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Abstract: In last twenty years, the significant development of AIE materials has been witnessed. A
number of small molecules, polymers and composites with AIE activity have been synthesized, with
some of these exhibiting great potential in optoelectronics and biomedical applications. Compared
to AIE small molecules, macromolecular systems—especially well-defined AIE polymers—have
been studied relatively less. Controlled polymerization methods provide the efficient synthesis of
well-defined AIE polymers with varied monomers, tunable chain lengths and narrow dispersity. In
particular, the preparation of single-fluorophore polymers through AIE molecule-initiated polymer-
ization enables the systematic investigation of the structure–property relationships of AIE polymeric
systems. Here, the main polymerization techniques involved in these polymers are summarized and
the key parameters that affect their photophysical properties are analyzed. The author endeavored to
collect meaningful information from the descriptions of AIE polymer systems in the literature, to
find connections by comparing different representative examples, and hopes eventually to provide a
set of general guidelines for AIE polymer design, along with personal perspectives on the direction
of future research.

Keywords: aggregation-induced emission; single fluorophore; ring-opening polymerization;
controlled radical polymerization; fluorescent polymer

1. Introduction

The manipulation of the fluorescence intensity and emission color of molecular flu-
orophores, especially in their solid or aggregated states, is of fundamental importance
for both scientific research and real-world applications [1–4]. The most common strategy
is the derivatization of certain fluorophore scaffolds with different side groups. Usually
based on intramolecular charge transfer (ICT), this method can be used to efficiently tune
the fluorescence quantum yield and emission wavelength of the resulting molecules [5].
Alternatively, the incorporation of one or more molecular fluorophores onto polymeric
platforms can also enhance the emission and can sometimes produce multicolor fluores-
cence [6–8]. Nevertheless, these systems either require tedious organic syntheses or possess
complicated chemical compositions. Recently, single-fluorophore-based emissive materials
have shown the potential to allow fluorescence manipulation in a rather simple manner,
especially when aggregation-induced emission (AIE)-active fluorophores are used [9–11].

Coined by Tang in 2001, the concept of AIE has undergone enormous developments,
with wide applications, such as optoelectronic devices, fluorescence sensing, bioimag-
ing, diagnostics, cancer therapy and process visualization [12–17]. In the 20 years of AIE
advancement, a great number of functional organic molecules and polymers have been de-
signed and synthesized [18–20], which has significantly enriched molecular light-emitting
systems. Generally, the structure–property relationships of AIE-active molecules have been
extensively investigated on the basis of the restriction of motion mechanism [21] and the
intramolecular charge transfer process of the π-conjugation structure [5]. As a result, the
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AIE properties of small molecules can be manipulated through sophisticated structural
design and organic synthesis. However, the nature of AIE-active polymeric systems, due
to the complex effect of polymer chains on both their aggregate state and charge transfer,
remains less well understood, especially for those based on non-π-conjugated structures.
Polymerization methods are often used only as a tool to offer AIE fluorophore soft matrixes
or biocompatible carriers [22], and thus the influence on the emission properties brought
about by the attachment of polymer chains itself, is less frequently taken into consideration.

In recent years, a series of single-fluorophore-based AIE polymers synthesized through
controlled polymerization have been reported, which hold well-defined polymeric struc-
tures, bearing only one fluorophore in each polymer chain [23,24]. This unique chemical
structure offers a convenient way to investigate the photophysical properties of AIE poly-
mers. Despite this face, a comprehensive analysis of their structure–property relationships
has not been disclosed. In this perspective article, the author endeavored to collect mean-
ingful information from the single-fluorophore AIE polymer systems described in the
literature, and find connections by comparing different representative examples, which
might be of interest to researchers in the fields of both light-emitting materials and poly-
mer science. Here, the focus is on the structure–property relationships of well-defined
single-fluorophore-based AIE polymers; therefore, π-conjugated polymers, which represent
another type of AIE system, are not included.

