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Abstract

The immune response is a concerted dynamic multi-cellular process. Upon infection, the dynamics of lymphocyte
populations are an aggregate of molecular processes that determine the activation, division, and longevity of individual
cells. The timing of these single-cell processes is remarkably widely distributed with some cells undergoing their third
division while others undergo their first. High cell-to-cell variability and technical noise pose challenges for interpreting
popular dye-dilution experiments objectively. It remains an unresolved challenge to avoid under- or over-interpretation of
such data when phenotyping gene-targeted mouse models or patient samples. Here we develop and characterize a
computational methodology to parameterize a cell population model in the context of noisy dye-dilution data. To enable
objective interpretation of model fits, our method estimates fit sensitivity and redundancy by stochastically sampling the
solution landscape, calculating parameter sensitivities, and clustering to determine the maximum-likelihood solution
ranges. Our methodology accounts for both technical and biological variability by using a cell fluorescence model as an
adaptor during population model fitting, resulting in improved fit accuracy without the need for ad hoc objective functions.
We have incorporated our methodology into an integrated phenotyping tool, FlowMax, and used it to analyze B cells from
two NFkB knockout mice with distinct phenotypes; we not only confirm previously published findings at a fraction of the
expended effort and cost, but reveal a novel phenotype of nfkb1/p105/50 in limiting the proliferative capacity of B cells
following B-cell receptor stimulation. In addition to complementing experimental work, FlowMax is suitable for high
throughput analysis of dye dilution studies within clinical and pharmacological screens with objective and quantitative
conclusions.
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Introduction

Lymphocyte population dynamics within the mammalian

immune response have been extensively studied, as they are a

predictor of vaccine efficacy, while their misregulation may lead to

cancers or autoimmunity [1]. Lymphocyte population dynamics

involve seemingly stochastic cellular parameters describing the

decision to respond to the stimulus, the time spent progressing

through the cell cycle, the time until programmed cell death, and

the number of divisions progenitor cells undergo [2]. Specifically,

experimental observations show that population dynamics are well

modeled at the cellular level by skewed distributions for the time to

divide and die, that these distributions are different for undivided

and dividing cells, and that the proliferative capacity is limited [3].

Recently, Hawkins et al showed that cells, that exhibit growth in

size invariably divide (though at highly variable times), while cells

that do not are committed to cell death, albeit at highly variable

times [3]. A high degree of biological variability may ensure that

population-level immune responses are robust [2,4], but renders

the deconvolution of experimental data and their subsequent

interpretation challenging.

A current experimental approach for tracking lymphocyte

population dynamics involves flow cytometry of carboxyfluores-

cein succimidyl ester (CFSE)-stained cells. First introduced in 1990

[5], CFSE tracking relies on the fact that CFSE is irreversibly

bound to proteins in cells, resulting in progressive halving of

cellular fluorescence with each cell division. By measuring the

fluorescence of thousands of cells at various points in time after

stimulation, fluorescence histograms with peaks representing

generations of divided cells are obtained. However, interpreting

CFSE data confronts two challenges. In addition to intrinsic

biological complexity arising from generation- and cell age-

dependent variability in cellular processes, fluorescence signals for

a specific generation are not truly uniform due to heterogeneity in

(i) staining of the founder population, (ii) partitioning of the dye

during division, and (iii) dye clearance from cells over time. Thus,

while high-throughput experimental approaches enable popula-

tion-level measurements, deconvolution of CFSE time courses into

biologically-intuitive cellular parameters is susceptible to misinter-

pretation [6].

