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The RTS,S candidate malaria vaccine can protect against controlled human malaria 
infection (CHMI), but how protection is achieved remains unclear. Here, we have ana-
lyzed longitudinal peripheral blood transcriptome and immunogenicity data from a clinical 
efficacy trial in which healthy adults received three RTS,S doses 4 weeks apart followed 
by CHMI 2 weeks later. Multiway partial least squares discriminant analysis (N-PLS-DA) 
of transcriptome data identified 110 genes that could be used in predictive models of 
protection. Among the 110 genes, 42 had known immune-related functions, including 
29 that were related to the NF-κB-signaling pathway and 14 to the IFN-γ-signaling path-
way. Post-dose 3 serum IFN-γ concentrations were also correlated with protection; and 
N-PLS-DA of IFN-γ-signaling pathway transcriptome data selected almost all (44/45) of 
the representative genes for predictive models of protection. Hence, the identification 
of the NF-κB and IFN-γ pathways provides further insight into how vaccine-mediated 
protection may be achieved.
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inTrODUcTiOn

The medical burden of malaria disease remains high, most notably in Africa, where most of the 
deaths due to malaria occur in children under 5 years of age (1). Malaria infection is initiated by the 
mosquito bite, from which Plasmodium sporozoites pass to the liver via the blood to infect hepato-
cytes. The entry into hepatocytes is mediated by circumsporozoite protein (CSP); a protein that is 
highly expressed at the surface of the sporozoite (2). CSP is also the target of the RTS,S candidate 
malaria vaccine, in which RTS,S is a recombinant antigen derived from CSP from Plasmodium 
falciparum and the hepatitis B surface antigen. The selection of CSP was informed by the results 
from vaccination with inactivated sporozoites (3). Vaccination with inactivated sporozoites can 
result in sterile immunity, which has been associated with activation of CSP-specific cell-mediated 
immunity (CMI) and production of CSP-specific antibodies (4–7).

Abbreviations: 1dPI, 1dPII, and 1dPIII, 1 day after dose 1, dose 2, and dose 3, respectively; 3dPI and 14dPIII, 3 and 14 days after 
dose 3, respectively; AUC, area under the curve; CHMI, controlled human malaria infection; CMI, cell-mediated immunity; 
CSP, circumsporozoite protein; DCV, double cross-validation; DL, delayed onset of parasitemia; DOC, day of challenge; GSEA, 
Gene Set Enrichment Analysis; NP, non-protected against parasitemia; N-PLS-DA, multiway partial least squares discriminant 
analysis; PR, protected against parasitemia; prePI, prePII, and prePIII, prior to dose 1, dose 2, and dose 3, respectively; ROC, 
receiver operating characteristic.

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00557&domain=pdf&date_stamp=2017-05-23
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00557
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:robert.x.van-den-berg@gsk.com
https://doi.org/10.3389/fimmu.2017.00557
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00557/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00557/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00557/abstract
http://loop.frontiersin.org/people/414614
http://loop.frontiersin.org/people/385671
http://loop.frontiersin.org/people/436080


FigUre 1 | schematic representation of rTs,s candidate vaccine clinical trial design and efficacy results. RTS,S vaccine injections were performed at 
weeks (W) 0, 4, and 8. Blood was sampled (represented by can shapes) before the first, second, and third vaccine injections (prePI, prePII, and prePIII, respectively), 
one day after the first, second, and third vaccine injections (1dPI, 1dPII, and 1dPIII, respectively), and 3 and 14 days after the third vaccine injection (3dPIII, 10dPIII, 
and 14dPIII, respectively). Controlled human malaria infection (CHMI) was performed at 14dPIII (i.e., week 10; day of challenge, DOC) and the onset of parasitemia 
was followed up to week 14. Serum IFN-γ concentrations were measured at all of the time points, whereas RNA expression was evaluated at prePI, prePIII, 1dPIII, 
3dPIII, and 14dPIII (purple cans). The numbers of subjects in the per-protocol cohort (PPC) at study entry and after the outcome of CHMI [either protected (PR), 
non-protected (NP), or delayed onset of parasitemia (DL)] are indicated (all subjects) and correspond to those subjects who also provided blood samples for IFN-γ 
measurements. The numbers of subjects from which transcriptome data from microarrays (μA subjects) were derived are indicated below all subjects. The 
percentages of RTS,S/AS01 recipients over recipients of either vaccine (%AS01) are indicated in parentheses for all subjects and μA subjects after vaccination  
and after challenge. Note that all 12 non-vaccinated control subjects developed parasitemia within the follow-up period after CHMI (not shown).
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RTS,S has been shown to provide partial protection against 
clinical and severe disease to infants and young children (8) in  
a phase III field trial. Protective efficacy has also been demon-
strated in adults in phase II trials after controlled human malaria 
infection (CHMI; by bites received from Plasmodium-infected 
mosquitoes) and in the field (8). The degree of protection pro-
vided by RTS,S is dependent on the type of vaccine adjuvant in its 
composition (9, 10): Adjuvant System AS01 is currently selected 
for the RTS,S composition and has replaced AS02 (11). Both 
AS01 and AS02 contain the immunostimulants MPL, a toll-like 
receptor 4 agonist and the saponin QS-21. The two Adjuvant 
Systems differ in that AS01 is formulated with liposomes and 
AS02 is formulated as an oil-in-water emulsion (11). In AS01, the  
combination of MPL and QS-21 enhances antibody and T-cell 
responses to vaccine antigens, potentially via the transient sti-
mulation of the innate immune system which induces efficient 
antigen-presenting dendritic cells (12, 13).