2. AIE Fluorophore-Initiated Controlled Polymerization

Controlled polymerizations, especially controlled radical polymerizations or reversible
deactivation radical polymerizations, have shown powerful abilities in the preparation of
various functional polymeric materials, including light-emitting polymers [25,26]. In partic-
ular, functionalized AIE fluorophores have been used as initiators or monomers to prepare
well-defined fluorescent polymers, owing to their flexible structural design and the conve-
nient processing. Polymerization methods include atom transfer radical polymerization
(ATRP) [27], reversible addition-fragmentation chain transfer (RAFT) polymerization [28],
nitroxide-mediated polymerization (NMP) [29], ring-opening polymerization (ROP) [30]
and others. In general, one highly convenient and efficient approach to synthesize well-
defined fluorescent polymers is to functionalize the fluorophore with an initiating group or
transfer agent for controlled polymerization [31–34]. In this way, each polymer chain only
bears a single fluorophore so that the impact of the polymer chains or matrix can be more
quantitatively evaluated, excluding the interference resulting from multiple interactions.
Clearly, this principle also applies to AIE-active polymers, as indicated by versatile AIE
fluorophore-initiated controlled polymerization. In addition to controlled radical poly-
merization and conventional ROP, ring-opening metathesis polymerization (ROMP) [35]
and radical ring-opening polymerization (rROP) [36] have also emerged as efficient tools
for AIE polymer synthesis. Thanks to these powerful polymerization techniques, the
key parameters that can affect the photophysical properties of AIE polymers have been
gradually revealed, including micro-environment, dye–dye interaction, self-assembly and
charge transfer (Figure 1).
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3. Single-Fluorophore AIE Polymers Prepared by Controlled Radical Polymerization

Because it is extremely easy to introduce the halogen radical-generating moiety to
molecules with hydroxyl or amine groups using commercial acyl halide reagents, ATRP has
been the most reported method to design single-fluorophore polymers [37–39]. In 2012, Xu,
Lu and co-workers used a naphthalimide-based AIE active initiator (TPP-NI) to prepare a
series of well-defined fluorescent polymers by means of ATRP, including polystyrene (PS),
poly(methyl methacrylate) (PMMA) and poly (2-hydroxyethyl methacrylate) (PHEMA) [40].
They found that the fluorescence quantum yield of AIE-active polystyrene in its aggregated
state can be enhanced by increasing the polymer chain length, which is attributed to
the higher degree of molecular motion restriction in longer polymer chains [41]. Similar
phenomena have been observed in other systems [42,43]. Interestingly, the polymer film of
PHEMA showed a distinct emission color compared to PS and PMMA (Figure 2A). The
former maintained the emission wavelength of the molecular fluorophore in its solid state
(~600 nm), whereas the latter two exhibited significant blue-shifts (~560 nm). This may
provide opportunities to manipulate the emission color of AIE fluorophores simply by
selecting monomers with different polarity.

Later on, the same group synthesized another AIE-active initiator (EtAmPy) with an in-
tramolecular charge transfer (ICT) effect, which was used to synthesize single-fluorophore-
based polymers including PMMA, poly(tert-butyl methacrylate) (PtBA), PHEMA and their
derivatives [44]. It was found that the emission peak can shift from ~640 nm to ~600 nm
upon reducing the polarity of the polymers, whereas the AIE molecule showed maxi-
mum emission at ~670 nm (Figure 2B). Although the color-tuning was not significant, the
wavelength shift of 70 nm further demonstrated the influence of polymerization-mediated
microenvironment variations on molecular fluorescence [45,46]. A systematic investigation
of polymer chain polarity versus emission properties by employing various monomers and
fluorophores would be valuable in order to further understand this system.