To recapitulate lymphocyte population dynamics a number of

theoretical models have been developed (see [7,8] for recent
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reviews). However, the available computational methodologies to

utilize them for analyzing CFSE time series data remain

cumbersome, and these are prone to under- or over- interpreta-

tion. First, commercial software such as FlowJo (Tree Star Inc.)

and FCExpress (De Novo Software) is typically used to fit

Gaussian distributions to log-fluorescence data on a histogram-by-

histogram basis to determine cell counts at each generation, but

these do not provide an objective measure of fit quality. Then

mathematical models of population dynamics must be employed

to fit cell cycle and cell death parameters to the fitted generational

cell counts [9,10]; however, they also do not provide a measure of

fit quality, and they are affected by errors in cell-counts

determined by aforementioned software tools. Without an estimate

of solution sensitivity and redundancy in the quantitative

conclusions, computational tools do not give a sense of whether

the information contained in CFSE data is used appropriately (or

whether it is under- or over-interpreted). This may be the

underlying reason for why population dynamic models have not

yet impacted experimental or clinical research for the interpreta-

tion of ubiquitous CFSE data.

Here, we introduce an integrated computational methodology

for phenotyping lymphocyte expansion in terms of single-cell

parameters. We first evaluate the theoretical accuracy of each

module in the phenotyping process by fitting generated data. We

then show that implementing them in an integrated, rather than

sequential, workflow reduces expected parameter error. Next, we

describe our approach to estimating the quality of the fit and

demonstrate the advantages of using our integrated methodology

compared to phenotyping with the current state-of-the-art

approach, the Cyton Calculator [9]. We then evaluate how

different types of imperfections in data quality affect performance.

Finally, we demonstrate the method’s utility in phenotyping B cells

from nfkb12/2 and rel2/2 mice stimulated with anti-IgM and LPS,

extending the conclusions of previously published studies [11,12]

and disaggregating the role of distinct cellular parameters by using

the model simulation capabilities. FlowMax, a Java tool imple-

mentation of our methodology as well as the experimental datasets

are available for download from http://signalingsystems.ucsd.

edu/models-and-code/.

Results

To enable objective interpretation of dye dilution lymphocyte

proliferation studies, we constructed a suite of integrated

computational modules (Figure 1). Given a CFSE dye-dilution

time course, the first step involves fitting the cell fluorescence

model to CFSE fluorescence histograms recorded at various times,

accounting for dye dilution from cell division and intrinsic

variability from biological and technical sources. In a second step,

a cell population model, describing the fraction of responding cells

in each generation and times to cell division or death, is fit to the

CFSE time series data directly, using the best-fit cell fluorescence

parameters as adaptors during fitting. Repeating the second fitting

step numerous times allows for a critical third step: estimating the

sensitivity and degeneracy of the best fit parameter set, providing

the maximum likelihood non-redundant solutions ranges.

Evaluating the Accuracy of Cell Fluorescence Model
Fitting

The first computational module addresses the challenge of

converting fluorescence histograms of CFSE data into generation-

specific cell counts and experimental dye parameters. We selected

a simple time-independent cell fluorescence model (Figure 2A)

similar to the models used in current flow cytometry analysis tools

(TreeStar Inc., De Novo Software) and recent studies [13–15]. We

assume that the log-transformed fluorescence of populations of

cells is well-modeled by a mixture of Gaussians, as observed

previously [9]. We selected this simple model because recent

models [13,16–18], which incorporate both cell dynamics and dye

dynamics, do not naturally account for both cell age-dependent

death and division rates, as well as for the observation that only a

fraction of lymphocytes choose to respond to the stimulus. While

the cell fluorescence model does not explicitly account for time-

dependent dye catabolism, the model allows for the fluorescence of

the initial population, m0, to be manually specified for each time

point when log-fluorescence histograms are constructed.

In order to quantify the cell fluorescence model fitting accuracy,

we tested it with a panel of generated realistic CFSE time courses.

Specifically, the cell fluorescence model was fitted to the generated

histograms and the average normalized % error between

generated and fitted peak counts as a function of time point

(Figure 2B). As expected, the average error in generation counts

was highest for early time points due to absence of a second peak,

which may help constrain parameter fitting. However, the % error

between generated and fitted peak counts (Figure 2B) suggested

that the fluorescence model fitting was on average quite successful

as the maximum average normalized error was 7.1%. Finally,

direct comparison of cell fluorescence model fits to experimental

data showed good agreement throughout the entire time course,

even when late generation peaks are poorly resolved (Figure 2C).

