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Abstract
We conducted a cross-trait meta-analysis of genome-wide association study on schizophrenia (SCZ) (n= 65,967),
bipolar disorder (BD) (n= 41,653), autism spectrum disorder (ASD) (n= 46,350), attention deficit hyperactivity disorder
(ADHD) (n= 55,374), and depression (DEP) (n= 688,809). After the meta-analysis, the number of genomic loci
increased from 14 to 19 in ADHD, from 3 to 10 in ASD, from 45 to 57 in DEP, from 8 to 54 in BD, and from 64 to 87 in
SCZ. We observed significant enrichment of overlapping genes among different disorders and identified a panel of
cross-disorder genes. A total of seven genes were found being commonly associated with four out of five psychiatric
conditions, namely GABBR1, GLT8D1, HIST1H1B, HIST1H2BN, HIST1H4L, KCNB1, and DCC. The SORCS3 gene was
highlighted due to the fact that it was involved in all the five conditions of study. Analysis of correlations unveiled the
existence of two clusters of related psychiatric conditions, SCZ and BD that were separate from the other three traits,
and formed another group. Our results may provide a new insight for genetic basis of the five psychiatric disorders.

Introduction
Schizophrenia (SCZ), bipolar disorder (BD), and major

depressive disorder (MDD), are severe psychiatric disorders
that commonly occur in late adolescence and early adult-
hood. Attention deficit hyperactivity disorder (ADHD) and
autism spectrum disorder (ASD) are serious developmental
disorders mainly influencing children. They are all leading
causes of disability worldwide. A high proportion of sus-
ceptibility to these diseases can be explained by genetic
factors, with an estimated heritability of 80%, 85%, 37%,
83%, and 74% for SCZ, BD, MDD, ASD, and ADHD,

respectively1–5. Genome-wide association studies (GWASs)
have revealed a few variations for a series of mental dis-
orders. However, identification of contributing genetic loci
has proved to be difficult, possibly due to the insufficient
sample size, even if the assessed populations are increasing.
Only a limited number of large-scale GWASs have been
conducted for each trait. Although large-scale GWASs for
ASD6 and ADHD7 have just been reported, the sample size
is still relatively limited compared with other disorders such
as SCZ and MMD.
It is well-known that the performance of standard

GWAS concentrates on analyzing single nucleotide poly-
morphism (SNP) associate with a single trait, it may
improve with an increase in the size of the cohort and in
the degree of phenotypic similarity8. The multi-trait ana-
lysis of GWAS (MTAG)9 enables joint analysis of multiple
traits, thereby boosting statistical power to detect genetic
associations for each trait analyzed MTAG has sig-
nificantly attracted scholars’ attention by a unique com-
bination of four advantageous features compared with
the other existing multi-trait analytic approaches10–13.

© The Author(s) 2020
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Mingqing Xu (mingqingxu@gmail.com) or
Qiang Wang (wangqiang130@scu.edu.cn) or Fuquan Zhang
(zhangfq@njmu.edu.cn)
1Mental Health Center and Psychiatric Laboratory, State Key Laboratory of
Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan,
China
2West China Brain Research Center, West China Hospital of Sichuan University,
Chengdu, Sichuan, China
Full list of author information is available at the end of the article
These authors contributed equally: Yulu Wu, Hongbao Cao, Ancha Baranova
These authors jointly supervised this work: Mingqing Xu, Qiang Wang,
Fuquan Zhang

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0002-6917-1751
http://orcid.org/0000-0002-6917-1751
http://orcid.org/0000-0002-6917-1751
http://orcid.org/0000-0002-6917-1751
http://orcid.org/0000-0002-6917-1751
http://orcid.org/0000-0002-3849-1349
http://orcid.org/0000-0002-3849-1349
http://orcid.org/0000-0002-3849-1349
http://orcid.org/0000-0002-3849-1349
http://orcid.org/0000-0002-3849-1349
http://orcid.org/0000-0003-3204-8191
http://orcid.org/0000-0003-3204-8191
http://orcid.org/0000-0003-3204-8191
http://orcid.org/0000-0003-3204-8191
http://orcid.org/0000-0003-3204-8191
http://creativecommons.org/licenses/by/4.0/
mailto:mingqingxu@gmail.com
mailto:wangqiang130@scu.edu.cn
mailto:zhangfq@njmu.edu.cn


It includes using GWAS summary statistics as an input,
employing bivariate linkage disequilibrium (LD) score
regression14 to compensate for an overlap of the cohorts
described by different summary statistics, generating trait-
specific effect estimate for each SNP, and taking relatively
short computation time. The enhanced statistical power
gained from combining data of related phenotypes has
been previously reported9,15.
Moreover, several lines of evidence have shown that

there existed phenotypic association amongst mental ill-
nesses: (1) illusions or hallucinations can be a part of
at least three different diagnoses—schizophrenia, bipolar
disorder, and psychotic depression16; (2) it has been sup-
ported by family, twin and adoption studies that relatives
of an affected proband were at higher risk of multiple
disorders17 and a range of psychiatric disorders clustered
together in families; (3) Schizoaffective patients possess
both symptoms of SCZ and affective disorder18. In addi-
tion, varied degree of genetic correlations among the five
disorders have been reported19,20.
On the other hand, in order to develop more optimized

diagnostic criteria, it is highly essential to explore the
correlations of heritability amongst different mental ill-
nesses. For instance, previous studies on Psychiatric
Genomics Consortium found that the overlap between
heritability of SCZ and BD reached 68%, while the overlap
between the heritability of the two illnesses and depres-
sion (DEP) was relatively lower19. It greatly supported the
elimination of mood disorders in DSM-5 and the inde-
pendence of bipolar disorder from DEP and related dis-
orders. Given the potential phenotypic and genetic
associations, we updated the analyzes of genetic correla-
tions by using larger sample size and newer methodology
in the current study. The present research will enrich the
research domain criteria (RDoC) and assist to promote
clinical and basic research on mental disorders.
Furthermore, since the above-mentioned five psychiatric

disorders have genetic relationship with each other, they may
share genetic loci and genes. However, genes that shared
multiple disorders and the extent sharing common genes
have largely remained unknown. Detecting common genes
across major psychiatric traits may facilitate our under-
standing about possible common genetic basis of these traits.
To sum up, in this meta-analysis study, we performed a

series of independent and joint analyzes of SCZ, BD, ASD,
ADHD, and DEP. In addition to identification of novel
variants and those identified by the GWASs, we also
explored the genetic correlation and the overlap of risk
genes among the five psychiatric disorders.

