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ABSTRACT
Objective: Evaluating leukoaraiosis (LA) on CT is challenging due to its low contrast and similarity to parenchymal gliosis. We
developed and validated a deep learning algorithm for LA segmentation using CT-MRIFLAIR paired data from a multicenter
Korean registry and tested it in a US dataset.
Methods:We constructed a large multicenter dataset of CT–FLAIRMRI pairs. Using validated software to segment white matter
hyperintensity (WMH) on FLAIR, we generated pseudo-ground-truth LA labels on CT through deformable image registration.
A 2D nnU-Net architecture was trained solely on CT images and registered masks. Performance was evaluated using the Dice
similarity coefficient (DSC), concordance correlation coefficient (CCC), and Pearson correlation across internal, external, and US
validation cohorts. Clinical associations of predicted LAvolumewith age, risk factors, and poststroke outcomeswere also analyzed.
Results: The external test set yielded a DSC of 0.527, with high volume correlations against registered LA (r = 0.953) and WMH
(r = 0.951). In the external testing and US datasets, predicted LA volumes correlated with Fazekas grade (r = 0.832–0.891) and the
correlations were consistent across CT vendors and infarct volumes. In an independent clinical cohort (n = 867), LA volume was
independently associated with age, vascular risk factors, and 3-month functional outcomes.
Interpretation:Our deep learning algorithm offers a reproducible method for LA segmentation on CT, bridging the gap between
CT and MRI assessments in patients with ischemic stroke.

Abbreviations: CCC, concordance correlation coefficient; DSC, Dice similarity coefficient; FLAIR, fluid-attenuated inversion recovery; HU, Hounsfield unit; LA, leukoaraiosis; mRS, modified Rankin
Scale; NIHSS, National Institute of Health Stroke Scale; ReLU, rectified linear unit; WMH, white matter hyperintensity.
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1 Introduction

White matter hyperintensities (WMH), also referred to as
leukoaraiosis (LA), are the most prevalent brain abnormalities
identified on neuroimaging of elderly individuals (Black et al.
2009; Ryu et al. 2014). The presence and burden of LA are
associated with an increased risk of stroke, dementia, depression,
and poor outcomes following a stroke (Ryu et al. 2018, 2019,
2014, 2017). LA is most accurately detected using fluid-attenuated
inversion recovery (FLAIR) MRI. However, in clinical practice,
LA ismore frequently identified, and progression can be followed
by CT rather than MRI due to the greater availability and
accessibility of CT scanners.

Evaluating cerebral LA using CT is more challenging compared
to MRI. The hypoattenuation characteristics of LA are less
conspicuous against the background of white matter in the
presence of gliosis or vasogenic edema on CT scans (Auriel et al.
2011). Although several LA scoring systems on head CTs are
available (Scheltens et al. 1998), these systems typically permit
only a limited number of ordinal ratings, rely on subjective visual
criteria, and have poor associations with quantitative LA volume
(Pantoni et al. 2002).Moreover, the interrater reliability of a visual
rating scale using head CTs shows lower agreement (kappa of
0.5–0.6) compared with brain MRI (kappa around 0.8) (L. Chen
et al. 2018; Pantoni et al. 2002; Wahlund et al. 2001). Therefore,
while visual estimates of LA severity provide valuable prognostic
information, they have limited sensitivity as diagnostic tools or
markers of disease progression.

Recently, several studies have proposed deep learning approaches
to automate LA segmentation on CT or MRI. van Voorst et al.
(2024) developed a convolutional neural network trained on 245
CT scans with expert annotations, reporting a moderate Dice
similarity coefficient (DSC) of 0.68, but the model’s external
performance dropped sharply to a DSC of 0.23, indicating poor
generalizability across datasets. Pitkanen et al. (2020) used 147
CT–FLAIR MRI pairs to train a model, achieving high volume
correlation (r = 0.94), though the evaluation was limited to the
training set without external validation. L. Chen et al. (2018)
applied an automated pipeline across CT and MRI modalities
and found only modest agreement with expert-segmented LA
volumes (r = 0.71 for CT and r = 0.85 for MRI), highlighting the
limitations of reproducibility in multicenter cohorts.

These approaches share common challenges: (1) reliance on
manual annotations, which are inherently subjective and time-
consuming, especially for CT, where LA is difficult to delineate;
(2) limited training sample sizes that restrict generalizability; and
(3) poor spatial agreement in external datasets, undermining their
clinical utility.

