GG

Control 263 (53%) 187 (37%) 50 (10%) 263 (53%) 187 (37%) 50 (10%)

Endurance 54 (56%) 40 (41%) 3 (3%) 54 (56%) 40 (41%) 3 (3%)

Sprint/power 55 (53%) 42 (40%) 7 (7%) 55 (53%) 42 (40%) 7 (7%)

Mixed 91 (62%) 53 (36%) 3 (2%) 91 (62%) 53 (36%) 3 (2%)

Uncertain 0 0 0 0 0 0

All athletes 200 (57%) 135 (39%) 13 (4%) 200 (57%) 135 (39%) 13 (4%)

Russian Caucasian Russian Caucasian elite

AA AG GG AA AG GG

Control 126 (51%) 102 (41%) 20 (8%) 126 (51%) 102 (41%) 20 (8%)

Endurance 72 (53%) 50 (37%) 13 (10%) 19 (54%) 14 (40%) 2 (6%)

Sprint/power 133 (59%) 84 (38%) 7 (3%) 56 (62%) 30 (33%) 4 (5%)

Mixed 188 (57%) 119 (36%) 23 (7%) 75 (60%) 48 (38%) 3 (2%)

Uncertain 21 11 2 11 5 0

All athletes 414 (57%) 264 (37%) 45 (6%) 161 (60%) 97 (36%) 9 (4%)

doi:10.1371/journal.pone.0156316.t002
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strength in a properly-designed study [11]. In the present study, we sought to further explore
the relevance of this polymorphism to sprint/power performance. We found that the ACVR1B
rs2854464 is differently associated with sprint/power performance in a relatively large cohort
(n = 1,672) of Caucasian and Brazilian athletes. While the A allele was overrepresented in Cau-
casian athletes, and more specifically in sprint/power Caucasian athletes compared with con-
trols, there was a trend towards an underrepresentation of the A allele (p = 0.058 after multiple
testing correction) in sprint/power Brazilian athletes. Our results reinforce the hypothesis that
an association between any genetic variant and athletic performance might be dependent on
the population’s ethnic background.

In the present study we have addressed some of the limitations inherent in previous elite
athlete case-control studies. Firstly, we have studied four cohorts of elite and sub-elite athletes,
including three European Caucasian athletes and a Brazilian cohort. Consequently, the number
of athletes (n = 1,672) is significantly higher compared to previous genetic association studies,

Fig 1. Genotype distributions at rs2854464 in Brazilian and Caucasian samples. C = controls; E = endurance
athletes; S/P = sprint/power athletes; All = all athletes; *adjusted p-value < 0.05; **adjusted p-value < 0.01; ***adjusted
p-value < 0.001.

doi:10.1371/journal.pone.0156316.g001

ACVR1B A/G Polymorphism and Athletes

PLOS ONE | DOI:10.1371/journal.pone.0156316 June 2, 2016 7 / 11



and demonstrates the benefits of a collaborative approach that has been recommended in the
field of exercise genomics [21,22]. Secondly, previous reports have grouped together sprint and
power athletes from mixed sports disciplines and events. Here, we have embraced a more strin-
gent approach and divided the athletes to four categories, based on the physiological demands
of each specific event (Table 1). Thirdly, to avoid being exposed to false positive results and as
recently suggested [23], all p-values were adjusted for multiple comparisons.

There is a biochemical/cellular rationale to suggest that common variants within ACVR1B
would be associated with sprint/power and/or strength performance. ACVR1B encodes the
Activin A receptor type 1b protein, which is part of the TGF-β (Transforming Growth Factor-
β) superfamily, a set of growth factors that regulates the expression level of several genes impli-
cated in controlling muscle growth [24]. Myostatin is perhaps one of the most important mem-
bers of the TGF-β; it down-regulates muscle mass during both pre- and post-natal stages [24].
Activin receptor type 2b (ACVR2B) is the primary type 2 receptor for myostatin. However, the
type 1 receptor is important for the muscle signalling cascade following the interaction between
myostatin and ACVR2B, being essential for the signal propagation through the plasma mem-
brane. After binding of myostatin to ACVR2B, ACVR1B is recruited and contributes to the for-
mation of a heteromeric active receptor complex [25]. According to Windelinckx et al. [11],
“the rs2854464 polymorphism is located in a putative miR-24-binding site in the 3' untrans-
lated region (UTR) of the ACVR1B mRNA”. There is evidence showing that miR-24 may
decrease gene and protein expression of ACVR1B [26] and play a role in myoblast differentia-
tion, inhibiting the skeletal muscle differentiation induced by TGF- β [27]. A potential
explanation for the downstream association between rs2854464 A allele and sprint/power per-
formance, is that it might provide a better affinity between the 3' UTR of ACVR1BmRNA and
miR-24, leading to a more effective translational inhibition and decay of ACVR1BmRNA. It
has been shown that pharmacological blockade of the activin A signalling pathway by using
soluble activin type II receptors (ligand level), or antibody to ActRII (receptor level) increases
muscle and bone mass, correct anaemia or protect against diet-induced obesity [28,29].

Using knock-out (KO) mice model, and multiple human association studies, the biochemi-
cal/cellular rationale that common genetic variants in muscle-related genes may influence
sprint/power performance has been well demonstrated in the case of the ACTN3 R577X variant,
currently the most promising candidate gene to influence sprint/power performance [30,31].
However, this variant can explain only ~1.5% of the variance in elite sprint/power performance
[6] and many other gene variants are still to be identified. Therefore, with the limited knowledge
we currently hold, a recent consensus has stated that genetic tests are not yet valid for talent
identification or for individualizing training prescription to optimise performance [32].

Here, we have identified for the first time an association between the ACVR1B rs2854464
and elite sprint/power athletic status in Caucasian athletes. We note that the next step required
is to replicate these findings in other cohorts of elite athletes with different geographical back-
grounds (similarly to ACTN3 R577X). We also stress that to further confirm our findings,
future studies should examine functional outcomes (i.e., causation) related to the effects of
ACVR1B on muscle physiology. The recently launched Gene SMART (Skeletal Muscle Adap-
tive Response to Training) study, that aims to identify gene variants that predict skeletal muscle
responses to High-Intensity Interval Training, might be useful to further confirm whether
ACVR1B is indeed important to performance.

Conclusion
In conclusion, in a relatively large cohort of athletes from Europe and South America, we have
shown that the ACVR1B rs2854464 A allele is associated with sprint/power performance in
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Caucasians but not in Brazilians athletes. This reinforces the notion that phenotype-genotype
associations may be ethnicity-dependent. We acknowledge that elite athletic performance is a
polygenic trait [33]; therefore, more genetic variants influencing sprint/power performance are
yet to be discovered.

Supporting Information
S1 Fig. Genotype distributions at rs2854464 in Italian, Polish and Russian samples.
C = controls; E = endurance athletes; S/P = sprint/power athletes; All = all athletes.
(TIF)

S1 Table. The full dataset used in this study.
(XLSX)
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