Methods
Samples
The summary statistics were obtained from GWAS

of SCZ8, BD8, ASD6, ADHD7, and DEP21. Samples in the

Psychiatric Genomics Consortium Major Depression
(PGCMD) dataset included both MDD and DEP partici-
pants who were assessed by questionnaire (see Supple-
mentary Figures and notes)21.

Preprocessing of GWAS data
For non-rsID SNPs, we converted these SNP names

using dbSNP147 (some non-rsID SNPs could not be
converted). If multiple SNPs were mapped to an identical
chromosomal position among different datasets, we
dropped SNPs. SNPs with conflict alleles among different
datasets were removed. Z-score was computed by log(OR)/
SE. SNPs with minor allele frequency (MAF) differences of
>0.2 among different datasets were removed. After variant
filtering, the numbers of remained variants were 8,377,093,
8,956,949, 11,140,414, 9,087,710, and 8,028,859 for SCZ,
BD, DEP, ASD, and ADHD, respectively.

Multi-trait analysis of GWASs
MTAG9 a generalization of standard, inverse-variance-

weighted meta-analysis, and takes GWAS summary sta-
tistics from an arbitrary number of traits. Herein, MTAG
was applied to perform the meta-analysis of the five dis-
orders. Bivariate LD score regression14 was used as part of
an MTAG analysis to account for (possibly unknown)
sample overlap between the GWAS results of different
traits. In the result, MTAG outputs trait-specific effect
estimates for each SNP and the resulting P value can be
interpreted and used like those in single-trait GWAS. A
total of 520,857 SNPs common among the five disorders
were included in the MTAG analysis.

Identification of significant loci by GWAS and their
functional annotation
Functional Mapping and Annotation (FUMA)22 of

GWAS Firstly, independent significant SNPs were iden-
tified on the basis of their P value, which were genome-
wide significant (P ≤ 5.0 × 10−8) and independent from
each other (r2 < 0.6) within a 1 mb window. Secondly, lead
SNPs were identified as a subset of the independent sig-
nificant SNPs that were in LD with each other at r2 < 0.1,
again with a 1 mb window. Genomic risk loci were iden-
tified by merging lead SNPs if they were closer than
250 kb apart. Therefore, a genomic risk locus could con-
tain multiple lead SNPs. To map LD, the 1000 Genomes
Project was used23. ANNOVAR24 employed in FUMA
was used to map SNPs to genes, and identify the function
of the SNPs. Thirdly, other tools in FUMA were utilized
to analyze the functional annotation, pathway, and tissue
expression. All parameters were set as default.
FUMA included gene-based association analysis that

was implemented by MAGMA 1.6 software25. Associated
signals of SNPs within a gene were collapsed to derive a
gene-based P value. Gene locations and boundaries were
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from the NCBI Build GRCh37 assembly. The European
samples retrieved from the 1000 Genomes were used as
reference dataset to account for LD between SNPs, and
the potentially confounding effects of gene size and gene
density were used as covariates. A Bonferroni correction
was applied to control the multiple tests performed on the
18,770 genes available for analysis.

Gene identification and gene-overlap analysis
Genome-wide significant genes were identified on the

basis that one or more significant SNPs (P ≤ 5.0 × 10−8)
were located within 2000 bp of a gene, or a gene with P
value of gene-based association <2.66 × 10−6 (Bonferroni
correction for 18,770 tests). Then significant genes were
converted into official gene symbols using R package
limma26. Genes that could not be mapped to an official
gene symbols were removed.
In order to explore the locations of significant genes

in chromosomal ideograms, we created chromosomal
ideograms of significant genes, including SNP-based and
MAGMA-based genes for GWAS and MTAG results
using PhenoGram27.
Gene-overlap analysis among the five gene sets of the

GWASs and the meta-GWAS datasets was conducted
using R package SuperExactTest28, and the total number
of genes was set to 30,000. The overlap network of five
gene sets was plotted using Cytoscape29. Hypergeometric
test was carried out to identify classes of genes that were
overrepresented in an identified set of genes in the
Molecular Signatures Database30.

Estimation of heritability and genetic correlations
Partitioned heritability was carried out using stratified

linkage disequilibrium score regression31. Stratified LD
scores were calculated from the European-ancestry sam-
ples in the 1000 Genomes Project, and only the HapMap 3
SNPs were included with a MAF > 0.05.
The linkage disequilibrium score regression32 was used

to indicate whether each dataset had sufficient evidence of
a polygenic signal indicated by a Z-score > 4. Only SNPs
that were in HapMap 3 with MAF > 0.05 in the 1000
Genomes European reference samples were included.
Indels and structural variants were removed as strand-
ambiguous variants. SNPs whose alleles did not match with
those in the 1000 Genomes Project were excluded as well.
LD scores and weights for use with European populations
were downloaded from (http://www.broadinstitute.org/
~bulik/eur_ldscores/).
We then used bivariate LD score regression to assess

whether the results of meta-analysis have the same genetic
architecture as the original GWAS, and calculated the
genetic correlations amongst the five disorders.
To analyze the genetic structure of the five correlated

psychiatric traits, GenomicSEM package33 was used to

conduct genomic structural equation modeling (SEM) and
exploratory factor analysis (EFA). Genetic covariance matrix
(S) and sampling covariance matrix (V) for the five psy-
chiatric disorders were estimated using multivariable LD
score regression method. Genomic SEM can synthesize
genetic correlations and SNP-heritabilities derived from
GWAS summary statistics of individual traits with different
and unknown degrees of overlap33. Indices of a fitting model
include standardized root mean square residual (SRMR),
Akaike information criterion (AIC), and comparative fit
index (CFI).

