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Abstract: Internet of Things (IoT) facilitates a wide range of applications through sensor-based
connected devices that require bandwidth and other network resources. Enhancement of efficient
utilization of a heterogeneous IoT network is an open optimization problem that is mostly suffered
by network flooding. Redundant, unwanted, and flooded queries are major causes of inefficient
utilization of resources. Several query control mechanisms in the literature claimed to cater to the
issues related to bandwidth, cost, and Quality of Service (QoS). This research article presented a
statistical performance evaluation of different query control mechanisms that addressed minimization
of energy consumption, energy cost and network flooding. Specifically, it evaluated the performance
measure of Query Control Mechanism (QCM) for QoS-enabled layered-based clustering for reactive
flooding in the Internet of Things. By statistical means, this study inferred the significant achievement
of the QCM algorithm that outperformed the prevailing algorithms, i.e., Divide-and-Conquer
(DnC), Service Level Agreements (SLA), and Hybrid Energy-aware Clustering Protocol for IoT
(Hy-IoT) for identification and elimination of redundant flooding queries. The inferential analysis
for performance evaluation of algorithms was measured in terms of three scenarios, i.e., energy
consumption, delays and throughput with different intervals of traffic, malicious mote and malicious
mote with realistic condition. It is evident from the results that the QCM algorithm outperforms
the existing algorithms and the statistical probability value “P” < 0.05 indicates the performance of
QCM is significant at the 95% confidence interval. Hence, it could be inferred from findings that the
performance of the QCM algorithm was substantial as compared to that of other algorithms.

Keywords: QoS; redundant query; Internet of things; network flooding; energy efficiency

1. Introduction

The Internet of Things (IoT) has become quite famous in the recent years in that many of
our daily routine devices are being connected with us, covering many capabilities such as sensing,
autonomy, and contextual awareness [1]. The IoT, resulting from Internet progress and the innovative
evolution of smart devices, has led to the development of new computing prototypes. IoT is the next
revolutionary technology that converts the present communication infrastructure into a completely
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futuristic network [2]. IoT is expected to contain high numbers of sensors collecting and passing
on data on environmental conditions, physiological measurements, machine operational data, etc.
IoT provides an integration of various sensors and objects that could communicate directly with one
another without human intervention [3,4]. The primary purpose of the IoT is to allow secure data
exchange between the real world devices and applications [5–7].

IoT promises a smart environment that would save time, energy, good quality of service (QoS),
resources, and there will be less delay as compared to traditional wireless sensor networks [8].
Dynamic resource scheduling for heterogeneous workloads in IoT is critical to ensure QoS,
level of energy consumptions on each mote, and traffic delay during data transmission [9].
Energy consumptions, QoS, and delay are the major challenging requirements for IoT networks,
since data transmission in IoT network is based on priority [10–16]. Reference [17] proposed an adaptive
meta-heuristic search for redundancy in IoT networks using the AntClust technique. Reference [18]
used process-querying techniques to develop an enabling business intelligence for resource-constrained
devices. Reference [19] proposed a scalability mechanism for IoT devices. Since scalability has become
an important aspect that needs to be considered in any IoT system, the proposed mechanism enables
IoT devices to be adaptable to environmental change. In addition, a three-level framework for
IoT redundancy control was proposed by [20]. Reference [21] used a divide-and-conquer (DnC)
method to develop an approach for improving energy efficiency in QoS-constrained WSNs (wireless
sensor networks). Reference [22] proposed a node-level energy efficiency protocol for IoT devices
to improve the energy efficiency in an IoT network. Reference [23] proposed a QoS architecture for
IoT and cloud computing platforms to enable public/users to have easy access over diversified smart
applications and services, distributed in the cloud with one IoT-enabled Intelligent Smart Card (ISC),
through mobile devices with assured quality of service. In addition, modeling QoS in IoT applications
was proposed by [24]. Reference [25] discussed network architecture and QoS issues in the IoT for a
smart city. Reference [26] proposed a discrete component circuit implementation model together with
its computational simulations using Bouali’s system.

The primary purpose of the IoT is to allow secure data exchange between the real world devices
and applications [27–29]. It is a known fact that IoT has the potential for a wide range of applications
relating to agriculture, transportation, health, education, supply chain, farming, plant disease diagnosis,
poultry, irrigation, and pest control [30,31]. Each application requires many sensors to connect and
communicate with another, which may reduce the QoS of the network due to inefficient resource
utilization, traffic delay due to redundant messages/queries because each device has direct access to
cloud resources and energy consumption [32,33]. Layered-based system model with different motes
communicating redundantly in IoT is illustrated in Figure 1 [34].

IoT is therefore based upon the integration of several communication solutions, identification
and tracking technologies, sensor and actuator networks and distributed smart objects [33]. These
objects/devices are connected to each other and share the same network for communicating with each
other. All the devices are connected with the sensor to detect the particular surrounding conditions
and analyze the situation and work accordingly. IoT devices are also programmed to take a decision
automatically [34], according to the user so that the user can make the best decision. This interconnected
network can bring lot of advancement in the technology of application and services that can bring
economic benefit to the global business development. Many devices are connected to the internet to
share local information in cyberspace [35–37].