A recent analysis of the RTS,S phase III trial has identified 
the CSP-specific serum antibody concentration as a surrogate of 
RTS,S-mediated protection (14). Some, but not all, RTS,S studies 
suggest that CSP-specific CMI measured in peripheral blood is 
also associated with protection (9, 10, 15–19). In some RTS,S 
studies, CSP-specific interferon (IFN) gamma (IFN-γ) induction 
(detected by ELISPOT in cultures of PBMCs) has been associated 
with protection against malaria-related endpoints both in the field 
and in the CHMI setting (10, 20, 21). IFN-γ-ELISPOT responses to 
vaccination also appear to be enhanced when RTS,S is combined 
with AS01 or AS02 (10, 20, 22). CSP-specific CD4+ T cells have 
also been associated with protection in some CHMI and field trials 
(10, 18, 23, 24). However, those associations have been made with 
CD4+ T cells that predominantly express IL-2 or TNF-α, rather 
than IFN-γ. Therefore, questions remain as to whether there are 
other molecular markers in blood samples that can better predict 
and perhaps explain RTS,S-mediated protection.

Systems biology approaches can interrogate information from 
large data sets so as to identify predictive signatures of outcomes 
such as protection, or immunological correlates of protection 
(25–28). In the present study, multiway partial least squares 
discriminant analysis (N-PLS-DA) (29–31) was selected to 
identify relationships between transcriptome data and protec-
tion against parasitemia in clinical-trial recipients of RTS,S (10). 
In that trial, 78 malaria-naive adult recipients of either RTS,S/
AS01 or RTS,S/AS02 were challenged with CHMI, and 31/78 
were protected against parasitemia (Figure  1). Transcriptome 
data were collected from the available archived samples, rep-
resenting 39 RTS,S recipients, and covered several time points 
from pre-vaccination to the day of challenge (DOC) at 14 days 
post-dose 3 (14dPIII). Although that trial estimated efficacies 
at 50% for RTS,S/AS01 and 32% for RTS,S/AS02, the estimates 
were not statistically different (p = 0.11), probably reflecting the 
small scale of the trial. To maximize the statistical power of the 
present study, samples from recipients of either vaccine were 
considered as a single population. This approach was based on 
the assumption that by containing the same immunostimulants 
(MPL and QS-21), AS01 and AS02 have qualitatively similar 
mechanisms of action.

Multiway partial least squares discriminant analysis was 
chosen as a data analysis strategy for two main reasons. First, it 
is capable of analyzing biological changes over time. Second, it 
can build predictive models on the correlations between class 
information (in this case protection status) and trends in the 
data. Therefore, N-PLS-DA contrasts with an earlier analysis 
of gene expression data from the same clinical trial which 
considered only a single time point post sporozoite chal-
lenge for classification analysis (32, 33). In the present study, 
N-PLS-DA was applied to the expression patterns of 20,442 
microarray probe sets and of selected probe sets of genes in the 
IFN-pathway. In both approaches, the results were supportive 
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of the involvement of IFN-γ- and NF-κB-signaling pathway 
genes in the process of establishing RTS,S-mediated protection 
against CHMI.

MaTerials anD MeThODs

clinical Trial samples
PBMCs and serum samples were obtained from par-
ticipants in  the  RTS,S vaccine clinical trial (ClinicalTrials.gov 
NCT00075049) (10).

serum iFn-γ and csP-specific antibody 
concentrations and logistic regression 
Modeling
Serum IFN-γ was measured using ELISA and protocol from 
BD Biosciences (Belgium). The assay’s limit of quantification 
was 1.0 pg/ml. The CSP-specific serum antibody-concentration 
data have been reported previously (10). Logistic regression 
modeling using SAS software (Version 9.2, SAS Institute Inc., 
Cary, NC, USA) was based on classifying CHMI outcome 
[protected (PR) against parasitemia, non-protected (NP) and, 
delayed onset of parasitemia (DL; defined as individuals in 
which parasites were not detected in the blood for a period 
longer than the longest parasitemia-free period in the control 
group of infected and unvaccinated subjects)] with the immu-
nogenicity data sets (pre- and post-vaccination time points up 
to the DOC) and Adjuvant System selected (AS01 or AS02) as 
covariates. The quality of a model was determined by the area 
under the curve (AUC) of the receiver operating characteristic 
(ROC) curve.

rna Preparation and Microarray assay
RNA was prepared from dimethyl sulfoxide-cryopreserved PBMC 
samples using TRI Reagent and protocol (Molecular Research 
Center Inc., Cincinnati, OH, USA). The preparation, amplifica-
tion, and labeling of copy DNA was performed using Ovation 
RNA Amplification System and protocol (NuGen Technologies, 
San Carlos, CA, USA). Gene expression levels were determined 
using Affymetrix HG-U133 Plus 2.0 arrays of 54,120 probe sets 
and protocol (Affymetrix, Santa Clara, CA, USA). The data were 
made publicly available via ArrayExpress under accession num-
ber E-MTAB-4629.

