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Background: Clear-cell renal cell carcinoma (ccRCC) is common and associated with
substantial mortality. TNM stage and histopathological grading have been the sole
determinants of a patient’s prognosis for decades and there are few prognostic
biomarkers used in clinical routine. Management of ccRCC involves multiple disciplines
such as urology, radiology, oncology, and pathology and each of these specialties
generates highly complex medical data. Here, artificial intelligence (AI) could prove
extremely powerful to extract meaningful information to benefit patients.

Objective: In the study, we developed and evaluated a multimodal deep learning model
(MMDLM) for prognosis prediction in ccRCC.

Design, Setting, and Participants: Two mixed cohorts of non-metastatic and
metastatic ccRCC patients were used: (1) The Cancer Genome Atlas cohort including
230 patients and (2) the Mainz cohort including 18 patients with ccRCC. For each of these
patients, we trained the MMDLM on multiscale histopathological images, CT/MRI scans,
and genomic data from whole exome sequencing.

OutcomeMeasurements and Statistical Analysis: Outcome measurements included
Harrell’s concordance index (C-index) and also various performance parameters for
predicting the 5-year survival status (5YSS). Different visualization techniques were used
to make our model more transparent.

Results: The MMDLM showed great performance in predicting the prognosis of ccRCC
patients with a mean C-index of 0.7791 and a mean accuracy of 83.43%. Training on a
combination of data from different sources yielded significantly better results compared to
when only one source was used. Furthermore, the MMDLM’s prediction was an
independent prognostic factor outperforming other clinical parameters.

Interpretation: Multimodal deep learning can contribute to prognosis prediction in
ccRCC and potentially help to improve the clinical management of this disease.
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Patient Summary: An AI-based computer program can analyze various medical data
(microscopic images, CT/MRI scans, and genomic data) simultaneously and thereby
predict the survival time of patients with renal cancer.
Keywords: artificial intelligence, deep learning, pathology, prognosis prediction, radiology, renal cancer
INTRODUCTION

Clear-cell renal cell carcinoma (ccRCC) is the most common type
of kidney cancer and more than 175,000 patients die from this
entity each year (1). In contrast to other tumor types, there is no
clearly defined set of biomarkers used in clinical routine. This
might be partly because ccRCC development seems to be driven
by a multitude of interacting metabolic pathways and regulated by
complex epigenetic programs (2). Clinical management of ccRCC
usually involves various specialties including urology, radiology,
oncology, pathology, and others. This results in a vast amount of
medical data on each patient, such as CT/MRI scans,
histopathological images, and other clinical information. There
are several clinical tools for prognosis prediction in ccRCC, such as
the UCLA integrated Staging System (UISS) (3) or the risk model
of the International Metastatic RCC Database Consortium
(IMDC) (4). Heng et al. for example developed a score, which
consists of various clinical parameters such as Karnofsky
performance status, hemoglobin, corrected calcium, and others.
With this strategy, they were able to achieve an overall C-index of
0.73 in the prognosis prediction of 645 metastatic RCC (4). But
while prognostic clinical nomograms might be helpful, they can be
cumbersome to use and often only incorporate a selection of the
available information—both of which potentially limit their
performance. Here, artificial intelligence (AI) and machine
learning (ML) could prove extremely helpful to utilize these
highly complex data to predict clinically relevant outcomes such
as survival or therapy response.

AI and ML are increasingly being applied to various medical
problems achieving highly promising results in ophthalmology (5),
radiology (6), cardiology (7), and others—even surpassing human
level performance in some cases (8). For pathological tasks for
example, we were able to predict the molecular subtype of muscle-
invasive bladder cancer from conventional histopathological slides
alone using deep learning (DL) (9). We also used a similar
approach for prognosis prediction in soft tissue sarcoma (STS)
(10). But while it is technically feasible, there are very few studies so
far evaluating the use of multimodal input for training of AI and
DL models (11). Thus, we developed a comprehensive DL pipeline
and utilized multiscale conventional histopathological images
together with CT/MRI images and genomic data to predict
survival in patients with ccRCC.
MATERIALS AND METHODS