Evaluating the Accuracy of Cell Population Model Fitting
Employing the fcyton model described above (Figure 3A), we

examined the accuracy associated with fitting the fcyton popula-

tion model with the generated panel of datasets directly to the

known generational cell counts, and calculated both the average

normalized cell count error (Figure 3B) as well as the error

distributions associated with fitting particular fcyton parameters

(Figure 3C). Fitting the fcyton model to given counts resulted in

very low generational cell count errors : the maximum average

normalized error was 3.5%, while the maximum average

normalized error for all time points #120 h was always less than

2%. The median errors in the key parameters N, F0, E[Tdiv0],

E[Tdie0], E[Tdiv1+]) were small: 1.2%, 0.02, 5.8%,4.0%, and

2.6%, respectively. However, interestingly, even with perfect

knowledge of generational cell counts and a large number of time

points, not all cellular parameters were accurately determined.

This is illustrated by a median % error value of about 18% for

E[Tdie1+] and a median error of about 1 generation for Dm, the

average number of divisions a divided cell will undergo, and

suggests that these parameters do not contribute substantially to

the cell count data within the physiologically relevant parameter

regime.

Evaluating Accuracy when both Model Fitting Steps are
Incorporated

Interpreting the population dynamics provided by dye dilution

data in terms of cellular parameters requires both computational

modules: the cell fluorescence model describes variability in

experimental staining, while cell proliferation modeling explains

evolution of the population through time. We first assessed their

performance when linked sequentially, fitting the population

model to best-fit cell counts, using the above-described generated

dataset. Since the objective function that determines the fit of

model output to experimental cell counts is a key determinant of

the performance, we compared a simple squared deviation scoring

function (SD) with a more complex, manually-optimized objective

function which takes into account multiple measures of similarity

Maximum Likelihood Fitting of CFSE Time Courses
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(Equations 27 and 28 in Text S1). The results showed that a

complex ad hoc optimized scoring function drastically outper-

formed the simpler SD-based scoring function with all fcyton

parameter error distributions significantly (each p-value ,1E-12;

Mann-Whitney U test) shifted toward zero (Figure S1).

Next, we integrated the two modules (Figure 1) and character-

ized the resulting performance. This integrated approach uses the

best-fit cell fluorescence parameters to represent the cell popula-

tion solutions as fluorescence histograms, enabling direct compar-

ison to the experimental data, and obviating the need for an ad hoc

objective function during population model fitting (compare

Equations 28 and 29 in Text S1). After applying each approach

to the panel of generated datasets, we calculated the generational

average normalized percent count errors (Figure 4A), as well as

parameter error distributions (Figure 4B). Both the sequential and

integrated approaches resulted in relatively low generational cell

count errors on average, however, the integrated approach

outperformed sequential model fitting for predicting the genera-

tional cell counts at late time points (Figure 4A). The improvement

was more readily apparent in the distribution of parameter fit

errors: all parameter error distributions were shifted toward zero

when the integrated rather than the sequential model fitting

approach was used (p-values for each parameter distribution #1E-

5, Mann-Whitney U test). In fact, all but the Tdie1+ parameter

errors showed a very dramatic improvement (p-value #1E-10,

Mann-Whitney U test). To determine if the improvement was due

to a propagation of fit errors caused by sequential fitting steps, we

compared both the sequential and integrated method when the

population model was fitted to perfect counts or when perfect

fluorescence parameters were used, respectively. (Figure S2) When

comparing both approaches under ideal conditions, integrated

fitting resulted in overall better cell count errors at later time points

(Figure S2A.), and improved error distributions for fcyton

parameters F0 and N (p-value #0.05, Mann-Whitney U test).