Recently, we developed software that automatically segments
WMH on FLAIR MRI (H. Kim et al. 2024). Tested on an external
validation dataset comprised of multicenter data (n = 6,031),
the software showed a high DSC of 0.72 (H. Kim et al. 2024).
In the current study, we aimed to develop a deep learning
algorithm to automatically segment LA on noncontrast head CT
scans. Using a CT-MRIFLAIR paired dataset, we implemented the
validated software to segment WMH on FLAIR, then registered
the segmentations on the noncontrast head CT, and subsequently

trained the algorithm using CT scans without expert annotation.
We externally validated this algorithm using an independent
testing dataset and assessed its performance in a different ethnic
cohort via a visual rating scale. Finally, in an independent clinical
dataset, we examined the clinical implications of automatically
predicted LA volumes in relation to risk factors and clinical
outcomes following ischemic stroke.

Recent studies in brain imaging highlight complementary
approaches to lesion characterization and clinical translation.
Metabolomics-based neuroimaging has revealed mechanisms of
neurogenesis and axon regeneration after brain injury (Hu et al.
2023). Computational work has shown that strain rate estimation
methods affect brain injury modeling outcomes (Zhan et al.
2025), while image-guided hematoma evacuation underscores the
importance of precise lesion localization (C. Zhang et al. 2021).
These studies emphasize the value of multimodal imaging and
robust validation—principles we apply in developing a repro-
ducible, annotation-free CT-based LA segmentation method.

2 Materials andMethods

2.1 Datasets

This study originated from the Clinical Research Collaboration
for Stroke in Korea (CRCS-K), a nationwide web-based registry
that records patients with acute ischemic stroke or transient
ischemic attack admitted to 20 stroke centers in South Korea (B.
J. Kim et al. 2015; J. Kim et al. 2023; J. Y. Kim et al. 2019). From the
imaging substudy, between July 2022 and May 2023, we included
876 patients with available CT-MRIFLAIR paired data for training
and internal validation datasets from four university hospitals
(Figure 1). We then excluded the following patients: duplicated
due to recurrent stroke, large (> 5 mL) infarct core, severe
motion artifact on CT or MRI, registration error, incomplete CT
slices, contrast-enhanced CT, and presence of hemorrhage or
brain tumor. Infarct core volumes were measured on diffusion-
weighted imaging using verified in-house software (Ryu, Kang,
et al. 2023; Ryu et al. 2024). An infarct core volume threshold
of > 5 mL was defined as an exclusion criterion to minimize
differences between CT and FLAIR images, given the possibility
of progression of ischemia and cytotoxic edema with LA on
imaging.

For the external test dataset, 411 patients from five university
hospitals were identified between July 2022 and December 2022;
these cases did not overlap with those in the training dataset.
The exclusion criteria were the same as for the training dataset,
except duplicate cases due to recurrent stroke and patients with
large infarct cores (> 5 mL) were included to evaluate themodel’s
performance in a real-world ischemic stroke dataset.

For the external US population dataset, we acquired 100 non-
contrast head CTs along with their radiological impressions from
Segmed, Inc. (Stanford, CA). All scans had protected health
information, except for age and sex, removed from both the
reports and DICOM tags. The cases included were drawn from
both outpatient and emergency care settings.We filtered the scans
based on the following criteria: (1)> 18 years old; (2) unenhanced;
(3) without motion artifacts; (4) slice thickness ≥ 1.5 mm; (5)
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FIGURE 1 Study flow chart. DWI, diffusion-weighted imaging.

conducted using a standard convolutional kernel; (6) absence of
intracranial hemorrhage or large transcortical infarcts; and (7)
axial plane.

A clinical validation dataset was curated to evaluate the clin-
ical relevance of automatically measured LA volumes on CT.
From two comprehensive stroke centers in Korea (July 2022–
August 2023), 1180 consecutive patients were identified. These
institutions did not overlap with the centers from which the
training and validation or external test datasetswere collected.We
excluded patients if: (1) a CT scan was not available, (2) presence
of hemorrhagic transformation or brain tumor, (3) incomplete
CT slices, and (4) severe motion artifact on CT. Using the
initially acquired noncontrast head CT scans, we measured LA
volumes using the algorithm.Demographic and clinical datawere
extracted from the prospective stroke registry. Modified Rankin
Scale (mRS) scores at 3 months after stroke and admission, and
National Institute of Health Stroke Scale (NIHSS) scores were
collected as previously reported (Ryu, Chung, et al. 2023; Ryu
et al. 2022, 2019, 2021). The study protocol was approved by the
institutional review board of Seoul National University Bundang
Hospital (B-2307-841-303), and all subjects or their legal proxies
provided written informed consent.