Patient Cohorts
Two cohorts were utilized in which patients with ccRCC were
included. The first cohort served as the basis for training of the
2

neural network and validation to determine performance
metrics. It consisted of all patients of the KIRC TCGA (Kidney
renal clear cell carcinoma of the Cancer Genome Atlas) cohort
for which the diagnostic H&E (hematoxylin & eosin) stained
whole slide as well as radiological images were available. These
were downloaded for 230 patients through the GDC portal
(https://portal.gdc.cancer.gov/) as well as from the cancer
imaging archive (https://www.cancerimagingarchive.net/). All
initial pathology reports, clinicopathological and survival data
(disease-specific survival, DSS) as well as the ten most frequent
mutations/copy number alterations in our cohort were gathered
from www.cbioportal.org. A comprehensive quality assessment
excluded histopathological slides with large folds, no tumor
tissue, and/or where the image was out of focus. Whenever
possible computer tomography (CT) scans with nephrogenic
or late systemic arterial phase were used. In a subset of patients,
only magnet resonance imaging (MRI) scans were available. In
this case T1-weighted sequences were used when possible. A
second, mono-center cohort of 18 patients was generated as an
additional external test set (the Mainz cohort). These patients
were diagnosed between 2011 and 2015 at the University Medical
Center Mainz. Retrospective use of these and other patients’ data
and material for research purposes was approved by the ethical
committee of the medical association of the State of Rhineland-
Palatinate [Ref. Nos. 837.360.16 (10679) and 837.031.15(9799)]
and results were generated after 2-fold pseudonymization of the
cohort. We settled on this relatively low number of patients to
ensure high quality of the radiologic, pathologic, and clinical
follow up data. Tumor staging, grading, and treatment for these
patients was carried out according to the appropriate guidelines
in place at that time (i.e., ISUP). All experiments were in
accordance with the Declaration of Helsinki (Supplementary
Tables 1, 2).

Scanning and Preprocessing
TCGA whole slide images (WSIs) were digitalized at various
institutions participating in the TCGA consortium. Slides from
the second cohort were scanned using a Hamamatsu
Nanozoomer Series scanner (Hamamatsu Photonics,
Hamamatsu, Japan) at 40-fold magnification. This translated to
a resolution of 0.23 µm/pixel. Slides were thoroughly evaluated
for routine diagnostics by a board-certified pathologist and
annotated by the project team blinded to any of the target
variables. Annotation describes the process in which a
polygonal region of interest was drawn around the tumor area.
Various tissue aspects were considered (i.e., necrosis, etc.). Image
tiles (520 px2) from two magnification levels (level 5 ≈ 10×
magnification and level 10 ≈ 5× magnification) were then
generated from these annotations. All tiles were normalized to
November 2021 | Volume 11 | Article 788740
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an external reference image of a different dataset using structure
preserving color normalization (SPCN) as proposed by
Vahadane et al. (12) and Anand et al. (13). CT/MRI scans
were also gathered at the respective institutions participating in
the TCGA consortium. CT scans from the second cohort were
generated using 64- or 128-section CT systems (Philips,
Eindhoven, Netherlands) and 1.5T MRI scanner (Siemens,
Forchheim, Germany). Scans were thoroughly evaluated for
routine diagnostics by a board-certified radiologist and
annotated by the project team blinded to any of the target
variables. For each 3D volume, three images were extracted
showing the maximum tumor diameter (one transversal plane,
one sagittal plane and one coronal plane). Examples for
annotation, tiling, normalization, and augmentation can be
found in Supplementary Figures 1A–C).