Protein–protein interactions (PPIs) and knowledge-based
algorithms
PPIs mediate essentially biological processes, and PPI

analyses have been previously performed in a number of
complex diseases. After using GWAS to identify SNPs,
PPI analyses have been undertaken to prioritize the genes
most likely to be functionally significant to pathological
mechanism34,35. It has been assumed that the identified
genes will be involved in a common set of biological
pathways or processes, which may be perturbed in the
disease. In the current meta-study, PPI analysis was car-
ried out using Disease Association Protein–Protein Link
Evaluator (DAPPLE)36. The InWeb database compiles
PPI data from a variety of sources, including molecular
interaction, biomolecular interaction network database,
and Kyoto encyclopedia of genes and genomes36.
Knowledge based algorithms were analyzed by the Path-

way Studio database (www.pathwaystudio.com, accessed
in March 2019)37. The Pathway Studio database contains
over 11.8M unique associations supported by ≥40 million
references.

Polygenic risk score (PRS) for the summary results
PRS was calculated for the summary results of the ASD,

ASD-MTAG, SCZ, and SCZ-MTAG using PRS-CS soft-
ware38. GSE9222 dataset for ASD39 and GSE23201 dataset
for SCZ40 were applied for validation of PRS.

Results
MTAG results
Our single-trait input files are the results of previously

published GWAS or GWAS meta-analyses. The schematic
overview of the five cohorts is shown in the Supplementary
figures and notes. Summary statistics of GWAS for
ADHD, ASD, BD, DEP, and SCZ were analyzed (Fig. 1).
The effective sample size in the MTAG results was esti-
mated to be 61,421, 60,817, 65,682, 955,012, and 67,764 for
ADHD, ASD, BD, DEP, and SCZ, respectively.
In addition, we compared the results of the original

GWAS with those of MTAG. The summary of com-
parative analyzes of GWAS and MTAG results is shown
in Table 1. The mean χ2 of the five disorders increased in
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Fig. 1 Manhattan plots of GWAS and MTAG results. The left and right panels display GWAS and MTAG results, respectively. The X-axis is the
chromosomal position, and the Y-axis is negative log10 transformed P-values for each SNP. The red line indicates genome-wide significance (P= 5 ×
10–8). Green diamonds indicate an independent genome-wide significant association (lead SNP). Blue points show SNPs in LD with lead SNPs.
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MTAG results. The QQ plots and λGC of all GWAS and
MTAG results are shown in Supplementary Fig 1. No
evidence of inflation was found, as shown in Table 1. λGC
values for ADHD, ASD, BD, DEP, and SCZ ranged from
0.91 to 1.05 in the GWAS results, and from 0.92 to 1.02 in
the MTAG results.
After running the MTAG analysis, the number of lead

SNPs increased from 15 to 21 in ADHD, from 3 to 10 in
ASD, from 49 to 63 in DEP, from 8 to 63 in BD, and from
87 to 110 in SCZ. The number of genomic loci increased
from 14 to 19 in ADHD, from 3 to 10 in ASD, from 45 to
57 in DEP, from 8 to 54 in BD and from 64 to 87 in SCZ
(Table 1). The detailed information is summarized in
Supplementary Tables S1, S2.

Biological annotation
We analyzed both GWAS and MTAG results using

FUMA. Summary of input and background genes is pre-
sented in Supplementary Tables S3, S4. Manhattan plots of
the gene-based test as computed by MAGMA based on
GWAS and MTAG summary statistics are depicted in
Supplementary Fig. 2. The results of significant genes and
enriched gene sets in MAGMA are presented in Supple-
mentary Tables S5, S6). Chromosomal ideograms for
significant genes in MAGMA of GWAS results and
MTAG are illustrated in Fig. 2. We also summarized
the unique genes and overlapped genes in MAGMA of
each panel (Supplementary Table S7). There was an over-
representation of SNPs annotated in intergenic and intronic
non-coding RNAs (Supplementary Fig. 3).
To evaluate the significance of tissue types of specific

expression, tissue specificity analysis was conducted by

MAGMA. MAGMA was performed using the result
of gene analysis (gene-based P value) and tested for one
side (greater) with conditioning on average expression
across general tissues in total taken from the GTEx v6
RNA-seq database. Genes with P value ≤ 0.05 after Bon-
ferroni correction and absolute log fold change ≥0.58
were defined as differentially expressed genes compared
with the given label. Results of the tissue enrichment
analysis based on the GWAS and MTAG results are
displayed in Supplementary Fig. 4 and Table S8. Almost
all the enrichment of the signals was found in the brain
and pituitary.

Genetic correlation
Genetic correlation is the proportion of variance at

genetic level, indicating the degree of pleiotropy and
genetic overlap. We analyzed the genetic correlation
between each pair of disorders. The correlation between
the GWAS datasets, and the correlation between the
MTAG datasets are shown in Fig. 3a, Supplementary Fig.
5, and Supplementary Table S9. The results showed that
each of the GWAS datasets had high rg (≥0.77) with
corresponding MTAG datasets, indicating that there was
no a significant difference between them. In the GWAS
results, the genetic correlation was high between SCZ and
BD (0.72), moderate between ADHD and DEP (0.41),
ADHD and ASD (0.37), ASD and DEP (0.35), SCZ and
DEP (0.33), BD and DEP (0.31), and low between other
pairs of disorders. However, in MTAG results, rg of all
pairs of disorders noticeably increased19.
Genomic SEM and EFA were applied to analyze the five

disorders in the GWAS and MTAG results. Genomic SEM

Table 1 Statistical summary of GWAS and MTAG results.