Next, by comparing the integrated approach to individual

computational modules, we found that the accuracy of the

integrated approach was comparable to the accuracy associated

with fitting the fcyton model cell counts to known counts using the

ad hoc optimized objective function, as well as when the integrated

method was used with known cell fluorescence parameters (Figure

S2). This suggests that the integrated method minimizes the

propagation of errors, as it is comparable to fitting to the original

generated cell counts using a complex optimized objective

function, and because eliminating the fluorescence model fitting

error did not significantly improve the fit.

To develop best practices for employing integrated fitting, we

examined how the number of experimental time points, the

number of computational fit attempts, and selection of the

objective function would affect fitting accuracy. We found that

using the best of eight, three or one computational fit attempts

decreased the average normalized generational cell count errors

and asymptotically improved the distributions of parameter errors

(Figure S3). Since choice of time points can also affect solution

quality, we repeated our error analysis with fewer time points.

While more frequent sampling improved the median and variance

of the error distributions, key time points turned out to be those

close to the start of the experiment, just when the first cell divisions

have occurred, and when the founding generation has all but

disappeared, affecting fcyton parameters F0, N, and Tdie0 to a

higher degree (Figure S4). To test which objective function to use

for integrated model fitting, we tested three objective functions of

increasing complexity: simple mean sum of absolution deviations

(MAD), mean root sum of squared deviations (MRSD), and mean

root sum of squared deviations with Pearson correlation

(MRSD+). We fitted sets of 1,000 generated time courses (see

Methods) with each of the three objective functions (Figure S5B)

and we calculated the generational average normalized percent

count errors (Figure S5A), as well as parameter error distributions

Figure 1. Proposed integrated phenotyping approach (FlowMax). CFSE flow-cytometry time series are preprocessed to create one-
dimensional fluorescence histograms that are used to determine the cell proliferation parameters for each time point, using the parameters of the
previous time points as added constraints (step 1). Fluorescence parameters are then used to extend a cell population model and allow for direct
training of the cell population parameters on the fluorescence histograms (step 2). To estimate solution sensitivity and redundancy, step 2 is repeated
many times, solutions are filtered by score, parameter sensitivities are determined for each solution, non-redundant maximum-likelihood parameter
ranges are found after clustering, and a final filtering step eliminates clusters representing poor solutions (step 3).
doi:10.1371/journal.pone.0067620.g001

Maximum Likelihood Fitting of CFSE Time Courses
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(Figure S5C). The results showed that using the MRSD+ objective

function resulted in the lowest average normalized generation

percent count errors, however all three objective functions resulted

in comparable fcyton parameter error distributions (p-value.0.05,

Mann-Whitney U test), except error in N for MAD was

significantly higher compared to MRSD/MRSD+ (p-value ,1E-

10, Mann-Whitney U test).

Finally, we tested how the length of time needed to fit both of

the models depends on the number of time points and cell

generations used. As expected, the running time increased

approximately linearly with the number of time points fitted and

number of generations modeled, with typical time courses (9

generations, 7 time points) taking on average 2.11 minutes to fit

(Table S1).