Figure 1 shows the system model with different sensor motes communicating with each other
between the physical (sensor) and network layers of IoT. From the figure, it can be seen that redundant
messages, unwanted queries and network flooding are the major causes of inefficient utilization of
resources, thus resulting in IoT devices consuming more energy with a high computational time
(i.e., delay in data transmission), which in turn affects the network QoS [4]. Moreover, solving these
issues in IoT networks is demanding due to the constraint nature of the devices with limited energy.
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Presently, to the best of our knowledge, no mechanisms for identification of redundant queries have
been developed in this domain.Sensors 2019, 19, x FOR PEER REVIEW 3 of 16 
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Figure 1. Layered-based system model with different motes communicating redundantly in IoT.

We examine several approaches for tackling unwanted and redundant communication in IoT
networks to enable us to understand the sequence of actions that take place when flooding happens
and propose a Cluster-Based Flooding (CBF) technique. The proposed technique is an interoperable
solution both for physical layer and network layer devices. CBF divides the network into different
clusters; local queries information are proactively maintained by the Intralayer clustering (IALC),
while Interlayer clustering (IELC) is responsible for reactively obtaining the routing queries to the
destinations outside the cluster. CBF is a hybrid approach, having the potential to be more efficient
than traditional schemes in term of query traffic generation.

A QoS-enabled QCM model is developed, and the results of the simulation show the superior
performance against state of the art approaches in terms of traffic delay, QoS throughput, and energy
consumption, under various performance metrics compared with traditional flooding and state of the
art. In order to figure out real understanding of flooding in IoT networks, we provide modeling of the
redundant queries which leads to flooding in Figure 2 [34].Sensors 2019, 19, x FOR PEER REVIEW 4 of 16 
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2. Motivation

The Internet of Things has gained substantial attention over the last few years because of connecting
daily things in a wide range of application and domains. Many sensors require bandwidth and network
resources to give-and-take queries among heterogeneous IoT networks. The network sometimes
becomes unable to handle unwanted and redundant queries generated from different smart devices.
In addition, the network is also not able to prioritize the important queries among flooded queries.
This research developed a new query control mechanism that could manage priority queries and refrain
redundant and unwanted queries. This idea was able to save time and resources of networks with an
efficient query management. Further, the performance evaluation of such query control mechanisms
required inferential analysis of simulated results to statistically validate the performance parameters of
QCMs under discussion.

3. Problem Statement

Network flooding is a key questioning strategy for successful exchange of queries.
However, the risk of the original flooding is prone to unwanted and redundant network queries which
may lead to cause heavy network traffic. Redundant, unwanted and flooded queries are the major
cause of inefficient utilization of resources. IoT devices consume more energy and high computational
time as compare to wireless sensor networks [15]. More queries lead to consumption of bandwidth,
increase cost, and degrade QoS. Current existing approaches focus primarily on how to speed up the
basic routing for IoT devices. However, solutions for flooding are not being addressed. This research
proposed a new query control mechanism and evaluated its performance by statistical means.

4. Methodology

This research is based on the hypothesis that the proposed QCM (Query Control Mechanism)
algorithm (Khan, F. A., Noor, R. M., Mat Kiah, M. L., Noor, N. M., Altowaijri, S. M., & Rahman, A.
U., 2019) outperforms the other existing algorithms, i.e., DnC, SLA, and Hy-IoT for QoS-enabled
layered-based clustering for reactive flooding in the Internet of Things. Table 1 presents the important
illustration of symbols and abbreviations used this the methodology.

Table 1. Illustration of symbols and notations used in the manuscript.

Symbol or Notation Meaning

H0 Null Hypothesis
H1 Alternative Hypothesis
µ Mean of sample values

DnC Divide-and-Conquer method
SLA Service-Level Agreements

Hy-IoT Hybrid energy aware clustered protocol for IoT
heterogeneous network

QoS Quality of Service
SD Standard Deviation∑

Summation of a data series
MSR Mean squares for samples
MSE Mean squares for errors
SSR Sum of squares for samples
SSE Sum of squares for errors

QCM Query control mechanism

P Probability

The research considered the following two hypotheses for inferential analysis,
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1. Null hypothesis H0 (µ2−µ1 = 0): There is no statistical significance of results between the
proposed QCM algorithm and other existing algorithms (DnC, SLA, and Hy-IoT) for QoS-enabled
layered-based clustering for reactive flooding in the Internet of Things.

2. Alternative hypothesis H1 (µ2−µ1 > 0): There is statistical significant relationship between the
proposed QCM algorithm and other existing algorithms (DnC, SLA, and Hy-IoT) for QoS-enabled
layered-based clustering for reactive flooding in the Internet of Things.