2.2 Imaging Protocols

For the training and internal validation dataset, themost frequent
MRI vendor was Philips (n= 273, 56.6%; Table S1), followed by GE
(n = 127, 26.4%) and Siemens (n = 82, 17.0%). The magnetic field
strengthwas 3.0 Tesla (n= 415, 86.1%) and 1.5 Tesla (n= 67, 13.9%).
Most patients had a slice thickness of 5 mm (n = 446, 92.5%). For
noncontrast head CT scans, the most frequent CT vendor was
Siemens (n = 262, 54.4%), followed by Philips (n = 208, 43.2%),
and Canon (n = 11, 2.3%). Most patients had a slice thickness of
5 mm (n = 432, 89.6%) and underwent CT scans with a kVp of 120
(n = 443, 91.9%).

In the external testing dataset, the most frequent MRI vendor
was Philips (n = 325, 83.3%), followed by Siemens (n = 39, 10.0%)

and GE (n = 24, 6.2%). The magnetic field strength was 3.0 Tesla
(n = 369, 94.6%) and 1.5 Tesla (n = 20, 5.1%). Most patients had
a slice thickness of 5 mm (n = 287, 73.6%). For noncontrast head
CT scans, the most frequent CT vendor was Siemens (n = 185,
47.4%), followed by GE (n = 91, 23.3%), Philips (n = 81, 20.8%),
and Canon (n = 28, 7.2%). Most patients had a slice thickness of
< 5 mm (n = 238, 61.0%) and underwent CT scans with a kVp of
120 (n = 282, 72.3%).

For the US dataset, the most frequent CT vendor was Siemens
(n= 54, 54.0%), followed by GE (n= 40, 40.0%) and Canon (n= 5,
5.0%). Half of the patients had a slice thickness of 5 mm (n = 50,
50.0%), followed by 2.5 mm (n = 38, 38.0%). Additional details on
imaging parameters are provided in Table S1.

2.3 Data Preprocessing and Preparation

The preprocessing procedure follows the default steps of the
nnUNet framework. First, CT images are cropped to the smallest
bounding box encompassing all nonzero regions. Next, the
images are resampled using nearest neighbor interpolation to a
target pixel spacing of x = 0.41 mm, y = 0.41 mm, and z = 5 mm,
ensuring uniform voxel spacing across the dataset. This target
spacing was determined by calculating the median pixel spacing
in the training dataset. Finally, intensity normalization is applied
based on the statistical properties of the entire dataset, given that
CT scans use an absolute intensity scale. Intensity values are
clipped to the 0.5th and 99.5th percentiles and z-score normalized
using the dataset’s mean and standard deviation.

No human interactions were involved in the process of ground
truth generation for CT images. We first generated WMH masks
on FLAIR images utilizing validated software (H. Kim et al. 2024)
and applied nonrigid registration using a statistical deformation
model (Wouters et al. 2006) from FLAIR MRI to CT to transform
the WMH mask. After registration, the LA mask on CT was
thresholded at a probability of 0. Skull-stripping was applied to
both FLAIR and CT images beforehand for better alignment of
image features.
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2.4 Deep Learning Algorithms: nnUNet
Framework

We employed the nnUNet framework (Isensee et al. 2021) and
thus used the nnUNet architecture in a 2D configuration for
deep learning. The 2D nnUNet adopts a similar architecture
to the 2D UNet, consisting of an encoder–decoder structure
with skip connections (Ronneberger et al. 2015). The encoder
path comprises multiple convolutional blocks, each consisting
of two 3 × 3 convolutional layers followed by a rectified linear
unit (ReLU) activation and a 2 × 2 max-pooling layer with a
stride of 2. The decoder path mirrors the encoder path in a
reverse manner. Each decoder block consists of an upsampling
layer followed by two 3 × 3 convolutional layers and a ReLU
activation. Between each encoder and decoder block, there is a
skip connection with the same resolution in the decoder block.
After the decoding step, a 1 × 1 convolutional layer is applied,
followed by SoftMax activation to give the final output. For the
learning and optimization step, we used the automated settings of
the nnUNet framework, using the SGD optimizer with Nesterov
momentum, an initial learning rate of 1e-2, momentum of 0.99,
and weight decay of 1e-4 for 1000 epochs. Dice loss combined
with binary cross entropy loss was used for the loss function. The
final model consisted of 20 layers split between the encoder and
decoder (Figure S1), and the final learning rate was 2e-5. Data
augmentation was applied during training, including random
rotations, scaling, elastic deformation, intensity variations, and
flipping. Early stopping was not applied, but we monitored the
validation loss and Dice scores per epoch to assess overfitting.