Recently, we employed a naphthalene diimide (NDI)-derived AIE-active initiator for
the ATRP of a series of styrenic monomers [47]. It was found that the polymerization
can induce a through-space charge transfer process (TSCT) from the monomeric units (as
donors) to the NDI core (as an acceptor). As a result, the emission color of the polymers
in the solid state can be tuned from blue to green by increasing the electron-donating
ability of the monomers (Figure 2C). Interestingly, an unexpected emission variation was
observed due to the chain end group transformation during the polymerization process.
The newly formed vinyl benzene end group can induce a structurally remote TSCT to NDI
and generate a yellow emission. This end group effect can be engineered in a controlled
manner thanks to the living behavior of ATRP, and thus the maximum emission wavelength
of NDI-PS film can be shifted from 475 to 528 nm by tuning the transformation degree.

We further used a one-step polymerization approach to achieve end group variations
and desired molecular weight at the same time [47]. As a result, the polymer emission
color can be tuned from yellow to blue simply by increasing the polymer chain length,
with the maximum emission wavelength continuously shifting from 540 nm to 470 nm in
polymer films (Figure 2C). The proposed mechanism was validated through theoretical
calculations in combination with molecular dynamic (MD) simulation and time-dependent
density functional theory (TD-DFT). Clearly, TSCT can be utilized as another efficient
tool to manipulate the molecular fluorescence of AIE polymers in solid or aggregated
states [48,49], although studies in this direction are still in their infancy.
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Figure 2. Single-fluorophore AIE polymers prepared by ATRP. (A) Structure of a naphthalimide-based
AIE initiator (i) and the corresponding monomers (ii), as well as the photographs of the resulting
polymers under UV irradiation in their aggregate state (iii). Reproduced with permission from [40],
copyright 2012, Royal Society of Chemistry. (B) Structure of an ICT initiator (i), the fluorescence
spectra of the various resulting polymers in their aggregated state (ii) and the photographs of the
polymer powders under UV irradiation (iii). Reproduced with permission from [44], copyright 2018,
Royal Society of Chemistry. (C) Structure of NDI-based TSCT polymers before and after end group
transformation (i), photographs of the polymers using different styrenic monomers (ii) or using
styrene with different chain lengths under UV irradiation (iii) and the corresponding CIE coordinates
(iv). Reproduced with permission from [47], open access, American Association for the Advancement
of Science.

Similarly to ATRP, RAFT polymerization is one of the most frequently used meth-
ods for designing well-defined polymeric architectures, which can be conducted for a
wide range of monomers under mild reaction conditions [28]. RAFT polymerization has
been employed for the efficient synthesis of biocompatible AIE polymers for bioimag-
ing [50–53] and drug delivery [54–56]. In 2018, Tang and co-workers designed a series of
tetraphenylethylene (TPE)-based dithiocarbamates for RAFT polymerization [57]. These
RAFT agents enabled the visible light-controlled polymerization of various (meth)acrylate
monomers. Importantly, the polymerization process could be visualized in situ through the
emission variations of TPE (Figure 3A). The TPE-derived RAFT agent was non-emissive
in the reaction mixtures, but gradually showed increasing fluorescence intensity along
with the growth of TPE polymers, as observed by the naked eye. This is because the TPE
fluorophore is sensitive to an increase in local viscosity, which can restrict the molecular
motion. Based on this strategy, a superior correlation between the polymer molecular
weight and emission intensity was obtained quantitatively (Figure 3A), which provided a
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convenient approach to monitoring the controlled radical polymerization process without
impairing the reaction.

The versatility of this technique was further demonstrated in 12 different polymeriza-
tion systems [57]. Note that this sensitivity to microenvironment variations is much more
controllable in the fluorophore–polymer conjugate system, as the physical blending method
was not able to achieve the same efficacy without direct interaction between the fluorophore
and the polymer segments [57]. Similar structural sensitivity has been also reported in
the RAFT polymerization of TPE-derived monomers, as a shorter spacer between TPE
and the polymer backbone results in a stronger restriction of molecular motion, offering a
higher fluorescence quantum yield [58]. Recently, AIE fluorophores were also used in self-
reporting precipitation polymerization, and the resultant fluorescent polymer nanoparticles
exhibited potential in biolabeling and photo-controllable immunotherapy [59]. Therefore,
deepening the understanding of the structure–property relationships of well-defined AIE
polymers may bring new opportunities for their applications.