Novel Deep Learning Pipeline
A new, comprehensive, multimodal deep learning model
(MMDLM) was developed consisting of one individual 18-layer
residual neural network (ResNet) per image modality (resulting in
up to three ResNets) and a dense layer for genomic data. This
particular architecture was chosen to compromise between model
depth and computational time. After this, the network outputs
were concatenated by an attention layer, which weights every
output due to its importance for the given task and passed through
a final fully connected network, followed by either C-index
calculation (see below) or binary classification (5-year disease-
specific survival status (5YSS)). The 5YSS includes all patients who
either lived longer than 60 months or who passed away within five
years after diagnosis. All patients for who the follow-up time was
shorter than five years were not included in this analysis, as one
cannot be certain, whether these patients would have survived five
years or longer. Unimodal training was performed by muting all
other inputs and initializing ResNet weights on pretrained image
net weights. Multimodal training was then carried out using the
pretrained weights of the unimodal training. A total of 200–400
epochs were trained, and the best model was chosen when training
and validation curves stopped converging. Standard Cox loss was
used as loss function and cross-entropy loss was used as loss
function for binary classification. Cox loss is defined as

lcox(q) : = −oi :Ei=1
ĥq(xi) − logoj :Tj>Ti

eĥ q (xj)
� �

Where Ti represents the survival time, Ei the censored event
status, xi the data for each patient, and ĥq the neural network
model trained (14). Stochastic gradient descent was used as
optimizer, learning rate was set at 0.004, momentum was set at
0.9, batch size was 32. Training was performed with a customized
data loader which generated random combinations of one
histopathologic image at level 5, one at level 10 and one
radiologic image for each patient. Genomic data could
optionally be included, but we limited the number to the 10
most frequent mutations, not to make the model overly complex.
Validation was performed on a patient level using the Cartesian
product of primary fixed image combinations to make results
more comparable. Classification markup was performed using
our previously reported sliding-window approach after training
Frontiers in Oncology | www.frontiersin.org 3
of an unmodified 18-layer ResNet (9). Class activation maps
(CAMs) were established as recently described (15).

Statistical Analysis
Training and validation on the TCGA cohort were performed
using full k-fold cross validation (CV) on a patient level (6-fold
CV for C-index prediction and 12-fold CV for binary
classification). Metrics included C-index, recall (sensitivity),
true negative rate (specificity), precision, area under the curve
(AUC) of the receiver operating characteristic (ROC) and also
the precision recall curve (PRC). Concordance index (C-index)
was calculated as implemented by the lifelines package (16). In
short, it is a measurement of the ability of a model to rank each
patient according to their actual survival times based on
individual risk scores. We used the C-index implementation by
Davidson-Pilon et al. (16) as the number of censored events was
not unreasonably high and as it was the easiest to integrate into
our setup. For the 5YSS all patients surviving longer than 5 years
were compared to all patients who died within the first 5 years.
Patients lost to follow up within the first five years were not
included in these analyses. The mean AUC of ROC either of
multiple classes or as a summary of cross validation for each
individual class was calculated using micro- and macro-
averaging (17). For each analysis, the values’ distribution was
tested. Paired t-test was used when two individual groups with
normal distribution of paired experiments were analyzed. One-
sample t-test was used to compare column means to a single
value. Repeated measures (RM) one-way ANOVA with post-hoc
Tukey HSD to correct for multiple comparisons was used when
more than two groups with normal distribution were compared.
Log-rank test was used for comparison of two or more survival
curves. Univariable and multivariable Cox regression was used
for prognosis analyses after checking proportionality using
scaled Schoenfeld residuals. If not indicated otherwise, ±
standard deviation (SD) is given. Differences in the compared
groups were considered statistically significant when P values
were smaller than 0.05 (p ≥0.05: ns, p = 0.01–0.05:*, p = 0.001–
0.01:**, p = 0.0001–0.001:***, p <0.0001:****). For annotations
and image preprocessing of the histopathologic slides, QuPath
open source software (18) was used. For annotation and image
processing of the radiologic volumes, Mango (19) and 3D Slicer
(20) were used. All deep learning experiments were done in
Python using PyTorch/fast.ai or TensorFlow/Keras. Statistical
analysis was done using Graph Pad Prism or R. Some images
were created with BioRender.com. Our algorithms were
developed utilizing open access material and tutorials, such as
PyImageSearch by Adrian Rosebrock, “Practical Deep Learning
for Coders” by Jeremy Howard, and others. Code samples, etc.
might be provided within collaboration with the project team.
Please contact the corresponding author.
RESULTS