Further, the researcher performed a T-test and an ANOVA test for the above hypothesis testing.
Let the Sample mean difference be

d = µ2−µ1 (1)

where µ1 is the sample mean of the data set of results for the first algorithm and µ2 is the sample mean
of the data set of results for the second comparable algorithm.

Sample standard deviation

SD =

√√√
1

N − 1

N∑
i=1

(
xi − d

)2
(2)

Here, data points are x1 , x2, x3, , , xN in the data sets of results of the two comparable algorithms.
Paired Sample T-test:

T =
d− 0

SD/
√

n
(3)

Here, n represents the number of observations. We find the probability value (p) by observing the
test statistics under the null and alternative hypothesis. This probability would help to identify the
magnitude of the significance in the results for our proposed QCM algorithm.

The test calculates the probability value (P-value) based on the data sets of the results for different
comparable algorithms. The standard confidence interval is 0.05 (95% confidence interval); P-values
less than 0.05 are considered statistically significant. On the contrary, P-values larger than the chosen
confidence interval infer that performances of comparable algorithms have no statistical significance
and hence no algorithm outperformed the other algorithms in this comparison.

In addition, the authors performed an “ANOVA test” [35–37] to validate the performance measure
of algorithms. The ANOVA test contains the following features,

Mean square for samples,

MSR =
SSR
k− 1

(4)

Similarly, the mean square for error,

MSE =
SSE
n− k

(5)

Now the F statistics becomes
F =

MSR
MSE

(6)

This research, by statistical means, evaluates the performance of different QoS-enabled
layered-based clustering algorithms for reactive flooding in the Internet of Things with the
following measures.

1. Inferential analysis in terms of Energy Consumption

a. Energy consumption with different intervals of traffic
b. Energy consumption with malicious mote
c. Energy consumption with malicious mote with a realistic condition

2. Inferential analysis in terms of Delay
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a. Delay with different intervals of traffic
b. Delay with malicious mote
c. Delay with malicious mote with a realistic condition

3. Inferential analysis in terms of Throughput

a. Throughput with different intervals of traffic
b. Throughput with malicious mote
c. Throughput with malicious mote with a realistic condition

Based on our hypothesis theories stated above, we find the probability value “P” employing the
statistical t-test to figure out acceptance or rejection of our Null hypothesis (or alternative hypothesis)
as a metric for performance evaluation of proposed and existing algorithms.

5. Results

The performance estimation and evaluation of the proposed technique against up-to-date DnC,
SLA [2,3] and Hy-IoT [32] methods for tracing and mitigating the unwanted and redundant reactive
flooding are described in this section. Routing protocol and MDP protocol [24] are ad-hoc routing and
Contiki, respectively. To obtain the appropriate results, simulation is performed 60 times based on the
following three scenarios.

• Scenario based on varied intervals of traffic: This condition plays an important role to gauge and
ensure the effectiveness of flooding attacks and to regulate the defensive techniques in varying
intervals of traffic. The range for the traffic interval is set as (1 s to 10 s), where 1 s is faster and
10 s is slower.

• Scenario based on a varied number of mischievous motes: this condition is favorable in analyzing
the impact of a flooding attack on the network and to take the appropriate action to counter
mischievous motes. Motes (2,6,10,15) are set as mischievous motes, and the interval of traffic is set
to (1 s) where 1 s is referred as the fastest traffic in the network.

• Condition based on realistic scenario: In this conditional scenario, motes are restricted to not
transfer the route query information simultaneously; they are only allowed to transfer route query
requests at different intervals of time. These intervals are randomly set from 1 s to 10 s.

Further, this section describes the inferential analysis of experimental results related to the
performance evaluation and validation of the proposed QCM (Query Control Mechanism) algorithm
(Khan, F. A., Noor, R. M., Mat Kiah, M. L., Noor, N. M., Altowaijri, S. M., & Rahman, A. U., 2019).
We present here the rejection of the Null hypothesis and acceptance of the alternative hypothesis since
the QCM algorithm outperforms (95% confidence interval) the existing algorithms, i.e., DnC, SLA, and
Hy-IoT for QoS-enabled layered-based clustering for reactive flooding in the Internet of Things.

Case 1: Inferential analysis in terms of energy consumption
Here, in this case, we discuss the performance evaluation in terms of energy consumption with

three different scenarios, i.e., different intervals of traffic, malicious mote and malicious mote with
realistic conditions.

Figure 3 depicts energy consumptions with respect to different scenarios, i.e., different intervals
of traffic, with malicious mote and with malicious mote and with realistic conditions. The proposed
QCM technique outperformed DnC, SLA, and Hy-IoT approaches in term of dropping the average
consumption of energy. Because the proposed technique is capable of detecting flooder motes and
detaching them from the network, this reduces the level of energy consumption that arises during
redundant and unwanted flooding attacks, whereas the average energy consumption of DnC and SLA
is approximately 21 and 18%, respectively, from (1 to 5) seconds of intervals, and this ratio continuously
rises as the interval increases. However, in the case of the proposed mechanism, the ratio of the
consumption of energy falls to 6% as compared to 13% in the existing Hy-IoT approach.
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We can observe that QCM achieves the lowest energy consumption as compared to other prevailing
algorithms in the described scenarios.