Microarray Data normalization
The raw microarray data were normalized via GCRMA (34),  
and outliers were excluded. Values that were within the 99.9% 
of the estimated distribution of the background expression level 
were considered background signals. The data from 20,442 probe 
sets, out of 54,120 probe sets represented on the array, were 
entered into the analysis based on two criteria: (i) the availability 
of gene annotation information for the specific probe set and  
(ii) the presence of a signal larger than background in more than 
20% of the arrays. The transcriptome data set was represented 
as a multiway data set in that it was defined by multiple factors  
[subject  ×  probe set (gene)  ×  time]. The 3-way matrix data 
contained 2.05% missing entries, which were handled by the 

multiway N-way toolbox during modeling (35). For the data-
driven model, 13 PR and 15 NP subjects were included, and for 
the IFN-driven model, 12 PR and 15 NP subjects were included. 
For classification in the data matrices, PR and NP were assigned 
the values of +1 and −1, respectively. Microarray normalization 
was performed using the R statistical software (Version 2.11.0) 
and Bioconductor (Version 2.6).

Model selection and Validation
Three techniques of model validation and refinement (36) were 
used in this study (see the N-PLS-DA Methodological Details 
section and Figure S1 in Supplementary Material for more 
details on the methodology); (i) label permutations, (ii) building 
an ensemble of models (37, 38), and (iii) double cross-validation 
(DCV) (39, 40), where model performance was determined by 
the fraction of correctly classified subjects and the DQ2 statistic 
(41). Because the modeling was based on a regression analysis, 
class value pre dictions <−1 or >+1 were assigned the values 
−1 and +1, respectively. In a cross-validation, the subjects of 
the data set were divided randomly in N subsets. One subset 
was placed aside, and the other subsets were used to build the 
model. In a DCV, the subjects were divided in N subsets and 
one subset was placed aside. N − 1 subsets were again divided 
into M subsets. The subjects in the initially excluded subset were 
completely independent of the model building and were used 
to validate the final model. DCV was used for the selection of 
the number of components and the probe sets to be included in 
the N-PLS-DA modeling. The different models were evaluated 
using the DQ2 statistic, which is based on a least squares method 
for analyzing the difference between prediction and CHMI out-
come (PR or NP) (41) and was a more discriminatory method 
for identifying differences in performance than the fraction of 
correctly classified outcomes. In cases where the optimum num-
ber of model refinement rounds was difficult to determine, the 
fraction of correctly classified outcomes and a statistic based on 
the mean difference between prediction score and CHMI out-
come was also used. Probe sets were selected for evaluation in 
the DCV based on their individual prediction performance. For 
the IFN-driven modeling with many fewer probe sets than the 
data-driven modeling, a forward selection approach was used  
(42, 43), and model selection only involved the number of com-
ponents. Label permutations were used to assess whether a model 
based on the true class labels (i.e., CHMI outcome) performed 
better than models using the same model parameters but based 
on randomly assorted class labels. For both the data-driven and 
IFN-driven modeling, respective summary models were calcu-
lated using only the first two components of the transformed 
data from all of the selected probe sets from the modeling. The 
components of the summary model were visualized by appro-
priate rotation on Cartesian axes (with arbitrary units) (44). 
The N-PLS-DA analyses were performed using Matlab R2010B 
(MathWorks) the Matlab Statistics Toolbox, and the N-way 
toolbox (Version 3.1) (35). The biological interpretation of the 
gene lists was aided by using Ingenuity pathway analysis and 
upstream transcription factor analysis. The clustering of tran-
scriptome data for heatmap visualization was performed using  
Cluster 3.0 (45).
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resUlTs

serum iFn-γ concentrations and  
Vaccine-Mediated Protection status
In the CHMI clinical trial, three outcomes of sporozoite chal-
lenge (after three doses of RTS,S adjuvanted with AS01 or AS02) 
were defined over the 4-week observation period [Figure  1: 
protected (PR) against parasitemia, non-protected (NP), and 
DL (defined as individuals in which parasites were not detected 
in the blood for a period longer than the longest parasitemia-
free period in the control group of infected and unvaccinated 
subjects)].

Cell-mediated immunity, including the production of IFN-γ 
in ELISPOT assays has been associated with RTS,S-mediated 
protection (10, 20, 21). Moreover, IFN-γ has been detected in the 
sera of individuals 1 day after the administration of an AS01- or 
AS02-adjuvanted hepatitis B vaccine candidates and tuberculosis 
vaccine candidates (46, 47). Given these observations, serum 
IFN-γ concentrations were measured prior to each dose (prePI, 
prePII, and prePIII, respectively), and at 1  day after each dose 
(1dPI, 1dPII, and 1dPIII, respectively) in the entire per-protocol 
cohort (PPC) (see Figure  1). Higher median concentrations 
were observed in PR subjects (N  =  31) than in infected sub-
jects (NP + DL combined, N = 47) at 1 day after dose 1 (1dPI;  
6.3 versus 3.2 ng/ml), dose 2 (1dPII; 17.1 versus 8.3 ng/ml), and 
dose 3 (1dPIII; 20.9 versus 12.3  ng/ml; Figure  2A). In logis tic 
regression modeling of sporozoite challenge outcome (PR versus 
NP and DL) with respect to the immunogenicity data as covariates, 
the IFN-γ concentrations at 1dPIII could partially explain protec-
tion status. The accuracy of the IFN-γ model was estimated at 0.71 
from the calculation of the AUC of the ROC graph (Figure 2B; 
where an accuracy score of 0.5 indicates no accuracy). By com-
parison, the accuracy score for CSP-specific antibody concentra-
tions at 14 days post-dose 3 (14dPIII; and DOC) was 0.81.

rna expression by iFn-γ-signaling 
Pathway genes in relation to  
Protection status
To further explore the role of IFN-γ in relation to protection 
against CHMI, transcriptome data were generated from PBMCs 
isolated from RTS,S vaccinated subjects in the microarray subset 
(N = 39; Figure 1) at prePI and prePIII, and at 1dPIII, 3 days 
after dose 3 (3dPIII) and 14dPIII. In the microarray subset, the 
percentages of RTS,S/AS01 recipients over recipients of either 
adjuvanted vaccine, overall and with respect to each of the post-
challenge outcomes, were similar to the respective percentages 
in the PPC.