Although it has a relatively narrower range of compatible monomers compared to
ATRP and RAFT polymerization, NMP exhibits powerful controllability of radical polymer-
ization with simple reaction components [29]. We developed an AIE-active NMP initiator
based on naphthalimide-derived alkoxyamine (Napht-AMA-SG1) [60]. The initiator was
used for the synthesis of the well-defined single fluorophore polyisoprene (Napht-PI,
Figure 3B). Similarly to previous reports, the fluorescence emission of the polymers in their
aggregated state was stronger with higher molecular weight. Interestingly, the AIE fluo-
rophore showed a significant blue shift of the maximum emission wavelength from about
520 nm to ~505 nm and ~490 nm, after the resulted polyisoprene grew to 2100 g.mol−1 and
3700 g.mol−1, respectively (Figure 3B). This phenomenon is likely due to the combined
effect of microenvironment variations and charge transfer, which required further inves-
tigation for experimental evidence. The single-fluorophore AIE polymers were applied
to the labeling of the polymer prodrug nanoparticles [61–63] with similar chemical com-
position for cancer cell imaging. To date, this is the only example of NMP-synthesized
AIE polymers.

Note that the AIE dye-initiated controlled radical polymerization has been used
as an efficient synthetic strategy to prepare various functional nanosystems, including
temperature- or pH-responsive fluorescent nanoassemblies [64,65]. Its use in biomedi-
cal applications may be greatly expanded when the structure–property relationship is
better elucidated.
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Figure 3. Single-fluorophore AIE polymers prepared by RAFT polymerization and NMP. (A) Illustra-
tion of RAFT polymerization (i) and photographs of the polymer solutions at different conversions
under UV irradiation (ii), as well as the exponential relationship of conversion and Mn with emission
intensity (iii). Reproduced with permission from [57], copyright 2018, John Wiley and Sons, Inc. (B)
Illustration of NMP synthesis (i) and the AIE activity of the resulting polymers (ii). Reproduced with
permission from [60], copyright 2017, Royal Society of Chemistry.

4. Single-Fluorophore AIE Polymers Prepared by Ring-Opening Polymerization

Distinct from controlled radical polymerization, ROP is a typical polymerization
method for the synthesis of biodegradable polymers that are frequently used in biomed-
ical applications [30,66–68]. Owing to the efficient synthesis of degradable polyesters
and polypeptides with well-defined structures and tunable chain lengths, ROP has been
commonly employed to prepare fluorescent materials [69–71]. Indeed, all AIE fluo-
rophores that bear active hydroxyl or amine groups usually can be used as functional
initiators for ring-opening polymerization, so that single-fluorophore AIE polymers may be
easily obtained.

In 2012, Hong and co-workers reported the first ROP-synthesized single-fluorophore
AIE-active poly(γ-benzyl-L-glutamate) using functionalized tetraphenylthiophene molecules
and N-carboxyanhydride (NCA) monomers [72]. It was found that the emission intensity
of the AIE polymers was highly dependent on the secondary structure of the polypepdtide.
The AIE activity is much stronger when the β-sheet conformation is dominant rather than
the α-helix, indicated by the higher solid-state quantum yield. Interestingly, the polymers
with longer chain lengths have higher fractions of the α-helix structure, and thus lower
quantum yields. This is opposite to the molecular weight-dependent emission observed
in most AIE polymers. Consequently, the specific polymer conformation has significant
impact on the final photophysical properties, including both emission intensity and wave-
length (Figure 4A), as also indicated in follow-up studies [73]. This feature can be used to
detect variations in the aggregate structure, for example, as a probe for the detection of
bovine serum albumin (BSA) [74].