Table 2 presents the statistical observations of data related to the inferential analysis of QCM and
other existing algorithms. We can see that the statistical significant value P is less than our chosen
confidence interval of 0.05 which is evidence that our proposed QCM algorithm outperforms the
existing algorithms. Hence, the Null hypothesis is rejected and QCM achieves the significant prediction
value in the desired confidence interval.

Table 2. Inferential analysis of the proposed QCM algorithm in terms of energy consumption scenarios.

“Energy consumption” with different intervals of traffic

Statistics QCM and DNC QCM and SLA QCM and Hy-IoT

Pearson Correlation 0.995898024 0.985945791 0.998690321
t Stat −7.234140089 −7.658424991 −5.902772999

P (T ≤ t) one-tail 0.000024 0.000016 0.000114
t Critical one-tail 1.833112933 1.833112933 1.833112933
P (T ≤ t) two-tail 0.000049 0.000031 0.000228
t Critical two-tail 2.262157163 2.262157163 2.262157163

“Energy consumption” with malicious mote

Statistics QCM and DNC QCM and SLA QCM and Hy-IoT

Pearson Correlation 0.991199989 0.990539256 0.997641141
t Stat −3.69153586 −3.080170745 −2.910781287

P (T ≤ t) one-tail 0.010495227 0.018462731 0.021822006
t Critical one-tail 2.131846786 2.131846786 2.131846786
P (T ≤ t) two-tail 0.020990453 0.036925463 0.043644012
t Critical two-tail 2.776445105 2.776445105 2.776445105

“Energy consumption” with malicious mote with realistic conditions

Statistics QCM and DNC QCM and SLA QCM and Hy-IoT

Pearson Correlation 0.988654058 0.997737729 0.985054247
t Stat −5.47596162 −5.744022068 −5.700342309

P (T ≤ t) one-tail 0.002706491 0.002276306 0.002340359
t Critical one-tail 2.131846786 2.131846786 2.131846786
P (T ≤ t) two-tail 0.005412981 0.004552613 0.004680719
t Critical two-tail 2.776445105 2.776445105 2.776445105
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An exact realistic analysis of QCM is conducted to find the level of mischievous motes during
flooding expansion in the network. It is evident from the result that in the presence of malicious
motes, the level of energy consumption increases gradually. At malicious mote 2, the levels of energy
consumption are approximately (8 and 5%) for DnC and SLA approaches respectively, and at malicious
mote 15, this consumption level reaches approximately (48 and 40%). Hence, by introducing QCM,
this level falls to approximately (2, 4, and 20%) at malicious mote (2, 6 and 15), respectively.

Table 3 presents the ANOVA test statistics of the proposed QCM algorithm compared with
other algorithms. We can find here that “F statistics” values are sufficiently larger than “F critical
values”. In addition, the “P values” are less than 0.05, which achieves our 95% confidence interval,
showing that the proposed QCM algorithm outperforms the existing algorithms evaluated through
inferential analysis.

Table 3. ANOVA statistics of the proposed QCM algorithm in terms of energy consumption scenarios.

“Energy consumption” with different intervals of traffic

Source of
Variation SS df MS F P-value F crit

Between Groups 1454.17075 3 484.7235833 7.408406 0.000547983 2.866265551

Within Groups 2355.439 36 65.42886111

Total 3809.60975 39

“Energy consumption” with malicious mote

Source of
Variation SS df MS F P-value F crit

Between Groups 673.1095 3 224.3698333 4.334246 0.029824869 3.238871517

Within Groups 2690.596 16 168.16225

Total 3363.7055 19

“Energy consumption” with malicious mote with realistic conditions

Source of
Variation SS df MS F P-value F crit

Between Groups 2399.974 3 799.9913333 3.349041 0.04550264 3.238871517

Within Groups 3821.948 16 238.87175

Total 6221.922 19

Case 2: Inferential analysis in terms of Delay
The effect of traffic delay on the number of malicious motes, the time interval and malicious motes

under realistic conditions are described in this section. QCM outperformed DnC, SLA and Hy-IoT
by having the least traffic delays. QCM has the ability to detect, pause and detach the flooding mote
from the network, which helped in improving its performance. On the other hand, the redundant and
unwanted queries were also removed by detaching the flooding motes.

Here, in this case, we discuss the performance evaluation in terms of delay with three different
scenarios, i.e., different intervals of traffic, malicious mote and malicious mote with realistic conditions.

Figure 4 presents the “delay” with respect to different scenarios, i.e., different intervals of traffic,
with malicious mote and with malicious mote and with realistic conditions. We can observe that QCM
achieves the lowest delay as compared to other prevailing algorithms in described scenarios.