With an initial focus on the expression patterns of IFN-
pathway genes, an analysis using the Ingenuity pathway 
analysis tool compared RNA expression patterns in PR and 
NP subjects. This analysis suggested that in both PR and NP 
groups, the IFN-γ-signaling pathway was active at 1dPIII (and 
marked by the increased expression of numerous genes) but not 
active at 3dPIII (Figure 2C). By contrast, at 14dPIII, the IFN-
γ-signaling pathway appeared active in the PR group and not 
in the NP group.

Although individual PBMC samples were randomly assigned 
to be processed by one of two batches of microarray kits, the 
random allocation was not stratified according to protection 
status, and an imbalance in allocation was observed at 14dPIII. 
Therefore, by way of validation with respect to a potential batch 
effect, the expression of the probe sets was examined in a tran-
scriptome data set derived from the same clinical trial, and from 
a single batch of microarrays (and termed the validation tran-
scriptome) (32). Although the same time points were evaluated, 
the RNA was not amplified, one less subject was evaluated, and 
only 74 of the 116 probe sets were present in those microarrays. 
However, the differences in the patterns of RNA expression in 
the IFN pathway between PR, NP, and DL groups were similar 
to that observed in the present transcriptome data set, notably 
at 14dPIII (see Figure S2 in Supplementary Material that shows 
the heatmap description of the IFN-pathway gene expres-
sion using the validation-transcriptome data set). Therefore 
overall, the analysis suggested that IFN-γ-signaling could play 
a role in establishing a protective status prior to sporozoite  
challenge.

n-Pls-Da of Transcriptome Data set  
in relation to Protection status
The transcriptome data set was then further analyzed using 
N-PLS-DA to identify RNA expression patterns that could 
distinguish between PR and NP subjects. The method captured 
the multivariate complexity [subject × probe set (gene) × time] 
of the data and was used to build mathematical models of 
correlations between RNA expression data and the binary 
outcomes of protection or non-protection (see Figure S1 in 
Supplementary Material that shows a flow diagram description 
of the N-PLS-DA). Given the onus on requiring a clear binary 
outcome for the analysis and the complex nature of the data set, 
the data from the DL subjects were excluded from the modeling. 
Two approaches were undertaken in the N-PLS-DA that differed 
by the probe sets that were analyzed. In the first approach, the 
entire data set was analyzed using N-PLS-DA (data-driven 
N-PLS-DA), with the aim of obtaining an unbiased selection of 
genes that could be correlated with protection status. The second 
approach considered whether IFN-pathway genes alone could 
be correlated with protection status by only including the data 
from a selected (i.e., IFN-related) group of probe sets (IFN-
driven N-PLS-DA).

Using the data-driven approach, 100 individual models were 
generated, and each model typically consisted of data from 2 
to 40 probe sets. Overall, these models could correctly predict 
sporozoite challenge outcome on average in 78% of subjects. A 
total of 116 probe sets were identified on the basis that each probe 
set was represented at least once in the 100 models. These probe 
sets corresponded to 110 genes (see Table S1 in Supplementary 
Material that lists the genes/probe sets selected by the data-driven 
modeling).

To explore the relationships identified in the 100 models, a sum-
mary model was calculated using only the first two components 
of the transformed data from all of the selected 116 probe sets 
(consequently, the summary model was not an optimized and 
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FigUre 2 | serum iFn-γ concentrations and the expression of iFn-pathway genes in PBMcs suggest that the iFn-γ-signaling pathway could play 
a role in establishing a protective status prior to controlled human malaria infection. (a) Individual and median serum IFN-γ concentrations in protected 
(PR; N = 31) versus non-protected subjects (NP; N = 24) plus non-protected subjects with delayed onset of parasitemia (DL, N = 23) prior to (pre) and 1 day (1d) 
after each vaccine dose (PI, PII, or PIII). (B) Receiver operating characteristic curves showing the best fit logistic regression model classifying sporozoite challenge 
outcome (PR versus NP plus DL) with respect to circumsporozoite protein (CSP)-specific antibody concentrations at the day of challenge (14 days post-dose 3) 
and with respect to IFN-γ concentrations at 1 day post-dose 3 as covariates. (c) IFN-pathway gene expression in PR (N = 13), NP (N = 15), and DL (N = 11) 
groups before (prePIII) and 1, 3, and 14 days after the third vaccine injection (1dPIII, 3dPIII, and 14dPIII, respectively) represented as a heatmap. Mean RNA 
expression relative to prePI is described in accordance with the colored scale. Certain genes are represented by more than one probe set (see Table S1 in 
Supplementary Material).
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validated model because the probe set selection and the number 
of components were determined outside the model validation 
context).