ADHD ASD DEP BD SCZ

GWAS MTAG GWAS MTAG GWAS MTAG GWAS MTAG GWAS MTAG

SigSNPs 304 659 93 436 1890 3706 148 3343 8740 10609

Lead SNPs 15 21 3 10 49 63 8 63 87 110

Genomic locus 14 19 3 10 45 57 8 54 64 87

χ2 1.30 1.33 1.20 1.26 1.54 1.60 1.32 1.50 1.63 1.64

h2 0.23 0.33 0.19 0.35 0.04 0.05 0.35 0.70 0.42 0.51

Lambda GC 1.25 1.25 1.17 1.19 1.43 1.45 1.26 1.34 1.49 1.46

Intercept 1.03 0.95 1.01 0.92 1.01 0.98 1.02 0.89 1.05 0.95

Ratio 0.12 <0 0.04 <0 0.01 <0 0.05 <0 0.08 <0

Ngenes 20 13 43 121 254 24 17 160 136 269

Sample size 55,374 61,421 46,350 60,817 688,809 955,012 41,653 65,682 65,967 67,764

Overlapped SNPs 520,857 520,857 520,857 520,857 520,857

SigSNPs number of significant SNPs; Ngenes number of genes.

Wu et al. Translational Psychiatry          (2020) 10:209 Page 5 of 11



Fig. 2 Significant genes and SORCS3’s correlation with the five disorders. a Chromosomal ideograms for significant genes of MTAG results.
Chromosomal locations containing significant genes of different phenotypes are annotated in different colors. The phenotype circles were arranged
in a proximity algorithm. b Biological pathways between the SORCS3 gene and the five disorders.
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and EFA analyses indicated a two-factor model, therefore, we
fitted the two-factor model in Genomic SEM using a form of
confirmatory factor analysis. According to our results, the
five disorders were clustered into two groups of inter-related
disorders for both the GWAS results and the MTAG results,
with SCZ and BD were involved in a group and the other
three disorders were in another group. The model fit was
adequate for both the GWAS results (χ2(3)= 7.24, AIC=
31.2, CFI= 1.00, SRMR= 0.022) and the MTAG results
(χ2(3) = 5,296,998, AIC= 5,297,022, CFI=−16.0, SRMR=
0.017). Standardized results of confirmatory factor analysis
were presented using path diagram (Fig. 3b).

Gene identification and gene-overlap analysis
We compared the overlaps of genes among the five gene

sets of the GWAS with those of the meta-GWAS datasets.
The significant genes in GWAS and MTAG are listed in
Supplementary Table S4. In the GWAS, remarkable
overlaps were observed in most pairs of disorders. There
were 123 cross-trait genes, including 120 genes common
in two disorders and three genes common in three dis-
orders. GABBR1 was implicated in SCZ, DEP, and ASD
(odds ratio (OR)= 464.8, Fisher’s P= 0.002). SORCS3
and LINC00461 were shared by ADHD, DEP, and SCZ,

which did not likely occur by chance (OR= 641.1, Fisher’s
P= 4.66 × 10−6).
In the MTAG results, there were notable overlaps

between each pair of disorders, except for the pair between
ADHD and BD. There were a total of 366 cross-trait genes,
including 220, 138, 7, and 1 genes common in 2, 3, 4, and 5
disorders. Most strikingly, SORCS3 was the 5-trait gene
(OR= 14292790, Fisher’s P= 7.00 × 10−8). The detailed
data can be found in Supplementary Table S10.
In addition, PPI analysis was conducted using DAPPLE

for prioritized genes in each disorder. DAPPLE looks for
significant physical connections between proteins enco-
ded by disease-related genes in loci, based on PPIs
reported in the literature36. The PPI networks show sig-
nificant direct and indirect connectivity. Detailed infor-
mation including each P value is shown in Supplementary
Table S11. These results indicated that the networks
are more densely connected. The number of direct and
indirect connectivity of all diseases (except for ADHD)
increased in MTAG, as well as in PPI networks.

Knowledge-based algorithms
Literature evidence indicated that SORCS3 is correlated

with the five disorders through eight proteins (NGF, APP,

Fig. 3 Genetic correlations and path diagram of genomic structural equation modeling (SEM) of the five disorders. The left and right panels
display GWAS and MTAG results, respectively. a Genetic correlations between five psychiatric disorders. Line width is proportional to genetic
correlations between five psychiatric disorders. The numbers show rgs amongst the five disorders. b Path diagram of genomic SEM and exploratory
factor analysis (EFA) analyses of the five disorders in the GWAS and MTAG results. The values were standardized results of confirmatory factor analysis.
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DLG4, PICK1, INS, BDNF, AGRP, and NTRK2) and a
small molecule glutamate (Fig. 2b and Supplementary
Table S12). Knowledge-based gene-trait correlations
between the other seven highly pleotropic genes and the
five disorders are displayed in Supplementary Figs. 6–10
and Supplementary Tables S12, S13. We also conducted a
sub-network enrichment analysis to explore diseases or
coupons as common targets connecting the eight genes
common in four or five disorders. Results showed that five
out of the eight genes were linked to common diseases/
coupons (Fig. 4), which supported the functional asso-
ciation among these genes.