Table 4 presents the statistical observations of data related to the inferential analysis of QCM and
other existing algorithms. We can see that the statistical significance value P is less than our chosen
confidence interval 0.05 which is evidence that our proposed QCM algorithm outperforms the existing
algorithms. Hence, the Null hypothesis is rejected and QCM achieves the significant prediction value
in the desired confidence interval.
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Table 4. Inferential analysis of the proposed QCM algorithm in terms of “delay” scenarios.

“Delay” with different intervals of traffic

Statistics QCM and DNC QCM and SLA QCM and Hy-IoT

Pearson Correlation 0.994443621 0.988982601 0.996492201
t Stat −35.04330697 −28.82155963 −8.856366815

P (T ≤ t) one-tail 0.000000 0.000000 0.000005
t Critical one-tail 1.833112933 1.833112933 1.833112933
P (T ≤ t) two-tail 0.000000 0.000000 0.000010
t Critical two-tail 2.262157163 2.262157163 2.262157163

“Delay” with malicious mote

Statistics QCM and DNC QCM and SLA QCM and Hy-IoT

Pearson Correlation 0.971603496 0.941343288 0.960608021
t Stat −8.753903055 −7.964645156 −5.894374846

P (T ≤ t) one-tail 0.000469295 0.000673192 0.002071644
t Critical one-tail 2.131846786 2.131846786 2.131846786
P (T ≤ t) two-tail 0.00093859 0.001346383 0.004143289
t Critical two-tail 2.776445105 2.776445105 2.776445105

“Delay” with malicious mote with realistic conditions

Statistics QCM and DNC QCM and SLA QCM and Hy-IoT

Pearson Correlation 0.978790154 0.971228078 0.994541157
t Stat −11.51506032 −7.200852222 −7.656162383

P (T ≤ t) one-tail 0.000162379 0.00098563 0.000782041
t Critical one-tail 2.131846786 2.131846786 2.131846786
P (T ≤ t) two-tail 0.000324759 0.001971259 0.001564082
t Critical two-tail 2.776445105 2.776445105 2.776445105

Table 5 presents the ANOVA test statistics of the proposed QCM algorithm compared with
other algorithms. We can find here that “F statistics” values are sufficiently larger than “F critical
values”. In addition, the “P values” are less than 0.05, which achieves our 95% confidence interval,
showing that the proposed QCM algorithm outperforms the existing algorithms evaluated through
inferential analysis.

Case 3: Inferential analysis in terms of throughput
The proposed QCM is compared with DnC, SLA, and Hy-IoT using network throughput which we

refer to as QoS. Here, QoS is measured for these four flooding mechanisms using three scenarios: time
interval, increasing number of malicious motes and malicious motes with realistic network conditions.



Sensors 2020, 20, 283 10 of 15

Here, in this case, we discuss the performance evaluation in terms of throughput with three different
scenarios, i.e., different intervals of traffic, malicious mote and malicious mote with realistic conditions.

Table 5. ANOVA statistics of the proposed QCM algorithm in terms of “Delay” scenarios.

“Delay” with different intervals of traffic

Source of Variation SS df MS F P-value F crit

Between Groups 1454.171 3 484.7236 7.408406 0.000548 2.866266

Within Groups 2355.439 36 65.42886

Total 3809.61 39

“Delay” with malicious mote

Source of Variation SS df MS F P-value F crit

Between Groups 673.1095 3 224.3698 4.334246 0.029825 3.238872

Within Groups 2690.596 16 168.1623

Total 3363.706 19

“Delay” with malicious mote with realistic conditions

Source of Variation SS df MS F P-value F crit

Between Groups 2399.974 3 799.9913 3.349041 0.045503 3.238872

Within Groups 3821.948 16 238.8718

Total 6221.922 19

Figure 5 presents the “Throughput” with respect to different scenarios, i.e., different intervals
of traffic, with malicious mote and with malicious mote and with realistic conditions. We can
observe that QCM achieves the highest throughput as compared to other prevailing algorithms in the
described scenarios.
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Table 6 presents the statistical observations of data related to the inferential analysis of QCM
and other existing algorithms. We can see that the statistically significant value P is less than our
chosen confidence interval of 0.05 which is evidence that our proposed QCM algorithm outperforms
the existing algorithms. Hence, the Null hypothesis is rejected and QCM achieves the significant
prediction value in the desired confidence interval.
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Table 6. Inferential analysis of the proposed QCM algorithm in terms of “Throughput” scenarios.