In the summary model and when the data were defined by 
sub ject identity, most of the data points could be separated 
into distinct PR and NP clusters (Figure 3A, upper panel). The 
N-PLS-DA was done with data from the PR and NP subjects, leav-
ing out the data from the DL subjects. Given that differences were 
detected between PR and NP subjects, it was of interest to study 
the data from DL subjects with respect to the two clusters. Hence, 
when the summary model was imposed on the data from the DL 
subjects, the data points were distributed among both of the PR 
and NP clusters. The data from six subjects (three PR and three 
NP; and three each from AS01 and AS02 groups, respectively) who 
were often misclassified in the prediction rounds during model 
validation were mostly positioned close the boundary between 
PR and NP clusters. When the data were defined by probe set 
identity, two distinct clusters could be identified by applying 
post hoc k-means clustering (48) (Figure 3A, middle panel) and 
further analysis revealed that these two clusters corresponded to 
two different types of expression kinetics in PR subjects or in NP 
subjects (see below). When the data were defined by sampling 
time point (Figure  3A, lower panel), the dispersion between 
consecutive time points was larger for 1dPIII to 3dPIII and 3dPIII 
to 14dPIII data points than for prePI to prePIII and prePIII to 
1dPIII data points suggesting that the 3dPIII and 14dPIII time 
points contributed most to predicting the distinction between PR 
and NP in the modeling.

Using additional k-means clustering, four distinct clusters 
of probe sets with different expression-kinetic profiles were 
iden tified (Figure 3B and see Figure 3A, middle panel; Table 
S1 in Supplementary Material). This clustering was performed 
on the RNA expression values of the 116 probe sets from the 
PR subjects at different time points relative (by subtraction with 
log-transformed values) to the prePI time point. The same clus-
tering was then imposed on NP and DL data sets (Figure 3B). 
The greatest divergence in the expression kinetics between the 
PR and NP groups occurred between 3dPIII and 14dPIII. The 
directionality of this divergence for Clusters A and C probe 
sets was opposite to that for Clusters B and D probe sets. For 
Clusters A and C probe sets, expression levels decreased in 
the PR group and increased in the NP group between 3dPIII 
and 14dPIII, whereas the reverse was observed for Clusters 
B and D probe sets. Interestingly, although the expression 
levels for the DL group at 14dPIII were similar to those of 
the NP group, the directionality of expression kinetics for the 
DL group between 3dPIII and 14dPIII was similar to those 
of the PR group, suggesting that the selected 116 probe sets 
may be able to distinguish the DL outcome from both PR and  
NP outcomes.

iFn-γ-Pathway genes Feature among  
the genes identified by the Data-Driven 
n-Pls-Da
Of the 110 genes represented in the 100 models, 42 have been 
previously ascribed immune-related functions, of which 13 were 

represented at least five times in the models (Figure 4; see Tables 
S1 and S2 in Supplementary Material that lists the references 
to support the characterization of the immune-related genes 
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FigUre 4 | Forty-two genes selected by the data-driven modeling 
were immune-related. Tabular description of the association between the 
42 immune-related genes selected by the data-driven modeling and NF-κB, 
IFN-γ, and ubiquitination (Ubiq.) pathways (associations represented by black 
boxes). For each gene, the cluster allocation and the frequency it represented 
in the modeling process is indicated. For genes that were represented by 
more than one probe set, the data for the most frequently represented probe 
set are shown (see Table S1 in Supplementary Material). The references 
supporting the immune-related associations are detailed in Table S2 in 
Supplementary Material.

FigUre 3 | continued  
The data-driven multiway partial least squares discriminant analysis 
identified 116 probe sets (110 genes) that were classified into four 
clusters. (a) The components of the summary model were visualized by 
appropriate rotation on Cartesian axes (with arbitrary units). In the upper 
graph, data points are distributed with respect to the protection status of 
subjects. The six data points representing the subjects that were often 
misclassified in the modeling are represented by the lighter colored symbols. 
In the middle graph, the data points are distributed with respect to probe set 
identity into two groups. Each of these two groups comprised two clusters of 
probe sets (Clusters A and C, and Clusters B and D) based on RNA 
expression patterns. In the lower graph, the data points are distributed with 
respect to sampling time [pre-dose 1 (prePI), at pre-dose 3 (prePIII), and 1, 3, 
and 14 days after dose 3 (1dPIII, 3dPIII, and 14dPIII, respectively)]. (B) Mean 
RNA expression levels relative to prePI, at prePIII and 1dPIII, 3dPIII, and 
14dPIII, with respect to protection status of subjects [protected (PR), 
non-protected (NP), and non-protected with delayed parasitemia (DL)] for 
each of the four clusters (A–D) of probe sets among the 116 probe sets. The 
error bars indicate the SEM.
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downstream targets of IFN-γ signaling. These latter genes include 
the major histocompatibility complex (MHC) class I and class II 
genes. Twenty-nine immune-related genes have been associated 
with the NF-κB pathway, including upstream regulators such as 
the frequently represented gene MYD88, a key mediator of TLR 
and IL1-R signaling. Ten immune-related genes (including fre-
quently represented genes RNF31, BAG1, FBXO9, PML, STUB1, 
WWP2, and SHARPIN) have been associated with regulating 
ubiquitination, nine of which have been also associated with the 
NF-κB pathway. Genes such as STUB1, PLIN2, PML, HSP90B1, 
and RAD23A, in addition to the MHC class I genes, have been 
associated with the antigen presentation pathway. Two frequently 
represented genes (NCAPH2 and GADD45B) have been associ-
ated with T-cell and B-cell survival, respectively. For the other 
69 genes, immune-related functions have not been described. 
Nineteen of these genes were represented at least five times 
including GTF2E2 and GTF2F1, which were the first and fifth 
most frequently represented genes overall, respectively, and code 
for subunits of the general transcription factor complex that is 
essential for transcriptional initiation.