Clinicopathological features of the TCGA cohort can be found in
Figure 1A. A total of 58,829 tiles at level 5 and 17,514 tiles at level
November 2021 | Volume 11 | Article 788740
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10 were generated from 230 whole slide images for the training
and validation experiments. Approximately 199 CT scans as well
as 31 MRI scans from the same cohort were used to generate a
total of 690 coronal, sagittal and transversal images. A typical
example of a ccRCC case and a scheme of the MMDLM is
displayed in Figures 1B, C.
Frontiers in Oncology | www.frontiersin.org 4
First, we wanted to establish a baseline of the prognosis
prediction capabilities of each imaging modality alone. To this
end we calculated the C-index, which is a measurement of
the ability of a model to rank each patient according to their
actual survival times based on individual risk scores. Using
unimodal training on radiological data yielded a mean C-index
A

B

C

FIGURE 1 | Patient cohort, clinical example, and overview of the MMDLM. (A) Characteristics of the TCGA cohort. (B) Clinical example of a typical ccRCC case. CT
(scalebar 5 cm), macroscopic (scalebar 2 cm), as well as histologic tumor appearance (scalebars 5 mm and 100 µm) are displayed. (C) Schematic overview of the
model. Created with BioRender.com.
November 2021 | Volume 11 | Article 788740
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of 0.7074 ± 0.0474 with a maximum of 0.7590. Training only on
histopathological image tiles our model achieved a mean C-index
of 0.7169 ± 0.0296 with a maximum of 0.7638 (level 10) and a
mean C-index of 0.7424 ± 0.0339 with a maximum of 0.7821
(level 5), respectively. Next, we wanted to investigate, whether
the combination of different imaging modalities would improve
prognostication in ccRCC. When combining conventional
histopathological input with CT and MRI images, the mean C-
index increased to 0.7791 ± 0.0278 with a maximum of 0.8123.
There was a significant difference when compared to C-index of
training only on radiologic images (p-value = 0.0207) and
histopathologic tiles (p-value = 0.0140) (Figure 2A). Next, we
wanted to investigate how the uni- and multimodal deep
learning models performed, when compared to known
prognostic factors in renal cell carcinoma. Cox proportional
hazard (CPH) models were used to calculate the C-indices for
histopathological grading (0.7010), T-Stage (0.7470), N-Stage
(0.5140), and M-Stage (0.6850). Strikingly, only the MMDLM
was significantly better than all independent prognostic
factors (Figure 2B).

Since the C-index cannot be applied to an individual patient and
thus might prove difficult to be translated into clinical decision
making, we investigated the possibility to predict the 5-year survival
status (5YSS) using a MMDLM and binary classification. A total of
Frontiers in Oncology | www.frontiersin.org 5
113 patients could be included in these analyses. Here accuracy
reached 83.43% ± 11.62% with a maximum of 100% upon 12-fold
cross validation. This was higher, when compared to unimodal
approaches, however this did not reach statistical significance. AUC
of the ROC was 0.916 ± 0.105 with a maximum of 1.0. AUC of the
PR curve was 0.944 ± 0.075 with a maximum of 1.0 (Figure 2C).
Dividing the cohort according to theMMDLM’s prediction (“Alive”
vs. “Dead”) into low- and high-risk patients showed a highly
significant difference in the survival curves (Figure 2D). This was
also true when only non-metastasized (M0) or metastasized (M+)
patients were evaluated (Supplementary Figure 2). To compare the
MMDLM’s prediction with the known risk factors described above,
we performed multivariable regression analyses. Here only T-Stage
and MMDLM’s prediction showed to be independent, significant
prognostic factors with theMMDLM displaying the highest hazards
ratio of almost 4 (Figure 2E).