2.5 Segmentation Performance Evaluation
Metrics

The following metrics were used to evaluate the predicted LA
segmentation against the registered LA mask on CT and the
original, automated WMH segmentation on FLAIR:

CorrelationCoef f icient (𝑟) =
∑
(𝑋𝑖 − �̄�) × (𝑌𝑖 − �̄�)√∑

(𝑋𝑖 − �̄�)
2 ×

∑
(𝑌𝑖 − �̄�)

2

.

𝑋𝑖 = predicted LA volume.

�̄� = mean value of predicted LA volume.

𝑌𝑖 = Gound truth LA volume.

�̄� = mean value of Gound truth LA volume.

Concordance correlation coef f icient (CCC, 𝜌)

=
2 × 𝑟 × 𝜎𝑋 × 𝜎𝑌

𝜎2𝑋 × 𝜎2𝑌 + (𝜇𝑋 + 𝜇𝑌)
2

r = correlation coefficient

𝜎 = standard deviation, 𝜇 =mean

DSC = 2TP

2TP + FP + FN
,

where TP, FP, and FN indicate voxel-level true positive, false
positive, and false negative, respectively (Figure S2).

2.6 Experiment and Analysis

We implemented the network in Python 3.9.19 using PyTorch
2.3.1. The network (nnUNet) for training was trained on a
GeForce RTX A6000 GPU with an 11.8 CUDA version, taking
on average 60 s per epoch for 14,560/2205 slices (419/63 scans)
with the training/validation split. We used a batch size of 12,
automatically detected by the nnUNet framework.

After trainingwith the training dataset, the coefficient of determi-
nation and concordance correlation coefficient were calculated to
evaluate the LA segmentation performance against the external
testing dataset. The 3D volume of a lesion is calculated by
determining the volume of each voxel, based on pixel spacing
and slice thickness. By summing the total number of voxels
across all 2D slices and multiplying by the volume of each
voxel, we obtain the total lesion volume. To evaluate the model’s
performance against expert manual annotation, an experienced
vascular neurologist (W-S. Ryu) with 20 years of experience
manually segmented LA on CT scans with reference to FLAIR
MRI images in 40 randomly selected cases from the external
testing dataset. In the external test and the US dataset, an expert
(W-S. Ryu) visually rated the extent of LA on CT using a 4-point
Fazekas scale (Fazekas et al. 1987) (none, mild, moderate, and
severe), blinded to predicted LA volumes.

2.7 Statistical Analysis

Data were presented as the mean ± SD or frequency (per-
centage or interquartile range [IQR]) as appropriate. Baseline
characteristics between training and validation datasets versus
the external test dataset were compared using t-tests, rank-
sum tests, or chi-square tests as appropriate. To compare the
volumes of predicted LA with registered volumes of LA on CT
and WMH volumes on FLAIR images, we utilized the Pearson
correlation coefficient (r) and concordance correlation coefficient
(CCC: ρ) with their 95% confidence intervals (CIs) (Lawrence
and Lin 1989). To test the relationship between Fazekas’ grade
and predicted LA volumes, we used the Pearson correlation
coefficient (r). The 95% CI for the performance metrics was
calculated by determining the standard error of themean for each
metric. In the clinical study, associations between demographic
and clinical variables and predicted LA volumeswere tested using
multiple linear regression analyses. The relationship between
predicted LA volumes and 3-monthmRS scorewas assessed using
multivariable ordinal logistic regression analysis. Because the
proportional odds assumption was violated, we combined the
mRS scores 5 and 6 into a single category in the analysis. p < 0.05
was considered statistically significant.

3 Results

3.1 Study Population

After exclusion, 482CT-MRIFLAIR paired data from four university
hospitals were used for training and internal validation (Figure 1).
For the external testing dataset, 390 additional CT-MRIFLAIR
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TABLE 1 Baseline characteristics of training and validation dataset and external test dataset.