Using a similar ROP method, Kuo and co-workers synthesized a 2,4,6-triphenyl
pyridine-functionalized polytyrosine [75]. Although the fluorophore’s emissions were
quenched in the aggregated state, the single-fluorophore polymer showed great AIE
activity with green emissions at 536 nm, due to the rigid-rod conformation of polyty-
rosine. To confirm this, they blended the polymer with poly(4-vinylpyridine) and ob-
tained a random coiled complex due to the intermolecular hydrogen bonding, which
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resulted in a hypsochromic shift to 489 nm with reduced emission intensity. This work
again emphasized the importance of polymer conformation in the manipulation of AIE
polymer emission. The polymer assembly is considered a significant factor influenc-
ing the packing of the fluorophore groups, allowing the modulation of aggregate state
fluorescence [76,77]. ROP-synthesized single-fluorophore polypeptides have also been
applied to live cell imaging [78].

In addition to polypeptides, ROP-synthesized degradable polyesters represent a piv-
otal group of polymers that are widely used in drug delivery and medical implants [79–81].
In 2013, Yang and co-workers reported the first single-fluorophore AIE-active polylac-
tide (PLA) and polycaprolactone (PCL) using an ICT-based initiator [82]. Although the
AIE initiator showed strong red emissions in its aggregate state (581 nm), the resulting
PLA and PCL exhibited enhanced fluorescence which, however, shifted to the range of
green light (~510 nm) (Figure 4B). Clearly, the enhanced emission should be due to the
restriction of molecular motion brought about by the polymer matrix, but the authors
did not provide a concrete explanation of the blue-shift phenomenon. This is likely due
to the fact that the fluorophore–fluorophore interaction, which is responsible for the red
emissions, was inhibited. A similar phenomenon was also observed in other fluorescent
polymer systems [83–85]. As a result, polymerization can be used as a tool to manipulate
the interactions between fluorophore groups and to further tune molecular emissions.
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Figure 4. Single-fluorophore AIE polymers prepared by means of ROP. (A) Structure and
conformation-dependent AIE properties of tetraphenylthiophene-conjugated poly(γ-benzyl-L-
glutamate). Reproduced with permission from [73], copyright 2016, Royal Society of Chemistry. (B)
Structure and polymerization-mediated AIE properties of ICT-based PLA and PCL. Reproduced
with permission from [82], copyright 2014, Royal Society of Chemistry. (C) Structure of TPE-attached
salan lutetium alkoxide complex (i) and the monomers for polymer synthesis (ii), as well as the pho-
tographs of the polymer powders under UV irradiation (iii). Reproduced with permission from [86],
copyright 2014, American Chemical Society.
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Thereafter, Cui and co-workers reported a TPE-attached active rare-earth metal cat-
alyst for highly efficient ring-opening polymerizations of cyclic esters [86]. A series of
well-defined polyesters with linear, block, or star-shaped topologies were synthesized
based on this AIE active complex and various monomers (Figure 4C). Significant AIE
activity was observed on the obtained four-arm TPE-attached PLA with strong solid-state
emissions. However, the quantitative comparison of TPE initiators and polymers was
not provided. Despite this, this work offered a straightforward approach to accessing
biodegradable AIE polymers at room temperature [87]. Recently, Wang, Tang and co-
workers reported another type of single-TPE-based polycarbonate by means of controllable
polymerization of CO2 and functional epoxides [88]. The well-defined AIE polymers can be
converted to polyelectrolytes with adjustable molecular weight (Figure 5A). Interestingly,
the polyelectrolytes showed chain-length-dependent assembly behavior and thus tunable
emission intensity. This system was used as a fluorescent probe for the detection of Zn2+

ions with molecular-weight-dependent sensing properties. The impact of self-assembly on
AIE properties has also been evaluated in other amphiphilic polymer systems [89,90]. For
example, Yuan, Wei and co-workers revealed that the fluorescence intensity and fluorescent
quantum yield of AIE polymer nanoassemblises increase in the order of vesicles > wormlike
micelles > spherical micelles [90].