To investigate whether the addition of genomic data could
further improve our image-based prognosis prediction, we
compared the performance of the MMDLM with and without
training on the top ten mutations/copy number alterations
(CNA) found in our cohort (Figure 3A). Interestingly, there
was no improvement by adding this type of information to the
training process. Looking at all alterations together or each
alteration separately, none was able to show a statistically
A B

D E

C

FIGURE 2 | Evaluation of the MMDLM for prognosis prediction in ccRCC. (A) C-index distribution of 6-fold cross validation. Dotted lines represent the C-index of the
respective clinical attribute (Grading, T-Stage, N-Stage, M-Stage) of the whole cohort. RM one-way ANOVA with post-hoc Tukey HSD to correct for multiple comparisons
was used to compare the groups. (B) P-value matrix of one-sample t test of each modality vs. each risk factor (yellow: significantly. higher, orange: higher, purple: lower).
(C) Mean ROC (top) and PR curve (bottom) of 12-fold cross validation. (D) Kaplan–Meier-Curve after stratification according to 5YSS by the MMDLM. (E) Forrest plot of
multivariable Cox regression. HR, hazard ratio; CI, Confidence interval; Ns, not significant. *p = 0.01–0.05, **p = 0.001–0.01, ****p < 0.0001
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significant difference in survival of patients with ccRCC
(Figures 3B, C).

Since we only trained and evaluated on the TCGA dataset thus
far, we wanted to investigate how the MMDLM would perform on
an additional external test set. This consisted of 18 patients
representing 9.3% of the training set for C-index calculation
and 17.6% for binary classification. Mean C-index reached
0.799 ± 0.060 with a maximum of 0.8662. Accuracy averaged at
79.17% ± 9.8% with a maximum of 94.44%. AUC of the ROC was
0.905 ± 0.073 with a maximum of 1.0. AUC of the PR curve was
0.956 ± 0.036 with a maximum of 1.0. All performance measures
were not significantly different from those achieved during cross
validation (CV) (Supplementary Figure 3).

Lastly, we aimed at increasing the transparency of our model
by visualizing the image features for each modality that were most
relevant to the model’s prediction. We used a sliding window
approach to visualize unimodal classification WSIs (Figure 4A).
We established class activation maps (CAMs) using the CV fold
with the highest C-index prediction, consisting of 17,550 image
combinations. Investigating these image combinations of all
patients of this fold, a first descriptive screening analysis of
representative CAMs revealed histopathologic (such as tumor
vasculature, hemorrhage, and necrosis) and radiologic (such as
tumor volume) features which were most important to the model
to make its prediction (Figure 4B).
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

Diagnosis and treatment of ccRCC remains a clinical challenge—
especially in metastasized cases. For both non-metastasized and
metastasized patients, prognostic tools exist such as UISS and
IMDC, but there is still room for improvement. In our study, we
propose a MMLDM, which could be a valuable alternative and/
or addition to existing tools in both M0/M+ patients. While
methods of AI are increasingly being used in various medical
domains, their combination across different modalities has only
rarely been explored (21). This is particularly surprising as such
combination efforts are already being developed and deployed in
non-medical fields such as autonomous driving and others.
Furthermore, the few multimodal or “fusion” approaches
applied to medical problems consistently showed a boost in
accuracy of up to 27.7% when compared over single modality
models for the same task (22). However, most of this work is
limited to the integration of low-level clinical features with one
type of imaging data to make a certain diagnosis. Here we
describe three major improvements over most previous studies.
(I) A variety of comprehensive histopathologic and radiologic
imaging techniques together with genetic information derived
from whole exome sequencing were integrated in our model.
This mirrors the clinical decision-making process (i.e., during
interdisciplinary tumor boards) and was done to ensure, that as
A B

C

FIGURE 3 | Addition of genomic information does not improve the MMDLM. (A) Distribution of the ten most frequent mutations/CNA in our cohort. (B) Survival
stratified according to mutational status (alterations/no alterations) of the genes selected in panel (A). (C) C-Index distribution using a MMDLM without and with the
mutational status included. Ns, not significant.
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much of the relevant information was utilized as possible. (II)
Target variable was not the diagnosis of a certain tumor entity
but rather the prognosis of the patients. This is particularly
relevant in renal cancer as there is an urgent need for reliable
prognostic biomarkers in this entity. Our integrative approach
could be used to distinguish between low- and high-risk patients,
who would be more suitable for intensified treatment and/or
surveillance. Interestingly, the addition of genomic data did not
improve the image-based multimodal approach—highlighting
the fact that mutations/CNA are of less prognostic value in our
cohort. This might be because ccRCC is highly dependent on
mutations that are very common in this tumor type. (III) We also
used additional visualization techniques to highlight image
features which were most relevant to our model.