Further connections between genes were analyzed by iden-
tifying common upstream transcription factors. Thirty two of  
the 110 genes were allocated to one or several of 23 groups 
defined by a common upstream transcription factor (or complex) 
(Figure  5). Twenty-two of the genes identified were immune-
related and each group contained at least one immune-related 
gene. As expected, the NF-κB complex of transcription factors 
was identified as regulating several genes. Other immune-related 
transcription factors were also identified such as CIITA, RFX5, 
and SATB1 [that regulate HLA genes (49, 50)], NR3C1 [gluto-
corticoid receptor (51, 52)] and REL [part of the NK-κB complex  
(53, 54)]. Although transcriptional regulators such as TP53,  
MYC, CREB1, STAT3, and CEBPA have been implicated in 
numerous pathways, they have also been associated with regulat-
ing innate immune pathways (55–63).

The expression patterns of the probe sets from the different 
clusters were also examined in the validation-transcriptome data 
set. A clear distinction between PR and NP subjects was observed 
for Cluster-B probe sets (see Figure S3 in Supplementary Material 
that shows the expression of Clusters A–D probe sets using the 
validation-transcriptome data set), with a divergence in expres-
sion kinetics from 3dPIII to 14dPIII that was similar to that in 
the present transcriptome data set, suggesting that the differences 
in expression of Cluster-B probe sets with respect to protection 
status were not masked by a potential batch effect at 14dPIII. 
However, whether batch effect abrogated differences in expres-
sion patterns for the probe sets from the other clusters could 
not be concluded because of the potentially inferior quality of 
validation-transcriptome data (e.g., absence of an RNA amplifica-
tion, fewer probe sets).

Predictive Models of Protection can Be 
Built from Probe set Data representing 
iFn-γ-signaling Pathway
Based on the links between the IFN-γ secretion data (Figure 2A) 
and IFN-γ-signaling pathway that emerged from the pathway 

selected by the data-driven modeling). The immune-related 
genes were most frequently identified in Cluster-B (i.e., 25/42 
genes) including two (HLA-A and RNF31) of the three most fre-
quently represented genes. Fourteen immune-related genes have 
been associated with regulating IFN-γ signaling or with being 
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FigUre 5 | Upstream in silico analysis suggests that numerous immune-related genes can be placed within networks defined by common 
transcription factors. Tabular representation of the upstream transcription factors that were associated with the genes selected by the data-driven modeling 
(associations represented by black boxes). Transcription factors were selected using Ingenuity, in which associations were also ascribed p-values. Transcription 
factors and were ranked by number of associations and genes were ranked by classification (immune-related/other) and number of associations.
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analysis (Figure 2C) and the data-driven N-PLS-DA (Figure 4), 
further modeling was performed with a data set restricted for genes 
associated with the IFN pathway. Thus, 45 genes, represented by 
82 probe sets (see Table S3 in Supplementary Material that lists 
the genes/probe sets used in the IFN-driven modeling), were 
assigned to the N-PLS-DA model-building process (IFN-driven 
N-PLS-DA; see Figure S1 in Supplementary Material). From 
this process, 74 probe sets (44 genes) were represented at least 
once in the 100 models (Table S3 in Supplementary Material). 
The models could correctly predict protection on average in 
77% of subjects. A summary model was generated using data 
from the three time points (1dPIII, 3dPIII, 14dPIII) because the 
post-Dose 3 time points appeared to best capture differences 
between the PR and NP groups in the data-driven N-PLS-DA 
analysis. In the summary model, similar patterns emerged to 
those found with the data-driven N-PLS-DA. When the data 
were defined by subject identity, a clear distinction between PR 
and NP subject data points was identified (Figure  6A, upper 
panel), in which DL-subject data points were allocated to both 
of PR and NP clusters. The data points from five subjects (three 
PR and two NP; and two from the AS01 group and three from 
the AS02 group) who were often misclassified in the predic-
tion rounds during model validation were mostly positioned 
close to the boundary between PR and NP clusters. The data 
points from three of these subjects were also misclassified 

in initial N-PLS-DA. When the data were defined by probe 
set identity, four clusters (Clusters E–H) were identified  
with different kinetic expression profiles (Figure  6A, middle 
panel, and Figure 6B). Most probe sets were assigned to Clusters 
F and H. When the data were defined by time point, the greater 
separation between consecutive time points was from 3dPIII to 
14dPIII rather than 1dPIII to 3dPIII (Figure 6A, lower panel).