“Throughput” with different intervals of traffic

Statistics QCM and DNC QCM and SLA QCM and Hy-IoT

Pearson Correlation 0.993765698 0.992949209 0.997823573
t Stat 59.53356302 29.60983067 28.80340889

P (T ≤ t) one-tail 0.000000 0.000000 0.000000
t Critical one-tail 1.833112933 1.833112933 1.833112933
P (T ≤ t) two-tail 0.000000 0.000000 0.000000
t Critical two-tail 2.262157163 2.262157163 2.262157163

“Throughput” with malicious mote

Statistics QCM and DNC QCM and SLA QCM and Hy-IoT

Pearson Correlation 0.903419023 0.986206076 0.988735878
t Stat 6.867764974 6.871919521 6.044877215

P (T ≤ t) one-tail 0.001177169 0.00117451 0.001888935
t Critical one-tail 2.131846786 2.131846786 2.131846786
P (T ≤ t) two-tail 0.002354338 0.002349021 0.003777869
t Critical two-tail 2.776445105 2.776445105 2.776445105

“Throughput” with malicious mote with realistic conditions

Statistics QCM and DNC QCM and SLA QCM and Hy-IoT

Pearson Correlation 0.960853622 0.938109794 0.989516045
t Stat 12.24631557 9.025002168 5.969620058

P (T ≤ t) one-tail 0.000127655 0.000417442 0.001977709
t Critical one-tail 2.131846786 2.131846786 2.131846786
P (T ≤ t) two-tail 0.000255309 0.000834884 0.003955418
t Critical two-tail 2.776445105 2.776445105 2.776445105

Table 7 presents ANOVA test statistics of the proposed QCM algorithm compared with other
algorithms. We can find here that “F statistics” values are sufficiently larger than “F critical values”.
In addition, the “P values” are less than 0.05, which achieves our 95% confidence interval, showing that
the proposed QCM algorithm outperforms the existing algorithms evaluated through inferential analysis.

Table 7. ANOVA statistics of the proposed QCM algorithm in terms of “Throughput” scenarios.

“Throughput” with different intervals of traffic

Source of Variation SS df MS F P-value F crit

Between Groups 1454.17075 3 484.7236 7.408406 0.000548 2.866266

Within Groups 2355.439 36 65.42886

Total 3809.60975 39

“Throughput” with malicious mote

Source of Variation SS df MS F P-value F crit

Between Groups 673.1095 3 224.3698 4.334246 0.029825 3.238872

Within Groups 2690.596 16 168.1623

Total 3363.7055 19

“Throughput” with malicious mote with realistic conditions

Source of Variation SS df MS F P-value F crit

Between Groups 2399.974 3 799.9913 3.349041 0.045503 3.238872

Within Groups 3821.948 16 238.8718

Total 6221.922 19
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6. Discussion (Hypothesis Testing)

This research was based on the hypothesis that the proposed QCM (Query Control Mechanism)
algorithm (Khan, F. A., Noor, R. M., Mat Kiah, M. L., Noor, N. M., Altowaijri, S. M., & Rahman, A.
U., 2019) outperforms the other existing algorithms, i.e., DnC, SLA, and Hy-IoT for QoS-enabled
layered-based clustering for reactive flooding in the Internet of Things. The study elaborated numerous
defensive techniques against unwanted and redundant routing queries which lead to heavy network
traffic and flooding in IoT networks. In this study, the authors implemented the reactive part Interlayer
clustering (IELC) of Cluster based flooding (CBF) and proposed a Query control mechanism (QCM) to
detect and terminate the unwanted and redundant queries based on link signal strength, consistency
of query packet and query limit threshold.

It is evident from the results that the proposed QCM had superior performance compared with
the state of the art defensive techniques in terms of the average consumption of energy, traffic delay,
and QoS which we referred to as network throughput. Thus, QCM drops the average consumption of
energy to a significant rate as compared to the DnC, SLA, and Hy-IoT under varying intervals of traffic.
The performance of QCM is also better regarding average consumption of energy with malicious motes
against the traditional approaches by droping the consumption at different motes. Additionally, QCM
also exhibits dominant performance regarding network delay by decreasing the delay as compared to
the state of the art.

In the case of malicious motes, the proposed QCM drops the network delay to a significant level.
Lastly, QCM enhances the amount of QoS to a greater extent as compared to Hy-IoT. The Proposed
QCM technique employs the Query Limit Threshold (QLT) for detecting and terminating the redundant
and unwanted query request packets, and in this way boosts the IoT network performance in terms of
signal strength of query packets and improves the location consistency checking of connected motes to
keep the network away from reactive flooding attacks.

This performance clearly shows the difference between our approach and the contemporary
approaches. We plan to extend this work in the future by considering a discrete component circuit
implementation model using Bouali’s system to detect some other attacks in IoT by extending the
number and types of motes in order to test the reliability of our approach in the presence of many
motes. Also, we plan to include the proactive part Intralayer clustering (IALC) of the CBF, which is
favorable in high priority and less delay IoT networks, i.e., smart transportation, smart health, and
smart security, and to model a physical prototype for it.

The statistical tests calculated the probability value, “P-value”, based on the data sets of results for
different comparable algorithms. We kept the standard confidence interval as 0.05 to determine the 95%
confidence interval. “P-values” less than 0.05 were considered statistically significant. On the contrary,
“P-values” larger than the chosen confidence interval inferred that the performance of comparable
algorithms had no statistical significance for results and hence no algorithm outperformed the other
algorithms in this comparison.