Liu et al. used photographs together with clinical data to
classify skin lesions and showed that the top-1-accuracy of their
deep learning system was even slightly better than the one of
trained dermatologists (23). However, to achieve this accuracy
Frontiers in Oncology | www.frontiersin.org 7
the group had to use data from over 15,000 patients, which might
not be easily accessible for every clinical question. Furthermore,
while the authors show how training only on images decreases
the model’s performance it is unclear how the model would have
performed on clinical data alone. By using CAMs, we were able
to investigate image features associated with prognosis, although
only in a descriptive fashion thus far. A recent publication by
Ning et al. uses convolutional neural networks (CNNs) for
feature extraction on radiologic and pathologic data, and
combines these features with genomic data for prognosis
prediction in ccRCC (24) with similar results. However, in the
study by Ning et al. it remains unclear how and which image
features were selected and how the model would perform on a
true external test set. Of course, there are limitations to our
approach as well. For example the comparison between other
clinical tools, which include clinical data such as performance
status, calcium levels, etc. are missing. So a head to head
comparison with IMDC or UISS scores is necessary to
A

B

FIGURE 4 | Visualization techniques show image regions important for the prediction and their contribution to the MMDLM. (A) Example of a visualization approach
to display the classification result of a unimodal histopathology model (ResNet18—Level 5). The input WSI as well as two different markup images are displayed.
Markup all denotes the distinction between tiles classified as alive or deceased. Markup class denotes the prediction certainty within the majority class (scalebar top
row: 4 mm, scalebar bottom row: 5 mm). (B) CAMs of the MMDLM are shown. Different features associated with low-risk (alive) and high-risk (deceased) are
highlighted. In the low-risk example, clear cell morphology as well as papillary tumor appearance (arrows) can be observed. In the high-risk example, tumor
vasculature and bleeding can be observed (dotted line) (scalebar histology: 250 µm, scalebar radiology: 5 cm).
November 2021 | Volume 11 | Article 788740
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determine superiority of our MMDLM. Furthermore, the size of
the external validation is rather small, and additional studies are
needed to ensure generalizability of our approach.
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Supplementary Figure 1 | Data preprocessing. (A) Preprocessing of the input
WSI (top) included annotation (middle) and tiling into level 5 tiles (bottom)(scalebar 2
mm). (B) Input tiles (top) were normalized (middle) to a reference image not from the
cohorts investigated (scalebar 250 µm) and augmented (bottom) during training.
(C) Preprocessing of the radiologic data included export of a coronal, transversal,
and sagittal image with the largest tumor diameter (“pseudovolume”). Icon modified
from CFCF, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=
33285529.

Supplementary Figure 2 | Survival of MMDLM low- and high-risk cases
according to M0/M+. (A) Kaplan-Meier-Curve after stratification according to 5YSS
by the MMDLM for M0 patients. (B) Kaplan-Meier-Curve after stratification
according to 5YSS by the MMDLM for M+ patients.

Supplementary Figure 3 | Evaluation of the MMDLM on an additional external
test cohort. (A) Frequency distribution of the additional test cohort (the Mainz
cohort) is similar to the TCGA cohort. (B) Mean C-index is not significantly different
between the validation and the additional external test set. (C) Accuracy is not
significantly different between the validation and the external test set. (D) ROC and
PR curves of the external test set. Ns, not significant.

Supplementary Table 1 | TCGA cohort.