PRSs of the summary results
The valid samples for ASD included 426 unrelated

probands and 232 parents (116 trios). A total of 258,000
valid markers were remained in the GSE9222 dataset after
quality control. Nearly 142,000 markers were overlapped
between the GSE9222 dataset and the PRS. For ASD,
the mean value of total PRS was −0.0026 and 0.0014 for
controls and cases, respectively. For ASD_MTAG, the
mean value of total PRS was −0.0040 and 0.0022 for
controls and cases, respectively. The area under the
receiver operating curve (AUC) was 0.525 and 0.543 for
ASD (sensitivity, 0.510; specificity, 0.515) and ASD_M-
TAG (sensitivity, 0.517; specificity, 0.526), respectively.

Although the performance of the predictions was not
optimal, it was unveiled that the MTAG results out-
performed compared with original ASD results.
The valid samples for SCZ included 1044 patients and

2052 controls. A total of 1,016,000 valid markers were
remained in this dataset after quality control. Nearly
123,000 valid markers were overlapped between the
GSE9222 dataset and the PRS. For SCZ, the mean value of
total PRS was −0.027 and 0.053 for controls and cases,
respectively. For SCZ_MTAG, the mean value of total PRS
was −0.034 and 0.067 for controls and cases, respectively.
The AUC was 0.832 and 0.811 for SCZ (sensitivity, 0.721;
specificity, 0.612) and SCZ_MTAG (sensitivity,0.706; spe-
cificity, 0.604), respectively (Supplementary Table S14).
The performance of the original GWAS results and that of
the MTAG results was found comparable.

Discussion
The present meta-analysis confirmd that there were

varied degrees of genetic associations among the five
major psychiatric disorders, particularly between SCZ and
BD. A high genetic correlation between SCZ and BD and
a moderate genetic correlation between ADHD and DEP
observed in our study were consistent with previous
reports. However, our results indicated a moderate
genetic correlation between ADHD and ASD, ASD and

Fig. 4 Sub-network enrichment analysis (SNEA) results of the eight genes. Each of the item identified from SNEA associated with at least two
common genes.
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DEP, which was inconsistent with the literatures19,20,
possibly because a great number of samples for ASD were
employed in our study (n= 46350) compared with Lee
et al.19 (n= 6731) and Brainstorm et al.20 (n= 7377). Our
results uncovered a moderate genetic correlation among
ADHD, ASD, and DEP. The Genomic SEM also suggested
that these three disorders belonged to the same group.
The substantial genetic correlations among psychiatric

disorders indicated that they could not be regarded as
completely independent disease entities, and cross-
disorder analysis will be the direction of future studies.
Meanwhile, as evidenced by the results of our study, the
five mental disorders have their own unique pathogenic
genes besides the shared genes, which provide further
support for the change of DSM-5 diagnostic criteria. For
example, bipolar and related disorders have been sepa-
rated from the depressive disorder and placed between
the chapters on SCZ spectrum and other psychotic dis-
orders and depressive disorders, as a bridge between the
two diagnostic classes in terms of clinical manifestations
(see DSM-5, American Psychiatric Association), family
history15 and genetics. Our study provides novel evidence
supporting the relatedness of ASD, ADHD, and DEP.
Taken together with several phenotypic studies (neuroi-
maging41, cognitive function15, and clinical phenotypic
studies16), our study provides new evidence for the RDoC
for mental disorders.
In both the GWAS and the MTAG datasets, we

detected a constellation of cross-trait genes and the
enrichment of common genes between most (for the
GWAS datasets) or all (for the MTAG datasets) pairs of
disorders, providing a further support for the genetic
correlation among these disorders. We also observed
significant enrichment of common genes among three or
more disorders, and these genes may be taken as credible
common genes into consideration for the five disorders.
In the MTAG results, a total of 146 genes were observed
for three or more disorders, including some genes that
were previously known to be involved in psychosis, such
as DRD2 and TCF4, which were originally reported in
SCZ and DEP, while our data indicated their association
with BD.
Among 146 genes, there were seven genes common to

four disorders, including GLT8D1, KCNB1, GABBR1,
HIST1H1B, HIST1H2BN, and HIST1H4L in SCZ, DEP,
BD, and ASD, and DCC in ADHD, ASD, DEP, and SCZ.
Previous studies have documented the direct or indirect
biological relationship between these genes and the five
disorders (Supplementary Figs. 6–10 and Supplementary
Table S12). The GABBR1 gene encodes a neurotransmitter
receptor for gamma-aminobutyric acid (GABA), the main
inhibitory neurotransmitter in the central nervous system.
GABBR1 has been reported to be involved in SCZ42 and
DEP21. The KCNB1 gene encodes a voltage-sensing

α-subunit of a delayed rectifier potassium channel.
KCNB1 is expressed in various nerve cells in the brain and
can regulate neuronal excitability43,44. DCC plays a pivotal
role in axon guidance and nerve regeneration45. In addi-
tion to its association with the four disorders, DCC is also
a genome-wide candidate gene for intelligence46, cognitive
ability47, and educational attainment47.
HIST1H1B, HIST1H2BN, and HIST1H4L are three

genes of the seven genes associated with the four dis-
orders. HIST1H1B, also known as linker histone H1.5,
influences mRNA splicing and DNA binding and is
involved in regulation of splice site selection and alter-
native splicing. HIST1H2BN and HIST1H4L belong to
cluster histone involved in DNA binding. Histone is the
main protein component of chromatin and plays a role in
gene regulation. In the GO, these three genes were found
to be enriched in 63 pathways, including nucleosome.
Histone modifications play fundamental roles in several
biological processes that are involved in the manipulation
and expression of DNA48. Histone modifications act in
gene regulation, including lysine acetylation. It may
indicate the epigenetic variation in psychiatric disorders.
The most striking result obtained from the SORCS3