Training and internal
validation (n = 482)

External test
(n = 390) p value

Age, years (SD) 68.1 (12.7) 69.4 (13.5) 0.252
Sex, female (%) 160 (33.2%) 185 (47.4%) < 0.001
Time interval between CT and FLAIR, hours (IQR) 3.30 (1.04–8.18) 2.43 (1.02–7.04) 0.022
Previous stroke (%) 88 (21.4%) 82 (19.9%) 0.565
WMH volume on FLAIR, mL (IQR) 9.18 (4.62–18.5) 10.23 (4.56–22.6) 0.091
Infarct volume on DWI, mL (IQR) 0.86 (0.16–2.37) 1.68 (0.39–8.25) < 0.001
Slice thickness of CT (%) < 0.001
< 5 mm 49 (10.1%) 238 (61.0%)
5 mm 432 (89.6%) 137 (35.1%)
> 5 mm 1 (0.21%) 14 (3.59%)

CT Vendorsa (%) < 0.001
GE 0 (0.0%) 91 (23.3%)
SIEMENS 262 (54.4%) 185 (47.4%)
Philips 208 (43.2%) 81 (20.8%)
Canon (Toshiba) 11 (2.3%) 28 (7.2%)

MRI Vendorsb (%) < 0.001
GE 127 (26.4%) 24 (6.2%)
SIEMENS 82 (17.0%) 39 (10.0%)
Philips 273 (56.6%) 325 (83.3%)
Canon (Toshiba) 0 (0.0%) 1 (0.3%)

Abbreviations: FLAIR, fluid-attenuated inversion recovery; IQR, interquartile range.
aData were missing in a patient in the training dataset and in five patients in the external test dataset.
bData were missing in a patient in the external test dataset.

paired data from the four stroke centers were included. Themean
patient ages for the training/internal validation and external
validation datasets were 68.1 (SD, 12.7) and 69.2 (SD, 13.5) years,
and 33.2% and 47.4% were female, respectively (Table 1). The
median of CT-MRI exam intervals was 3.30 (IQR, 1.04–8.18)
and 2.43 (IQR, 1.02–7.04) hours for the internal and external
validation datasets, respectively. Median WMH volumes (IQR)
on FLAIR MRI were 9.18 mL (4.62–18.5 mL) and 10.23 mL
(4.56–22.60 mL), respectively.

3.2 Segmentation Performance of Deep Learning
Algorithm

In the internal validation dataset (n = 63), the model achieved a
DSC of 0.531 (95% CI, 0.497–0.564) versus registered LA on CT
scans (Table S2). Volumetric analysis showed that the predicted
LA volume on CT correlated with registered LA volume on CT
(r = 0.957 and ρ = 0.898) and WMH volume on FLAIR (r = 0.951
and ρ = 0.813).

In the external test dataset, the DSC between predicted LA and
registered LA on CT was 0.556 (0.545–0.566; Table 2). Repre-
sentative cases with high DSC and low DSC between predicted
LA and registered LA on CT in the external test dataset are

shown in Figure 2. Volumetric analysis demonstrated excellent
agreement between predicted LA volume and registered LA
volume on CT (r = 0.953 and ρ = 0.925; Figure 3A) and good
agreement between predicted LA volume and WMH volume
on FLAIR images (r = 0.951 and ρ = 0.883; Figure 3B). With
the increase of LA or WMH volumes, DSC increased in both
internal validation and external test datasets (Figure S3). In 40
randomly selected caseswithmanual segmentation, the predicted
LA volumes again demonstrated good agreement with manual
segmentation (ρ = 0.858; Figure S4). In addition, predicted LA
volumes in the external testing dataset were strongly correlated
with Fazekas grade (r = 0.832; p < 0.001; Figure 4A).

In the US population (mean age 64.6 ± 15.2 years [range: 24–
90 years], 58.0% male), the predicted LA volumes showed a
strong correlation with Fazekas grade (r = 0.891; p < 0.001; see
Figure 4B).

3.3 Subgroup Analysis After Stratification by CT
Vendors and Infarct Core Volume on DWI

The model exhibited consistent segmentation performance inde-
pendent of CT vendors (Table 2) with excellent agreement
(r = 0.932–0.965 and ρ = 0.886–0.950). In comparison, the
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FIGURE 2 Representative cases of leukoaraiosis segmentation results using CT-MRI paired data without human annotation. The first column
shows CT images with predicted labels (red). The second column illustrates segmentation results from the deep learning model trained on CT-MRI
paired data, overlaid on CT images, with error maps highlighting discrepancies between predictions and pseudo-ground truth (red: false positives; blue:
overlap; yellow: false negatives). Insets provide zoomed-in views of representative regions of disagreement. The third column shows CT images with
pseudo-ground truth labels (yellow), transferred from co-registered FLAIR MRI, while the fourth column displays the corresponding FLAIR images
with true lesion distributions. The pipeline demonstrates high visual concordance with MRI-derived labels across varying degrees of lesion burden and
anatomical locations.

predicted LA volume was correlated with WMH on FLAIR with
ρ ranging from 0.840 to 0.929 (Figure S5).