Supplementary Table 2 | Additional external test cohort (the Mainz cohort).
REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global

Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68
(6):394–424. doi: 10.3322/caac.21492

2. Cancer Genome Atlas Research Network. Comprehensive Molecular
Characterization of Clear Cell Renal Cell Carcinoma. Nature (2013) 499
(7456):43–9. doi: 10.1038/nature12222

3. Zisman A, Pantuck AJ, Wieder J, Chao DH, Dorey F, Said JW, et al. Risk
Group Assessment and Clinical Outcome Algorithm to Predict the Natural
History of Patients With Surgically Resected Renal Cell Carcinoma. J Clin
Oncol (2002) 20(23):4559–66. doi: 10.1200/JCO.2002.05.111

4. Heng DYC, Xie W, Regan MM, Warren MA, Golshayan AR, Sahi C, et al.
Prognostic Factors for Overall Survival in Patients With Metastatic Renal Cell
Carcinoma Treated With Vascular Endothelial Growth Factor-Targeted
Agents: Results From a Large, Multicenter Study. J Clin Oncol (2009) 27
(34):5794–9. doi: 10.1200/JCO.2008.21.4809

5. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell
S, et al. Clinically Applicable Deep Learning for Diagnosis and Referral in
Retinal Disease. Nat Med (2018) 24(9):1342–50. doi: 10.1038/s41591-018-
0107-6

6. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-To-
End Lung Cancer Screening With Three-Dimensional Deep Learning on
Low-Dose Chest Computed Tomography. Nat Med (2019) 25(6):954–61.
doi: 10.1038/s41591-019-0447-x

7. Ribeiro AH, Ribeiro MH, Paixão GMM, Oliveira DM, Gomes PR,
Canazart JA, et al. Automatic Diagnosis of the 12-Lead ECG Using a
Deep Neural Network. Nat Commun (2020) 11(1):1–9. doi: 10.1038/
s41467-020-15432-4

8. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.
Dermatologist-Level Classification of Skin Cancer With Deep Neural
Networks. Nature (2017) 542(7639):115–8. doi: 10.1038/nature21056

9. Woerl A-C, Eckstein M, Geiger J, Wagner DC, Daher T, Stenzel P, et al. Deep
Learning Predicts Molecular Subtype of Muscle-Invasive Bladder Cancer
From Conventional Histopathological Slides. Eur Urol (2020) 78(2):256–64.
doi: 10.1016/j.eururo.2020.04.023

10. Foersch S, Eckstein M, Wagner D-C, Gach F, Woerl AC, Geiger J, et al. Deep
Learning for Diagnosis and Survival Prediction in Soft Tissue Sarcoma. Ann
Oncol (2021) 32(9):1178–87. doi: 10.1016/j.annonc.2021.06.007
November 2021 | Volume 11 | Article 788740

mailto:sebastian.foersch@unimedizin-mainz.de
https://www.frontiersin.org/articles/10.3389/fonc.2021.788740/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.788740/full#supplementary-material
https://commons.wikimedia.org/w/index.php?curid=33285529
https://commons.wikimedia.org/w/index.php?curid=33285529
https://doi.org/10.3322/caac.21492
https://doi.org/10.1038/nature12222
https://doi.org/10.1200/JCO.2002.05.111
https://doi.org/10.1200/JCO.2008.21.4809
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1038/s41467-020-15432-4
https://doi.org/10.1038/s41467-020-15432-4
https://doi.org/10.1038/nature21056
https://doi.org/10.1016/j.eururo.2020.04.023
https://doi.org/10.1016/j.annonc.2021.06.007
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Schulz et al. MMDLM in Renal Cancer
11. Chen RJ, Lu MY, Wang J, Williamson DFK, Rodig SJ, Lindeman NI, et al.
Pathomic Fusion: An Integrated Framework for Fusing Histopathology and
Genomic Features for Cancer Diagnosis and Prognosis. IEEE Trans Med
Imaging (2020), 1–1. doi: 10.1109/TMI.2020.3021387

12. Vahadane A, Peng T, Albarqouni S, Albarqouni S, Wang L, Baust M, et al.
Structure-Preserved Color Normalization for Histological Images. Proc - Int
Symp BioMed Imaging (2015) 35(8):1962–71. doi: 10.1109/ISBI.2015.
7164042