(Sortilin Related VPS10 Domain Containing Receptor 3)
gene. In the original GWAS results, SORCS3 was shown
to be associated with ADHD, DEP, and SCZ; however, this
meta-analysis provided additional support for involve-
ment of BD and ASD as well. SORCS3 showed to have a
myriad of functional partners, including NGF, APP,
DLG4, PICK1, INS, BDNF, AGRP, and NTRK2, which
may mediate the association of SORCS3 with the five
disorders (Fig. 2b and Supplementary Table S12).
The SORCS3 gene encodes a type-1 receptor trans-

membrane protein that is a member of the vacuolar
protein sorting 10 receptor family. VPS10P (vacuolar
protein sorting 10 protein)-domain receptors are sorting
receptors that control the intracellular trafficking of target
proteins in neurons49,50. SORCS3 binds nerve growth
factor (NGF) and platelet-derived growth factor (PDGF-
BB)51,52. The expression of SORCS3 is almost restricted to
the brain and spinal cord53, and its expression in hippo-
campus is induced by neuronal activity54,55. SORCS3,
together with another VPS10p-domain receptor-SORCS1,
can control energy balance and orexigenic peptide pro-
duction by attenuating BDNF signaling56. SORCS1 is
a stronger regulator of glutamate receptor functions
compared with GABAergic signaling, thereby acting as a
key regulator of synaptic transmission and plasticity57.
SORCS3 is also a postsynaptic modulator of synaptic
depression and fear extinction, affecting NMDA receptor-
dependent and -independent long-term depression58.
The role of SORCS3 has extended beyond the five dis-

orders. SORCS3 has been reported to be genome-widely
associated with several other brain relevant phenotypes,
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including intelligence46, cognitive ability47, educational
attainment47, subjective well-being9, and neuroticism9.
SORCS3 has also been reported to be associated with Alz-
heimer’s disease59,60. Although SORCS3 is genome-widely
implicated in multiple neurodevelopment-related traits, its
role has not received enough attention in each trait.
We assessed a hypothesis that the more times a gene is

observed across different traits, the more likely the gene is a
solid risk gene for each trait involved rather than a stochastic
noise, and the more likely the gene can represent shared
genetic etiology of different traits. In general, all theabove-
mentioned eight genes play a role in neurodevelopment in
human, which is consistent with pathogenic mechanism of
the mental disorders. In addition, an evidence indicates that
these gene may be functionally inter-correlated, since five out
of these eight genes are linked to common diseases, including
cancer, carcinogenesis, and several brain-related conditions
(Parkinson’ disease, epilepsy, motor dysfunction, cognitive
impairment and SCZ). In addition to confirming several
previous cross-traits genes (e.g., DRD2 and TCF4), the pre-
sent study highlighted several new ones, such as SORCS3,
DCC, GLT8D1, GABBR1, and KCNB1. These genes may be
risk genes with pleiotropic roles that partially underlie the
common genetic architecture of multiple psychiatric dis-
orders. Together, these findings may shed light on the
molecular mechanism of the major psychoses.
In PPI analyses, we identified significant direct and

indirect connectivity and interrelated genes/proteins for
the five mental disorders. Our study achieved more sig-
nificant results and larger networks with more nodes and
edges by using the genes from MTAG compared with the
genes from GWAS only, indicating a greater statistical
power. Thus, it can be concluded that the PPI network
generated by MTAG results can better reflect the
underlying pathological mechanism of mental disorders
and expand our understanding about overlapping
mechanisms among different mental disorders.
One of the potential limitations of our study is that the

MTAG results are susceptible to bias and a high FDR
during analysis of sets of GWAS summary statistics where
some are remarkably high powered than others9. Another
limitation is that we failed to achieve individual genotypes,
which resulted in the incompleteness of some important
analyses, such as PRS, and so on.
In conclusion, our study confirmed the substantial

genetic correlations among the five mental disorders and
revealed common genes among these disorders, aiding in
understanding their genetic structure and pathophysio-
logical mechanisms.

Acknowledgements
This study was financially supported by the National Key Research and
Development Program of China (Grant No. 2018YFC1314300), the National
Natural Science Foundation of China (Grant Nos. 81771446 and 81471364),
Shanghai Municipal Commission of Science and Technology Program

(13JC1403700), “Eastern Scholar” project supported by Shanghai Municipal
Education Commission (No. ZXDF089002), and Shanghai Key Laboratory of
Psychotic Disorders (13dz2260500, 14-K06). We thank members of the
Psychiatric Genomics Consortium and 23 and Me who shared the GWAS data.
We also thank Tian Ge from Massachusetts General Hospital for his help in
writing the manuscript.

Author details
1Mental Health Center and Psychiatric Laboratory, State Key Laboratory of
Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan,
China. 2West China Brain Research Center, West China Hospital of Sichuan
University, Chengdu, Sichuan, China. 3Department of Psychiatry, First Clinical
Medical College/First Hospital of Shanxi Medical University, Taiyuan, China.
4School of Systems Biology, George Mason University (GMU), Fairfax, VA, USA.
5Research Centre for Medical Genetics, Moscow, Russia. 6Analytic and
Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
7Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT,
Cambridge, MA, USA. 8Bio-X Institutes, Key Laboratory for the Genetics of
Developmental and Neuropsychiatric Disorders (Ministry of Education),
Shanghai Jiaotong University, 1954 Huashan Road, Xuhui, 200030 Shanghai,
China. 9School of Life Science and Engineering, Southwest Jiaotong University,
Chengdu, China. 10The Center of Gerontology and Geriatrics, West China
Hospital of Sichuan University, Chengdu, Sichuan, China. 11Department of
Geriatric Psychiatry, Nanjing Brain Hospital, Affiliated to Nanjing Medical
University, Nanjing, China. 12Collaborative Innovation Center of Genetics and
Development, School of Life Sciences, Fudan University, Shanghai, China.
13Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health
Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping
Road, Xuhui, 200030 Shanghai, China. 14Department of Psychiatry, The
Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road,
Nanjing, China

Author contributions
FZ, MX and QW conceived and designed the study. FZ, QW, MX, and YW
performed the data analysis. HH, SR, SL, LC, MD, MX, YD, QH, LZ, XZ, and HC
contributed to manuscript preparation and interpretation of the results. All the
authors reviewed and approved the final version of the manuscript.