In biodegradable polyester-based fluorescent systems, it has been shown that the
monomer type (e.g., LA or CL) and polymer composition (e.g., copolymerization) have
substantial influences on the molecular fluorescence properties [91,92]. Benefiting from the
simplicity of ROP-synthesized single-fluorophore polymers, the systematic investigation
of their structure–property relationships may provide new opportunities for the design
of biocompatible and biodegradable fluorescent materials. This, however, has not yet
been achieved.

5. Other Well-Defined AIE Polymers

Although ROP has been the most frequently employed method to synthesize AIE
polymers based on polyester and polypeptide, other types of polymers have also been
developed, such as polyoxazoline [93] and polyaziridine [94]. These works provide new
tools for the study of single-fluorophore polymers. In addition to controlled radical
polymerization and ROP, other polymerization techniques have also been selected to
design well-defined AIE polymers.

Recenty, Hadjichristidis and Jiang reported [95] the synthesis of a series of TPE-
attached polymethylene (equivalent to polyethylene, PE) by means of polyhomologation
(Figure 5B), a powerful living polymerization technique involving an ylide (monomer) and
an organoborane (initiator) [96]. The resulting TPE polymers can be further functionalized
for the synthesis of different types of diblock polymers, including PE-b-PS, PE-b-PCL and
PE-b-PtBA. It was found that the emission intensity of PE-b-PtBA in its aggregate state
decreased with increasing the chain length of PtBA, which is the opposite response to
that observed in most AIE polymers. The authors did not give the reason behind this
phenomenon, but it could be due to the high flexibility of PtBA, which may facilitate the
molecular motion of TPE.
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Wei and co-authors have employed radical ring-opening polymerization (rROP) to
synthesize AIE polymers and prepare fluorescent nanoparticles [97,98]. Although only
conventional free radical polymerization was performed in these systems, it should be
feasible to obtain well-defined degradable AIE polymers simply by introducing ATRP
initiators, NMP nitroxides or RAFT agents [36,99]. Note that rROP has emerged as a new
approach for preparing degradable polymeric materials [99]. In addition, ROMP is another
type of controlled polymerization based on olefin metathesis [35]. It has also demonstrated
great ability in the synthesis of well-defined fluorescent polymers [49], including AIE
polymers [100–104] and ladderphanes [105]. Although ROMP-based single-fluorophore
AIE polymers have not been reported so far, end-group functionalization may provide
an approximate method for this [106,107] if the incorporation of AIE fluorophores can be
precisely controlled with high conversion rates.

6. Conclusions and Outlook

The last twenty years have witnessed an explosion of research into AIE materials.
A number of small molecules, polymers and composites with AIE activity have been
developed, some of which have exhibited great potential in optoelectronics and biomedical
applications. Compared to AIE small molecules, macromolecular systems—especially well-
defined polymers prepared by means of controlled polymerization—have been studied
relatively less. To reduce the complexity of AIE polymer systems, the design of single-
fluorophore polymers can help in understanding the structure–property relationships in a
convenient way thanks to their structural simplicity. Powerful controlled polymerization
techniques offer such opportunities to achieve the efficient synthesis of the desired polymer
systems. Based on the above discussion, we can summarize the main synthetic strategies
and the key factors behind tunable AIE fluorescence as follows.