This research employed statistical measures to evaluate the performance of different QoS-enabled
layered-based clustering algorithms for reactive flooding in the Internet of Things with the following
measures. The inferential analysis was performed in the context of Energy Consumption (with different
intervals of traffic, with malicious mote and with malicious mote with realistic conditions). Similarly,
Inferential analysis was performed in terms of Delay (with different intervals of traffic, with malicious
mote and with malicious mote with realistic conditions). Further, the research estimated the inferential
measures in the context of Throughput (with different intervals of traffic, with malicious mote and
with malicious mote with realistic conditions).

Based on our hypothesis theories stated earlier, we found the probability value “P” (in all statistical
evaluations) remained less than 0.05, which rejected the Null hypothesis that there was no statistical
significance of results for the proposed QCM algorithm as compared to the results of other existing
algorithms, i.e., DnC, SLA, and Hy-IoT for QoS-enabled layered-based clustering for reactive flooding
in the Internet of Things. Further, in the context of the alternative hypothesis, the evaluation of
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performance measures revealed that the alternative hypothesis was accepted since the proposed QCM
algorithm outperformed the other existing algorithms.

7. Conclusions

This research article presented a statistical performance evaluation of different query control
mechanisms. The performances of such query control mechanisms rely on minimizing the energy
consumption, cost and network flooding. This article simulated and evaluated the performance
measure of different query control mechanisms for QoS-enabled layered-based clustering for reactive
flooding in the Internet of Things. By statistical means, we infer the significant achievement of
the QCM algorithm (Khan, F. A., Noor, R. M., Mat Kiah, M. L., Noor, N. M., Altowaijri, S. M., &
Rahman, A. U., 2019) that outperformed the prevailing algorithms, i.e., DnC, SLA, and Hy-IoT for
identification and elimination of redundant flooding queries. The inferential analysis for performance
evaluation of algorithms was measured in terms of energy consumption with energy consumption,
delay and throughput with different intervals of traffic, malicious mote and malicious mote with
realistic conditions. It is evident from the results that the QCM algorithm outperforms the existing
algorithms, depicting the statistical probability value “P” < 0.05, indicating the performance of QCM
significantly achieved the 95% confidence interval. Hence, the performance of the QCM algorithm is
significant as compared to the performance of other algorithms.

Author Contributions: Conceptualization, F.A.K. and R.M.N.; methodology, F.A.K. and R.M.N; software,
M.L.M.K., M.Y.I.I. and I.A.; validation, M.A., M.Y.I.I. and I.A.; formal analysis, M.A and F.A.K.; investigation,
T.K.S. and I.A; resources, M.L.M.K.; data correction, F.A.K.; writing—original draft preparation, F.A.K. and
R.M.N.; writing—M.A. and M.L.M.K.; supervision, R.M.N and M.L.M.K.; project administration, R.M.N.; funding
acquisition, R.M.N. All authors have read and agreed to the published version of the manuscript.

Funding: This project is funded by the Malaysia Research University Network (MRUN) Long Term Research Grant
Scheme (LRGS) (LR003-2019 and LRGS MRUN/F2/01/2019/001).

Conflicts of Interest: The authors have no conflicts of interests.

References

1. Abdalzaher, M.S.; Seddik, K.; Elsabrouty, M.; Muta, O.; Furukawa, H.; Abdel-Rahman, A. Game theory meets
wireless sensor networks security requirements and threats mitigation: A survey. Sensors 2016, 16, 1003.
[CrossRef]

2. Abdelaal, M.; Theel, O.; Kuka, C.; Zhang, P.; Gao, Y.; Bashlovkina, V.; Fränzle, M. Improving Energy Efficiency
in QoS-Constrained Wireless Sensor Networks. Int. J. Distributed Sens. Netw. 2016, 12, 1576038. [CrossRef]

3. End-to-End QoS Specification and Monitoring in the Internet of Things. Available online: https://pdfs.
semanticscholar.org/6156/3ae040aef11fd7dded6d39d92516c0368423.pdf (accessed on 8 November 2019).

4. Arkian, H.R.; Atani, R.E.; Pourkhalili, A.; Kamali, S. A stable clustering scheme based on adaptive multiple
metric in vehicular Ad-hoc Networks. J. Inf. Sci. Eng. 2015, 31, 361–386. [CrossRef]

5. Asif, M.; Khan, S.; Ahmad, R.; Sohail, M.; Singh, D. Quality of service of routing protocols in wireless sensor
networks: A review. IEEE Access 2017, 5, 1846–1871. [CrossRef]

6. Attwood, A.; Abuelmatti, O.; Fergus, P. M2M rendezvous redundancy for the internet of things. In Proceedings
of the 6th International Conference on Developments in ESystems Engineering, Abu Dhabi, UAE, 16–18
December 2013; pp. 46–50. [CrossRef]