Data availability
All data generated or analyzed in this study are included in the published
articles (see References).

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41398-020-00902-6).

Received: 27 September 2019 Revised: 6 June 2020 Accepted: 16 June 2020

References
1. Cardno, A. G. & Gottesman, I. I. Twin studies of schizophrenia: from bow-and-

arrow concordances to Star Wars Mx and functional genomics. Am. J. Med.
Genet. 97, 12–17 (2000).

2. Barnett, J. H. & Smoller, J. W. The genetics of bipolar disorder. Neuroscience
164, 331–343 (2009).

3. Fernandez-Pujals, A. M. et al. Epidemiology and heritability of major depressive
disorder, stratified by age of onset, sex, and illness course in Generation
Scotland: Scottish Family Health Study (GS:SFHS). PLoS ONE 10,
e0142197–e0142197 (2015).

4. Sandin, S. et al. The heritability of autism spectrum disorder reassessing the
heritability of autism spectrum disorders letters. JAMA 318, 1182–1184 (2017).

Wu et al. Translational Psychiatry          (2020) 10:209 Page 10 of 11

https://doi.org/10.1038/s41398-020-00902-6
https://doi.org/10.1038/s41398-020-00902-6


5. Faraone, S. V. & Larsson, H. Genetics of attention deficit hyperactivity disorder.
Mol. Psychiatry 24, 562–575 (2019).

6. Grove, J. et al. Identification of common genetic risk variants for autism
spectrum disorder. Nat. Genet. 51, 431–444 (2019).

7. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for
attention deficit/hyperactivity disorder. Nat. Genet. 51, 63 (2019).

8. Bipolar, D. Schizophrenia Working Group of the Psychiatric Genomics Con-
sortium. Electronic address drve, Bipolar D, Schizophrenia Working Group of
the Psychiatric Genomics C Genomic dissection of bipolar disorder and
schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715 e1716
(2018).

9. Turley, P. et al. Multi-trait analysis of genome-wide association summary sta-
tistics using MTAG. Nat. Genet. 50, 229 (2018).

10. Galesloot, T. E., Van Steen, K., Kiemeney, L. A., Janss, L. L. & Vermeulen, S. H. A
comparison of multivariate genome-wide association methods. PLoS ONE 9,
e95923 (2014).

11. Hu, Y. et al. Joint modeling of genetically correlated diseases and functional
annotations increases accuracy of polygenic risk prediction. PLoS Genet. 13,
e1006836 (2017).

12. Porter, H. F. & O’Reilly, P. F. Multivariate simulation framework reveals perfor-
mance of multi-trait GWAS methods. Sci. Rep. 7, 38837 (2017).

13. Zhu, B. et al. Functional specialization of duplicated AGAMOUS homologs in
regulating floral organ development of Medicago truncatula. Front. Plant Sci.
9, 854 (2018).

14. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases
and traits. Nat. Genet. 47, 1236 (2015).

15. Hill, W. et al. A combined analysis of genetically correlated traits identifies 187
loci and a role for neurogenesis and myelination in intelligence.Mol. Psychiatry
24, 169–181 (2018).

16. Burmeister, M., McInnis, M. G. & Zöllner, S. Psychiatric genetics: progress amid
controversy. Nat. Rev. Genet. 9, 527 (2008).

17. Kendler, K. S. et al. The structure of genetic and environmental risk factors for
syndromal and subsyndromal common DSM-IV axis I and all axis II disorders.
Am. J. Psychiatry 168, 29–39 (2011).

18. Smoller, J. W. et al. Psychiatric genetics and the structure of psychopathology.
Mol. psychiatry 24, 409 (2019).

19. Cross-Disorder Group of the Psychiatric Genomics C, Lee, S. H. et al. Genetic
relationship between five psychiatric disorders estimated from genome-wide
SNPs. Nat. Genet. 45, 984 (2013).

20. Brainstorm, C. et al. Analysis of shared heritability in common disorders of the
brain. Science 360, eaap8757 (2018).

21. Nagel, M. et al. Meta-analysis of genome-wide association studies for neuro-
ticism in 449,484 individuals identifies novel genetic loci and pathways. Nat.
Genet. 50, 920 (2018).

22. Watanabe K., Taskesen E., Bochoven A., Posthuma D. Functional mapping and
annotation of genetic associations with FUMA. Nat. Commun. 8,1826 (2017).

23. Consortium, G. P. An integrated map of genetic variation from 1,092 human
genomes. Nature 491, 56 (2012).

24. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res. 38,
e164–e164 (2010).

25. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized
gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

26. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

27. Wolfe, D., Dudek, S., Ritchie, M. D. & Pendergrass, S. A. Visualizing genomic
information across chromosomes with PhenoGram. BioData Min. 6, 18 (2013).

28. Wang, M., Zhao, Y. & Zhang, B. Efficient test and visualization of multi-set
intersections. Sci. Rep. 5, 16923 (2015).

29. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

30. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics
27, 1739–1740 (2011).

31. Finucane, H. K. et al. Partitioning heritability by functional annotation using
genome-wide association summary statistics. Nat. Genet. 47, 1228 (2015).

32. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from
polygenicity in genome-wide association studies. Nat. Genet. 47, 291 (2015).