As with the data-driven selected probe sets, the greatest 
divergence in the RNA expression kinetics between the PR 
and NP groups for the IFN-pathway probe sets, occurred from 
3dPIII to 14dPIII (Figure 6B). At 1dPIII, expression levels were 
high for Clusters F and H, and in contrast to near-zero RNA 
expression levels (i.e., baseline) for Cluster E and G (Figure 6B). 
Interestingly, in terms of divergence in the kinetics between 
the PR and NP groups from 3dPIII to 14dPIII, the expression 
kinetics for Clusters F and H were similar to those for Cluster-B 
in the data-driven N-PLS-DA (see Figure 4). As with the data-
driven selected probe sets, the expression levels for the DL 
group at 14dPIII were similar to those for the NP group for 
Cluster E, F, G, and H probe sets, whereas only for Cluster-F 
probe sets were the directionalities of expression kinetics for 
the DL group from 3dPIII to 14dPIII similar to those of the PR 
group. Therefore, this suggested that the Cluster-F probe sets 
may be able to distinguish the DL outcome from both PR and 
NP outcomes.
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FigUre 6 | continued  
The iFn-driven multiway partial least squares discriminant analysis 
identified 74 probe sets (44 genes) classified into four clusters. (a) The 
components of the summary model were visualized by appropriate rotation 
on Cartesian axes (with arbitrary units). In the upper graph, data points are 
distributed with respect to the protection status of subjects. The six data 
points representing the subjects that were often misclassified in the modeling 
are represented by the lighter-colored symbols. In the middle graph, the data 
points are distributed into four clusters of probe sets (Clusters E–H). In the 
lower graph, the data points are distributed with respect to sampling time 
[only 1, 3, and 14 days after dose 3 (1dPIII, 3dPIII, and 14dPIII, respectively) 
were considered in the modeling]. (B) Mean RNA expression levels relative to 
prePI, at 1dPIII, 3dPIII, and 14dPIII, with respect to protection status of 
subjects [protected (PR), non-protected (NP), and non-protected with 
delayed parasitemia (DL)] for each of the four clusters (E–H) of probe sets 
among the 74 probe sets. The error bars indicate the SEM.
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The most frequently represented gene by the 74 probe sets in 
the modeling was TAP1, appearing 79 times (out of 100 models). 
TAP1 and other frequently represented genes such as JAK1  

(67 times) STAT1 (44 times), IRF1 (36 times) form a core part 
of the IFN-γ-signaling pathway, and exemplify genes for which 
expression levels at 14dPIII (relative to prePI) were distinctly  
different between the PR and NP groups, in contrast to only 
minor differences in expression levels at 1dPIII. Moreover, TAP1, 
STAT1, and IRF1 were represented by Cluster-F probe sets and 
therefore may capture differences between the DL outcome from 
both PR and NP outcomes. The frequently represented genes 
MT2A (66 times), IRF7 (36 times), and PML (8 times) were also 
identified in the data-driven N-PLS-DA.

DiscUssiOn

Systems biology analyses are potentially advantageous in clinical 
trial settings where multiparametric data are often generated 
(28, 64, 65). Signals from both innate and adaptive immune 
responses can be identified in transcriptome data derived from 
peripheral blood from 3  days after vaccination (25, 26). Here, 
we have identified two gene signatures by modeling longitudinal 
PBMC-transcriptome data from clinical trial subjects who were 
vaccinated with RTS,S/AS01 or RTS,S/AS02 and then challenged 
with P. falciparum sporozoites. In having an efficacy endpoint in 
the vaccine trial, our study makes an advance on earlier systems 
biology analyses of other vaccine trials in which only immuno-
genicity endpoints were considered (25–27, 66–68).

Our study was hypothesis generating in its design, given that 
the gene signatures were not validated in an independent and 
similarly designed clinical trial. Also, the interpretation of the 
systems biology analyses was limited by three principal factors. 
First, the samples were derived from peripheral blood and not 
at the injection site or draining lymph nodes where most of the 
direct responses to the vaccine components would have occurred. 
Second, the samples contained a heterogeneous population of 
cells, and hence the variation in gene-expression levels may have 
arisen from relative differences in cell population sizes or from 
relative differences in a given cell population. Third, to increase the 
statistical power, the samples from recipients of either AS01- or 
AS02-adjuvanted vaccines were considered as a single population 
based on the assumption that by containing the same immu-
nostimulants (MPL and QS-21), AS01 and AS02 have qualitatively 
similar mechanisms of action.
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The two gene signatures were identified by applying N-PLS- 
DA both to the entire transcriptome data set and to data from 
selected genes within the IFN-γ-signaling pathway. In the first 
data-driven approach, a gene signature, consisting of 110 genes 
including 42 known immune-related genes was identified. Of 
the immune-related genes, many were associated with the IFN-γ 
and NF-κB pathways; and a third of the genes associated with the 
NF-κB pathway were also associated with regulating ubiquitina-
tion. Hence, the validity of the gene signature was supported 
by the functional connectivity of many of the immune-related 
genes. Other selected genes may have immune-related functions 
but these remain to be characterized. For example, genes such 
as those of the general transcription factor complex (GTF2E2 
and GTF2F1) may have been selected because they may have 
a prominent function in immune-related cell populations. 
The second approach confirmed that a gene signature based 
on IFN-pathway genes alone could have a similar predictive 
capacity to that of the data-driven gene signature because 44 of 
the 45 a priori selected genes were included in the modeling. 
Overall, the differences in serum IFN-γ concentrations and the 
identities of the two gene signatures suggested that the IFN-γ 
pathway plays a role in RTS,S vaccine-mediated protection. 
The gene signatures may have captured differences between 
subjects in terms of responses to the Adjuvant System (AS01 or 
AS02) because these Adjuvant Systems appear to better enhance  
IFN-γ-related CMI responses to vaccination in comparison with  
other adjuvants (20, 69).

The predictive power of the N-PLS-DA modeling was around 
78% because in the two approaches, the models often misclassi-
fied four NP and four PR subjects (i.e., 16–19%). This suggests 
that the transcriptome data alone was inadequate in these cases 
to make accurate predictions, perhaps because of other unknown 
confounding factors. In the primary analysis of the clinical trial, 
a similar proportion of individuals (8/51, 16%; 5P and 3NP), but 
not all the same individuals, were misclassified based on assign-
ments decided by threshold DOC antibody titers (10).