(i) Synthesis. Two major controlled polymerization methods, controlled radical poly-
merization and ROP, have been employed to synthesize most single-fluorophore AIE
polymers. Among various radical polymerization approaches, ATRP and RAFT polymer-
ization are extensively used, owing to their excellent controllability, wide monomer scope
and mild reaction conditions. NMP has received less attention, likely due to its less suitable
monomers and limited access to the alkoxyamine-based initiator. Despite this fact, NMP
can provide superior control of polymer growth with the simplest reaction components
(e.g., only initiator and monomers). In the case of ROP, biodegradable polyesters from
lactones and polypeptides from N-carboxyanhydrides have been considerably reported,
with epoxide-based polycarbonate, polyoxazoline and polyaziridine emerging. In addition
to these systems, polyhomologation has been used as a unique tool for the synthesis of
well-defined single-fluorophore polymethylene and the derived AIE-active block polymers.
Notably, all of these methods can realize tunable polymer chain lengths and narrow poly-
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dispersity, which are crucial for the investigation of the structure–property relationships of
AIE polymers.

(ii) Mechanism. As indicated by various single-fluorophore macromolecular systems,
the key parameters responsible for tunable emissions include the matrix microenvironment,
TSCT, dye–dye interactions and polymer conformation. The variation of the microenvi-
ronment is usually induced by choosing monomers with different polarities, which may
generate emission wavelength shifts. This can also be achieved by tuning the electronega-
tivity of the monomers if there is a TSCT process between the repeating units and the AIE
fluorophore. In the case of TSCT, the fluorescence color can be further manipulated through
end-group engineering. On the other hand, if the fluorophore emission is dependent on
the packing mode, it can also be tuned by varying the fluorophore concentration, which
is feasible by simply controlling polymer chain length. Furthermore, the self-assembly of
amphiphilic AIE polymers offers a precise method to modulate the polymer conformation
and thus the molecular packing of AIE fluorophores. Subsequently, tunable emission
wavelengths and/or intensities could be achieved. Note that in most AIE polymers, the
fluorescence intensity increases with the growth of the polymer chains due to the enhanced
restriction of molecular motion. Nevertheless, when the polymer chains are highly flexible,
the contradictory phenomenon has been observed.

Overall, various single-fluorophore AIE polymeric systems have been explored and
certain mechanisms dictating the emission intensity and wavelength have been revealed.
However, the systematic investigation of the structure–property relationships of these
AIE macromolecules with comprehensive factor analysis remains limited. Further efforts
are required to build robust guidelines for the design of well-defined AIE polymers. For
example, various single-fluorophore biodegradable polyesters have been synthesized, but
a quantitative comparison in regard to emission wavelengths and quantum yield has
not been carried out among different monomer types and varied polymer chain lengths.
Moreover, the effect of the matrix microenvironment has not been fully elucidated, as the
monomer polarity and chain flexibility may interact to disrupt the observed photophysical
properties. On the other hand, charge transfer and clusterization-triggered emissions [108]
are usually not considered in most systems, which may potentially influence fluorescence.
Therefore, some single-fluorophore polymer systems could be worth revisiting with the
help of theoretical calculation methods, including TD-DFT and MD simulations, in addition
to the design of a new library of AIE polymers. Furthermore, ROMP and rROP represent
alternative controlled polymerization techniques for the synthesis of single-fluorophore
AIE polymers, in addition to controlled radical polymerization and ROP.

In general, well-defined AIE polymers have shown their great potential in biomedical
applications, in particular in nano-assemblies built for fluorescent probes, bioimaging
and drug delivery [109–114]. Single-fluorophore polymers provide a unique strategy
to manipulate molecular fluorescence through precision macromolecular engineering.
Although single-fluorophore polymers are indeed not a new concept, the rise of AIE
molecules has brought tremendous new vitality to their chemical design. In parallel
with the understanding of their structure–property relationships, the question of how to
further fabricate efficient stimuli-responsive systems with controllable and significant signal
outputs by interfering with one of the four key parameters could provide a promising
future research direction, in regard to their multi-tunable fluorescence properties (e.g.,
emission color). Meanwhile, during this process, machine learning could be a powerful
tool to predict the photophysical properties of the designed AIE systems and thus reduce
the experimental workload [115,116]. The combination of controlled polymerization, AIE
molecular synthesis, theoretical calculation and machine learning could potentially lead
to the development of novel fluorescent materials with real-world applications in the
near future.
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