33. Grotzinger A. D., et al. Genomic SEM provides insights into the multivariate
genetic architecture of complex traits. bioRxiv. https://doi.org/10.1101/305029
(2018).

34. Luo, X. et al. Protein-protein interaction and pathway analyses of top schi-
zophrenia genes reveal schizophrenia susceptibility genes converge on
common molecular networks and enrichment of nucleosome (chromatin)
assembly genes in schizophrenia susceptibility loci. Schizophr Bull. 40, 39–49
(2013).

35. Parkes, J. E. et al. Systematic protein-protein interaction and pathway analyses
in the idiopathic inflammatory myopathies. Arthritis Res. Ther. 18, 156 (2016).

36. Rossin, E. J. et al. Proteins encoded in genomic regions associated with
immune-mediated disease physically interact and suggest underlying biology.
PLoS Genet. 7, e1001273 (2011).

37. Nikitin, A., Egorov, S., Daraselia, N. & Mazo, I. Pathway studio–the analysis and
navigation of molecular networks. Bioinformatics 19, 2155–2157 (2003).

38. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via
Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776
(2019).

39. Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum
disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

40. Mulle, J. G. et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am.
J. Hum. Genet. 87, 229–236 (2010).

41. Savitz, J. & Drevets, W. C. Bipolar and major depressive disorder: Neuroimaging
the developmental-degenerative divide. Neurosci. Biobehav. Rev. 33, 699–771
(2009).

42. Yu, H. et al. Common variants on 2p16. 1, 6p22. 1 and 10q24. 32 are
associated with schizophrenia in Han Chinese population. Mol. psy-
chiatry 22, 954 (2017).

43. Bishop, H. I. et al. Distinct cell-and layer-specific expression patterns and
independent regulation of Kv2 channel subtypes in cortical pyramidal neu-
rons. J. Neurosci. 35, 14922–14942 (2015).

44. Misonou, H., Mohapatra, D. P. & Trimmer, J. S. Kv2. 1: a voltage-gated k+
channel critical to dynamic control of neuronal excitability. Neurotoxicology 26,
743–752 (2005).

45. Finci, L., Zhang, Y., Meijers, R. & Wang, J.-H. Signaling mechanism of the netrin-
1 receptor DCC in axon guidance. Prog. Biophys. Mol. Biol. 118, 153–160 (2015).

46. Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 indivi-
duals identifies new genetic and functional links to intelligence. Nat. Genet. 50,
912 (2018).

47. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide
association study of educational attainment in 1.1 million individuals. Nat.
Genet. 50, 1112 (2018).

48. Weaver, I. C. Integrating early life experience, gene expression, brain devel-
opment, and emergent phenotypes: unraveling the thread of nature via
nurture. Adv. Genet. 86, 277–307 (2014).

49. Hermey, G. The Vps10p-domain receptor family. Cell. Mol. Life Sci. 66,
2677–2689 (2009).

50. Willnow, T. E., Petersen, C. M. & Nykjaer, A. VPS10P-domain receptors—reg-
ulators of neuronal viability and function. Nat. Rev. Neurosci. 9, 899 (2008).

51. Hermey, G., Sjøgaard, S. S., Petersen, C. M., Nykjær, A. & Gliemann, J. Tumour
necrosis factor α-converting enzyme mediates ectodomain shedding of
Vps10p-domain receptor family members. Biochem. J. 395, 285–293 (2006).

52. Westergaard, U. et al. SorCS3 does not require propeptide cleavage to bind
nerve growth factor. FEBS Lett. 579, 1172–1176 (2005).

53. Oetjen, S., Mahlke, C., Hermans‐Borgmeyer, I. & Hermey, G. Spatiotemporal
expression analysis of the growth factor receptor SorCS3. J. Comp. Neurol. 522,
3386–3402 (2014).

54. Hermey, G. et al. Genome-wide profiling of the activity-dependent hippo-
campal transcriptome. PLoS ONE 8, e76903 (2013).

55. Hermey, G. et al. The three sorCS genes are differentially expressed and
regulated by synaptic activity. J. Neurochem. 88, 1470–1476 (2004).

56. Subkhangulova, A. et al. SORCS1 and SORCS3 control energy balance and
orexigenic peptide production. EMBO Rep. 19, e44810 (2018).

57. Christiansen, G. B. et al. The sorting receptor SorCS3 is a stronger regulator of
glutamate receptor functions compared to GABAergic mechanisms in the
hippocampus. Hippocampus 27, 235–248 (2017).

58. Breiderhoff, T. et al. Sortilin-related receptor SORCS3 is a postsynaptic mod-
ulator of synaptic depression and fear extinction. PLoS ONE 8, e75006 (2013).

59. Ni, H. et al. The GWAS risk genes for depression may be actively involved in
Alzheimer’s disease. J. Alzheimer’s Dis. 64, 1–13 (2018).

60. Reitz, C. et al. Independent and epistatic effects of variants in VPS10-d
receptors on Alzheimer disease risk and processing of the amyloid precursor
protein (APP). Transl. Psychiatry 3, e256 (2013).

Wu et al. Translational Psychiatry          (2020) 10:209 Page 11 of 11

https://doi.org/10.1101/305029

	Multi-trait analysis for genome-wide association study of five psychiatric disorders
	Introduction
	Methods
	Samples
	Preprocessing of GWAS data
	Multi-trait analysis of GWASs
	Identification of significant loci by GWAS and their functional annotation
	Gene identification and gene-overlap analysis
	Estimation of heritability and genetic correlations
	Protein&#x02013;nobreakprotein interactions (PPIs) and knowledge-based algorithms
	Polygenic risk score (PRS) for the summary results

	Results
	MTAG results
	Biological annotation
	Genetic correlation
	Gene identification and gene-overlap analysis
	Knowledge-based algorithms
	PRSs of the summary results

	Discussion
	Acknowledgements