13. Anand D, Ramakrishnan G, Sethi A. Fast GPU-Enabled Color Normalization
for Digital Pathology. Int Conf Syst Signals Image Process (2019) 2019:219–24.
doi: 10.1109/IWSSIP.2019.8787328

14. Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv:
Personalized Treatment Recommender System Using a Cox Proportional
Hazards Deep Neural Network. BMC Med Res Methodol (2018) 18:1–12. doi:
10.1186/s12874-018-0482-1

15. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning Deep Features
for Discriminative Localization. Proc IEEE Comput Soc Conf Comput Vis
Pattern Recognit (2016) 2016:2921–9. doi: 10.1109/CVPR.2016.319

16. Davidson-Pilon C. CamDavidsonPilon/lifelines: V0.25.8 (Version V0.25.8).
Zenodo (2021). doi: 10.5281/zenodo.4457577

17. Sokolova M, Lapalme G. A Systematic Analysis of Performance Measures for
Classification Tasks. Inf Process Manag (2009) 45(4):427–37. doi: 10.1016/
j.ipm.2009.03.002

18. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne
PD, et al. QuPath: Open Source Software for Digital Pathology Image
Analysis. Sci Rep (2017) 7(1):16878. doi: 10.1038/s41598-017-17204-5

19. Lancaster JL, Cykowski MD, McKay DR, Kochunov PV, Fox PT, Rogers W,
et al. Anatomical Global Spatial Normalization. Neuroinformatics (2010) 8
(3):171–82. doi: 10.1007/s12021-010-9074-x

20. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S,
et al. 3d Slicer as an Image Computing Platform for the Quantitative Imaging
Network. Magn Reson Imaging (2012) 30(9):1323–41. doi: 10.1016/
j.mri.2012.05.001
Frontiers in Oncology | www.frontiersin.org 9
21. Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Vega
JEV, et al. Predicting Cancer Outcomes From Histology and Genomics Using
Convolutional Networks. Proc Natl Acad Sci USA (2018) 115(13):E2970–9.
doi: 10.1073/pnas.1717139115

22. Huang S-C, Pareek A, Seyyedi S, Banerjee I, Lungren MP. Fusion of Medical
Imaging and Electronic Health Records Using Deep Learning: A Systematic
Review and Implementation Guidelines. NPJ Digit Med (2020) 3(1):136. doi:
10.1038/s41746-020-00341-z

23. Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, et al. A Deep Learning System for
Differential Diagnosis of Skin Diseases. Nat Med (2020) 26(6):900–8. doi:
10.1038/s41591-020-0842-3

24. Ning Z, Pan W, Chen Y, Xiao Q, Zhang X, Luo J, et al. Integrative Analysis of
Cross-Modal Features for the Prognosis Prediction of Clear Cell Renal Cell
Carcinoma. Bioinformatics (2020) 36(9):2888–95. doi: 10.1093/
bioinformatics/btaa056

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Schulz, Woerl, Jungmann, Glasner, Stenzel, Strobl, Fernandez,
Wagner, Haferkamp, Mildenberger, Roth and Foersch. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
November 2021 | Volume 11 | Article 788740

https://doi.org/10.1109/TMI.2020.3021387
https://doi.org/10.1109/ISBI.2015.7164042
https://doi.org/10.1109/ISBI.2015.7164042
https://doi.org/10.1109/IWSSIP.2019.8787328
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.5281/zenodo.4457577
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1007/s12021-010-9074-x
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1073/pnas.1717139115
https://doi.org/10.1038/s41746-020-00341-z
https://doi.org/10.1038/s41591-020-0842-3
https://doi.org/10.1093/bioinformatics/btaa056
https://doi.org/10.1093/bioinformatics/btaa056
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Multimodal Deep Learning for Prognosis Prediction in Renal Cancer
	Introduction
	Materials and Methods
	Patient Cohorts
	Scanning and Preprocessing
	Novel Deep Learning Pipeline
	Statistical Analysis

	Results
	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