In the external validation dataset, after stratification by infarct
core volume (> 10mL [n= 99;median 0.82mL; IQR0.24–2.78mL]
versus≤ 10 mL [n= 312; median 37.0 mL; IQR 16.7–63.5 mL]), the
model showed excellent agreement with registered LA volume
on CT in both groups (r = 0.959 and r = 0.946, respectively;
Figure S6). In comparison toWMHvolumes on FLAIR, themodel
exhibited good agreement (r = 0.937 and r = 0.939, respectively)
in both groups.

3.4 Clinical Study Using Automatically
Measured LA Volumes on CT

After exclusion (Figure 1), 867 consecutive patients with ischemic
stroke were included in the clinical study. The mean age was
69.3 years (SD, 13.0), and 39.2% were female (Table S3). The
median predicted LAvolumewas 11.2mL (IQR, 6.2–20.5mL). Age
was strongly associated with predicted LA volumes (coefficient
0.436, p < 0.001; Figure S7). Multiple linear regression analysis
showed that age, prior stroke, and atrial fibrillation were inde-
pendently related to LA volumes (Table S4). Hypertension was
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FIGURE 3 Volumetric correlation between automatically segmented leukoaraiosis volume on CT and ground truth on CT andMRI in the external
test dataset. Dot plots showed a relationship between predicted versus registered leukoaraiosis volume (A) and between predicted leukoaraiosis volume
on CT and predicted white matter hyperintensity volume on FLAIR (B). Each color represents a CT vendor. FLAIR, fluid-attenuated inversion recovery;
GT, ground truth.

FIGURE 4 Volumetric correlation between the automatically segmented leukoaraiosis volume onCT and Fazekas grade in the external test dataset
(A) and in the US population dataset (B). The numbers in the graph and purple lines (bars) indicate the median (interquartile range) of leukoaraiosis
volumes for each Fazekas grade.

independently associated with LA volumes in younger patients
(< 70 years) but not in elderly patients (≥ 70 years). In ordinal
logistic regression analysis, the third, fourth, and fifth quintiles of
LA volumes were incrementally associated with higher 3-month
mRS scores, respectively (Table 3). After adjusting for covariates,
the association between LA quintiles andmRS scores was slightly
attenuated but remained significant, with adjusted odds ratios of
1.59 (95% CI, 1.08–2.36) and 1.65 (95% CI, 1.10–2.46) for the fourth
and fifth quintiles, respectively.

4 Discussion

In the present study, a deep learning algorithm that automat-
ically segments LA on head CT exams was developed using

a CT-MRIFLAIR paired dataset without human annotation and
externally validated in an independent,multicenter,multi-vendor
dataset. Moreover, we assessed the algorithm’s efficacy in the US
dataset using the visual rating scale. The predicted LA volumes
on CT exhibited excellent agreement with WMH volumes on
MRI across multiple CT vendors, showing generalizability. The
predicted LA segmentations correlated well with manual seg-
mentations outlined by an expert and a visual rating scale in both
external testing andUS datasets. Using a third clinical dataset, we
show that the predicted LA volumes are indeed associated with
vascular risk factors and stroke outcome.

Several studies have reported on deep learning algorithms for
segmenting LA on CT scans (L. Chen et al. 2018; Pitkanen et al.
2020; van Voorst et al. 2024). L. Chen et al. (2018) demonstrated
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that the automated LA volume correlation at MRI was 0.85
and at CT imaging was 0.71 when compared with LA volumes
segmented by experts, which is lower compared to our results.
Pitkanen et al. (2020) developed a convolutional neural network
algorithm using 147 paired CT-MRIFLAIR images and reported
a volumetric correlation of 0.94. However, they validated the
algorithm using the same training data. van Voorst et al. (2024)
developed an algorithm using 245 CT exams with expert anno-
tations and reported a DSC of 0.68. However, the performance
of the algorithm performed poorly in external validation testing,
with aDSCof 0.23. Our algorithm, trained on a largeCT-MRIFLAIR
paired dataset, exhibited robust performance on an external
dataset with DSC ranging from 0.54 to 0.60 and represents
high performance for an externally verified LA segmentation
algorithm.