7. Awan, I.; Younas, M.; Naveed, W. Modelling QoS in IoT applications. In Proceedings of the 2014 International
Conference on Network-Based Information Systems, Salerno, Italy, 10–12 September 2014; p. 99105. [CrossRef]

8. Babar, S.; Stango, A.; Prasad, N.; Sen, J.; Prasad, R. Proposed embedded security framework for Internet of
Things (IoT). In Proceedings of the 2nd International Conference on Wireless Communication, Vehicular
Technology, Information Theory and Aerospace and Electronic Systems Technology, Wireless VITAE, Chennai,
India, 28 February–3 March 2011; pp. 1–5. [CrossRef]

http://dx.doi.org/10.3390/s16071003
http://dx.doi.org/10.1155/2016/1576038
https://pdfs.semanticscholar.org/6156/3ae040aef11fd7dded6d39d92516c0368423.pdf
https://pdfs.semanticscholar.org/6156/3ae040aef11fd7dded6d39d92516c0368423.pdf
http://dx.doi.org/10.1002/dac
http://dx.doi.org/10.1109/ACCESS.2017.2654356
http://dx.doi.org/10.1109/DeSE.2013.17
http://dx.doi.org/10.1109/NBiS.2014.97
http://dx.doi.org/10.1109/WIRELESSVITAE.2011.5940923


Sensors 2020, 20, 283 14 of 15

9. David, D.R.; Nait-Sidi-moh, A.; Durand, D.; Fortin, J. Using Internet of Things technologies for a collaborative
supply chain: Application to tracking of pallets and containers. Procedia Comput. Sci. 2015, 56, 550–557.
[CrossRef]

10. Dhumane, A.; Prasad, R.; Prasad, J. Routing Issues in Internet of Things: A Survey. In Proceedings of the
International MultiConference of Engineers and Computer Scientists (IMECS), Hong Kong, China, 16–18
March 2016.

11. Dlodlo, N.; Kalezhi, J. The internet of things in agriculture for sustainable rural development. In Proceedings
of the 2015 International Conference on Emerging Trends in Networks and Computer Communications
(ETNCC), Windhoek, Namibia, 17–20 May 2015; pp. 13–18. [CrossRef]

12. Ebrahimi, M.; Shafiei-Bavani, E.; Wong, R.K.; Fong, S.; Fiaidhi, J. An adaptive meta-heuristic search for the
internet of things. Future Gener. Comput. Syst. 2017, 76, 486–494. [CrossRef]

13. Fadele, A.A.; Othman, M.; Abaker, I.; Hashem, T.; Yaqoob, I.; Imran, M.; Shoaib, M. A novel countermeasure
technique for reactive jamming attack in internet of things. Multimed. Tools Appl. 2019, 78, 29899–29920.
[CrossRef]

14. Fadele, A.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of things Security: A Survey. J. Netw. Comput.
Appl. 2017, 88, 10–28. [CrossRef]

15. Gupta, A.; Christie, R.; Manjula, P.R. Scalability in Internet of Things: Features, Techniques and Research
Challenges. Int. J. Comput. Intell. Res. 2017, 13, 1617–1627.

16. Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of
resource management techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pr.
Exp. 2017, 47, 1275–1296. [CrossRef]

17. Haddad, H.; Bouyahia, Z.; Jabeur, N. Towards a Three-Level Framework for IoT Redundancy Control
through an Explicit Spatio-Temporal Data Model. Procedia Comput. Sci. 2017, 109, 664–671. [CrossRef]

18. Huang, J.; Duan, Q.; Zhao, Y.; Zheng, Z.; Wang, W. Multicast Routing for Multimedia Communications in
the Internet of Things. IEEE Internet Things J. 2017, 4, 215–224. [CrossRef]

19. Jin, J.; Gubbi, J.; Luo, T.; Palaniswami, M. Network architecture and QoS issues in the internet of things for
a smart city. In Proceedings of the 2012 International Symposium on Communications and Information
Technologies (ISCIT), Gold Coast, QLD, Australia, 2–5 October 2012; pp. 956–961. [CrossRef]

20. Kharkongor, C.; Chithralekha, T.; Varghese, R. A SDN Controller with Energy Efficient Routing in the Internet
of Things (IoT). Procedia Comput. Sci. 2016, 89, 218–227. [CrossRef]

21. Krishnapriya, S.; Joby, P.P. QoS Aware Resource Scheduling in Internet of Things-Cloud Environment. Int. J.
Sci. Eng. 2015, 6, 294–297.

22. Laxmi, P.; Deepthi, G.L. Smart Water Management Process Architecture with IoT Based Reference. Int. J.
Comput. Sci. Mob. Comput. 2017, 6, 271–276.

23. Li, L.; Li, S.; Zhao, S. QoS—Aware Scheduling of Services-Oriented Internet of Things. IEEE Trans. Ind. Inf.
2014, 10, 1497–1505. [CrossRef]

24. Li, S.; Tryfonas, T.; Li, H. The Internet of Things: A security point of view. Internet Res. 2016, 26, 337–359.
[CrossRef]
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