Multiway partial least squares discriminant analysis contrasts 
with other transcriptome data analysis in that it can incorporate 
both the kinetics of the immune response and the inherently 
multivariate nature of transcriptome data. Our conclusions 
extend previous transcriptome data analyses of the same vac-
cinated cohort, in which individual time points were considered 
separately (32, 33). Rinchai et  al. (33) identified differences in 
gene expression between PR and NP subjects at 1dPIII, 3dPIII, 
and 14dPIII using a predefined cluster of 130 probe sets (Module 
1.2) that had previously been shown to reflect type-1 interferon 
signaling (68). Vahey et al. (32) identified the immunoproteasome 
pathway using a supervised approach [Gene Set Enrichment 
Analysis (GSEA)] on gene-expression data at 14dPIII (DOC). 
Although Module 1.2 or Cluster-B (in our study) did not include 
probe sets representing those immunoproteasome genes, the 
immunoproteasome is regulated by IFN-γ (70–72), and therefore, 
the identification of those genes may have reflected differences  
in IFN-γ signaling between PR and NP subjects. Furthermore, 
one Cluster-B gene, PML, has been identified as a regulator of the 
immunoproteasome (73). Also, the IFN-driven N-PLS-DA con-
firmed that genes related to the immunoproteasome [i.e., TAP1  

(74) and PSMB8 (LMP7) (70)] can be incorporated into the pre-
dictive models.

The trends in the gene expression kinetics suggested that  
differences between PR and NP subjects was most notable with 
the divergence of the expression kinetics after 3dPII leading to 
clear differences in relative expression levels at 14dPIII for the 
four clusters of the data-driven gene signature and Cluster-F of  
the IFN-driven gene signature. Furthermore, the expression 
kinetics appeared to distinguish the DL outcome from both the 
PR and NP outcomes, in that the trajectory of the expression 
kinetics in DL subjects after 3dPIII were similar to those in PR 
subjects. Surprisingly, the differences between PR and NP groups 
in terms of expression levels of the clusters of IFN-driven signa-
ture genes was not apparent at 1dPIII and 3dPIII, even though 
the differences in serum IFN-γ concentrations between PR and 
NP groups at 1dPIII appeared to contribute toward protection. 
Rather, the expression data suggested that the IFN-γ pathway was 
transiently activated in the peripheral circulation in all groups, 
but signs of its reactivation occurred primarily in PR subjects, 
at 14dPIII.

Therefore, our hypothesis is that the gene signatures reflect 
the presence of activated effector/effector memory (E/EM) CD4+ 
T cells that are induced after immunization and are responsible  
for IFN-γ signaling in a different manner in PR subjects to that 
in NP subjects. The potential role of CD4+ T cells in the release 
of IFN-γ into the serum is suggested by the observed increase 
in the serum IFN-γ concentrations after repeated vaccination in 
this study and in a previous study of AS01- and AS02-adjuvanted 
hepatitis B vaccines (46). Although it is possible that antigen-
specific CD4+ or CD8+ T cells were directly responsible for IFN-γ 
production, this cytokine was not prominently produced by 
antigen-specific CD4+ T cells, and antigen-specific CD8+ T cells 
were not detected in PBMCs after vaccination in the same clinical 
trial (10, 23). Alternatively, other cells, such as NK cells, may have 
produced IFN-γ. NK cells have been shown to produce IFN-γ in 
response to signals from antigen-specific CD4+ T cells (75–77) and 
from other innate immune cells activated by AS01 in the lymph 
nodes draining the vaccine injection site (Margherita Coccia, 
unpublished data). Given that antigen-specific CD4+ T cells can 
stimulate IFN-γ production in NK  cells in an IL-2-dependent 
manner (75–77), it is notable that in a previous analysis of the 
same clinical trial, the frequencies of IL-2 producing TE/EM and 
central memory T cells in PR subjects were significantly higher 
than in NP subjects (23). Also CD4+ T cell-mediated activation 
of NK cells may depend on CD40–CD40L interactions (78) as 
well as NF-κB signaling (79). Another intriguing possibility is 
that NK cells may be differently primed in PR versus NP indi-
viduals by the time of the third RTS,S dose, thus contributing to 
the differences in IFN-γ production after the third dose. Kazmin 
et al. performed a systems biology analysis (80) of a more recent 
CHMI efficacy trial of RTS,S (19), in which individual time points 
pre- and post-vaccination were considered, and which used the 
same validation-transcriptome data set as our study. In their 
study, several models predictive of protection were identified at 
prePIII (the day of the third RTS,S dose). The frequently repre-
sented genes in those models and other GSEA analyses identified 
an inverse correlation between NK-cell-related gene expression 
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in the blood and protection, suggesting that in those individu-
als who were subsequently protected, there was a greater efflux 
of NK cells from the blood expressing homing receptors to the 
draining lymph node or injection site between the second and 
third RTS,S doses.

Hence, an enticing corollary to our hypothesis is that the 
interactions between NK  cells, CSP-specific antibodies, and 
CD4+ T cells may be directly relevant in the subsequent clearance 
of sporozoite-infected hepatocytes through mechanisms such as 
antibody-mediated cell cytotoxicity. A role of IFN-γ produced 
by NKT  cells to suppress sporozoite-infected hepatocytes was 
recently described in a mouse model (81). It is possible, therefore, 
that RTS,S-induced memory responses were capable of mobilizing 
NKT cells or other sources of IFN-γ production in the protective 
response to sporozoite challenge. Furthermore, and despite the 
hypothesis-generating nature of our study, the genes identified by 
the systems biology analyses shed useful light on understanding 
how protection against malaria parasitemia is achieved by RTS,S.
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