Our results showed that the visual grading system correlates with
quantitative LA volume, suggesting it can be a valuable tool for
assessing LA burden. However, we also observed an overlap in
LA volumes across grades in both Korean and US populations.
Visual scoring systems for LA on CT, despite being widely used,
are limited by their reliance on subjective visual criteria and
the resultant variability in interrater reliability (Pantoni et al.
2002; Wardlaw et al. 2013). This variability can hinder accurate
diagnosis and monitoring of disease progression. In contrast, the
deep learning algorithm developed in this study offers objectiv-
ity and reproducibility. By eliminating human subjectivity, the
algorithm enhances diagnostic accuracy and provides a reliable
tool for assessing LA. This advancement is particularly important
for large-scale studies and clinical trials where reproducibility in
LAmeasurement is crucial. Furthermore, quantitative LA assess-
ments could support individualized care by enabling clinicians to
monitor patients over time.

A key finding of the deep learning algorithm’s validation involved
testing its performance across multiple CT vendors. The algo-
rithm demonstrated high CCC values, ranging from 0.905 to
0.953, indicating excellent cross-vendor agreement. Consistent
performance across different imaging vendors ensures that the
algorithm can be widely adopted and provide reliable LA seg-
mentations. This eliminates the need for image harmonization
within and across institutions. This universality is a significant
step towards standardizing LA assessment in clinical practice.

In the external testing dataset, the predicted LA volumes on CT
significantly correlated withWMH volumes on FLAIRMRI. This
correlation is crucial as it validates the algorithm’s effectiveness
in translating the more precise measurements typically obtained
fromMRI into the more commonly available CT scans (Abdalka-
der et al. 2023). In addition, CT scans remain the primary
modality for patients presenting with neurological symptoms,
althoughMRI is superior to CT in the diagnosis of stroke (Mullins
et al. 2002). The ability to accurately assess LA on CT, using an
algorithm that correlates well withMRI-derived volumes, bridges
the gap between the two imagingmodalities. A strong correlation
between predicted LA volumes and Fazekas grade in both Korean
and US populations further supported the generalizability of our
algorithm. Furthermore, using an independent clinical dataset,
we demonstrated associations between automatically measured
LAvolumeonCTandboth risk factors and clinical outcomes after
ischemic stroke, consistent with the known literature in studies
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TABLE 3 Univariate and multivariable ordinal logistic regression analysis between quintiles of leukoaraiosis volumes and modified Rankin Scale
score at 3 months.

Range of
leukoaraiosis volume,

mL
Crude odds ratio (95%

CI) p value
Adjusteda odds ratio

(95% CI) p value

1st quintile
(n = 173)

0–5.77 Reference Reference

2nd quintile
(n = 173)

5.78–9.26 1.35 (0.92 – 1.96) 0.12 1.16 (0.78 – 1.71) 0.46

3rd quintile
(n = 173)

9.27–14.63 1.59 (1.09 – 2.31) 0.015 1.49 (1.01 – 2.19) 0.045

4th quintile
(n = 173)

14.65–24.16 1.77 (1.21 – 2.58) 0.003 1.59 (1.08 – 2.36) 0.02

5th quintile
(n = 174)

24.17–90.17 2.14 (1.46 – 3.12) < 0.001 1.64 (1.10 – 2.46) 0.016

Note: Nagelkerke R2 = 0.127 (for the multivariable model).
aAdjusted for age, admission National Institutes of Health Stroke Scale score, sex, body mass index, hypertension, diabetes, hyperlipidemia, smoking, atrial
fibrillation, coronary artery disease, and revascularization therapy.

using FLAIRMRI (Ryu et al. 2014, 2017). These results bolster the
reliability and reproducibility of our algorithm, enhancing patient
management where MRI is not readily available (Cabral Frade
et al. 2022).

Our CT-based algorithm tends to underestimate WMH volumes
seen on FLAIR MRI due to CT’s lower sensitivity for detecting
LA (Wardlaw et al. 2015). This discrepancy occurs because subtle
high-signal intensities visible on FLAIRMRImay not be detected
on CT. Despite this limitation, manual annotation of LA on CT
is challenging and labor-intensive due to its subtle appearance,
underscoring the value of automatedmethods.More importantly,
headCT scans are significantlymore accessible thanMRI globally
(Aderinto et al. 2023). In clinical settings with limited MRI
availability, our algorithm offers a practical means of quantifying
LA burden, a measure correlated with adverse stroke outcomes,
cognitive decline, and other conditions.

In the present study, we developed an algorithm for segmenting
LA on CT without human annotation. By utilizing CT-MRIFLAIR
paired data, the algorithm eliminates the need for labor-intensive
manual annotations, thereby streamlining the segmentation pro-
cess. This approach ensures a consistent and objective analysis,
free from the variability and potential biases inherent in human
annotations in outlining obscure LA onCT (Y. Chen and Joo 2021;
Geva et al. 2019; Sylolypavan et al. 2023). The ability to accurately
segment LA on CT without human intervention enhances the
algorithm’s efficiency and reliability, making it a valuable tool for
clinical practice and large-scale studies.

Beyond segmentation performance, recent studies emphasize
diverse approaches to stroke research that complement imaging-
based biomarkers. For instance, neuroendoscopic techniques like
the NESICH approach highlight the clinical value of anatomi-
cally guided hematoma evacuation (Wang et al. 2024). On the
molecular side, curcumin-primed mesenchymal stem cells and
mangiferin have shown neuroprotective effects by modulating
inflammation and lipidmetabolism in ischemicmodels (Lan et al.

2024; H. Zhang et al. 2024). Systemic indicators such as the blood
urea nitrogen-to-albumin ratio also predict stroke outcomes (Liu
et al. 2024), while rare stroke mimics like adult-onset neuronal
ceroid lipofuscinosis underscore diagnostic challenges (Huang
et al. 2024). These examples reflect the multidimensional nature
of stroke care—ranging from surgical innovation to molecu-
lar and diagnostic refinement—within which our AI-driven,
annotation-free LA segmentation tool offers scalable support for
small vessel disease profiling.

A notable source of variability in studies usingMRI-derived labels
is the heterogeneity introduced by different MRI vendors, field
strengths, and imaging protocols. Such differences can affect sig-
nal intensity and spatial resolution, potentially introducing bias
into lesion segmentation (Sylolypavan et al. 2023; Wardlaw et al.
2015). To address this, we employed a standardized preprocessing
pipeline that included skull-stripping and nonrigid registration
using a statistical deformation model to align FLAIR MRI scans
with their corresponding CT images (Wouters et al. 2006).
This approach effectively harmonized anatomical features across
modalities and vendors, reducing inter-scan variability before
label transfer. Importantly, the algorithm was trained solely
on CT images with MRI-derived masks, making it inherently
vendor-agnostic during inference. The consistent segmentation
performance observed across CT subgroups—despite substantial
variability in MRI acquisition—suggests that our cross-modality
registration strategy successfully mitigated vendor-related bias.
Similar registration-based harmonization strategies have been
shown to improve generalizability in other neuroimaging studies
(Hoving et al. 2018; Wouters et al. 2006), and our findings support
their applicability to LA segmentation on CT.

While our model architecture (2D nnU-Net) is widely used
(Isensee et al. 2021), the novelty of this study lies in its annotation-
free training strategy. By transferring validated WMH masks
from FLAIR MRI onto CT via deformable registration (Wouters
et al. 2006), we trained the model without manual CT labels—
overcoming challenges of subjectivity and poor visibility of LA
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on CT. Unlike prior studies that relied on expert annotations
(L. Chen et al. 2018; van Voorst et al. 2024), our approach
is scalable, reproducible, and achieved strong agreement with
manual segmentation (ρ = 0.858). This label-efficient method
may offer a practical framework for CT-based neuroimaging tasks
where manual annotation is limited (Sylolypavan et al. 2023).

4.1 Limitations

Although the algorithm was validated using multicenter, multi-
vendor data, the training data was limited to Asian patients with
ischemic stroke. However, in the US population, we observed a
strong correlation between predicted LA volumes and Fazekas
grade, indicating that our algorithm may be effective across
different racial groups. Additionally, the exclusion criteria applied
to the initial patient cohort, particularly the exclusion of patients
with more than 5 mL of ischemic stroke on DWI, may have
introduced bias into the training dataset. Nonetheless, subgroup
analysis showed that the algorithm maintained its performance
in patients with large infarcts on DWI, albeit with slightly lower
accuracy compared to those with smaller infarcts. However,
relatively low DSC in the external test limits the generalizability
of our algorithm, requiring further validation in a large sample
dataset. Even though our algorithm demonstrated a strong vol-
ume correlation between predicted LA volumes on CT andWMH
volumes on FLAIR, regional similarity, as assessed by DSC, was
relatively low. Weak DSC can be explained by the limitations of
co-registering different imaging modalities (Hoving et al. 2018),
which limits the usability of our algorithm in studies where
spatial correlation is crucial.

5 Conclusions

By providing a more accurate, reproducible, and accessible
method for assessing LA, the proposed algorithm has the poten-
tial to improve patient care and outcomes. Its robustness across
different imaging systems and validated correlation with MRI-
derived volumes enhance its clinical utility, making it a valuable
tool for both routine clinical practice and research.
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