Developing Solution Confidence and Comparison to the
Most Recent Tool

As part of a crucial third step, we developed a computational

pipeline for estimating both the sensitivity and redundancy of

solutions. At the end of population model fitting, multiple

candidate best-fit parameter sets are found (Figure 1, step 2). To

enable objective evaluation of solutions, we estimate parameter

sensitivities for candidate fits with particularly low ending objective

function values and use an agglomerative clustering approach to

combine pairs of candidate solutions until only disjoint clusters

remain, representing non-redundant maximum-likelihood param-

eter ranges (Figure 5A and Text S1). To demonstrate the benefit of

using our solution sensitivity and redundancy estimation proce-

dure, we compared our approach to the most recent phenotyping

tool, the Cyton Calculator [9]. The Cyton Calculator was

designed for fitting the cyton model [2] to generational cell counts

determined using flow cytometry analysis tools. The cyton model

incorporates most of the key biological features of proliferating

lymphocytes, with the exception that responding cells are subject

to competing death and division processes. We demonstrated the

utility of our method, by phenotyping a CFSE time course of

wildtype B cells stimulated with bacterial lipopolysaccharides

(LPS) with both the Cyton Calculator as well as FlowMax, a tool

implementing our methodology. While several qualitatively good

solutions were found using the Cyton Calculator for four different

starting combinations of parameters (Table S2), we could not

objectively determine if the best-fit solutions were representative of

one solution with relatively insensitive parameters, or four unique

solutions (Figure 5B blue dots). As a comparison, we repeated the

fitting using FlowMax under identical fitting conditions (Figure 5B,

red individual solutions and clustered averages in green). Best-fit

clustered FlowMax cyton parameters yielded one unique quanti-

tatively excellent average fit (3.01% difference in normalized

percent histogram areas). The best-fit parameter ranges showed

that the division times and the propensity to enter the first round

of division are important for obtaining a good solution, while

predicted death times can be more variable without introducing

Figure 2. The cell fluorescence model. (A) Noisy log-transformed cell fluorescence is modeled by a weighted mixture of Gaussian distributions
for each cell division:

P
g wgN(mg,s), parameterized according to equations describing variability in staining (CV), background fluorescence (b), dye

dilution (r), and a small correction for the fluorescence of the initial population of cells (s). Weights for each Gaussian correspond to cell counts in
each generation. (B) Analysis of the cell fluorescence model fitting accuracy for 1,000 generated CFSE fluorescence time courses (see also Tables S3
and S4). Average percent error in generational cell counts normalized to the maximum generational cell count for each time course. Numbers
indicate an error $ 0.5%. (C) Representative cell fluorescence model fitting to experimental data from wildtype B cells at indicated time points after
start of lipopolysaccharides (LPS) stimulation (red lines indicate undivided population).
doi:10.1371/journal.pone.0067620.g002

Maximum Likelihood Fitting of CFSE Time Courses
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too much fit error (Figure 5C). Plotting cell count trajectories using

parameters sampled uniformly from maximum-likelihood param-

eter sensitivity ranges revealed that while the early B cell response

is constrained, the peak and late response is more difficult to

determine accurately (Figure 5D).

Investigating how data Quality Affects Solution
Sensitivity and Redundancy

We tested how sources of imperfections in typical experimental

CFSE data affected the outcome of our integrated fitting

procedure. Starting with the best fit average wildtype B cell time

course stimulated with bacterial lipopolysaccharides (LPS), we

generated in silico CFSE datasets. Specifically, we wanted to test

the effect of time point frequency, increased fluorescence CV (e.g.

due to poor CFSE staining), increased Gaussian noise in

generational counts (e.g. mixed populations), and increased

Gaussian noise in the total number of cells collected during each

time point (e.g. mixing/preparation noise) (Figure 6). For each

generated dataset, we fitted cell fluorescence parameters, used the

best-fit fluorescence parameters as adaptors during a subsequent

100 rounds of population model fitting, filtered poor solutions,

calculated parameter sensitivities, and clustered the solution ranges

to obtain maximum-likelihood non-redundant solution ranges

(Figure 1).

Results show that increasing CV or using only four, albeit well

positioned time points, does not significantly impact the quality of

the fit, with all parameters still accurately recovered (blue triangles,

pink crosses). On the other hand, adding random noise in the

number of cells per peak or per time point results in increased

error in fcyton parameters F0, Tdie0 and to a lesser degree

s.d.[Tdiv0] and s.d.[Tdiv1+] (Figure 6 green circles and purple

bars). However, only using early time points resulted in egregious

errors with most parameters displaying diminished sensitivity and

higher deviation from the actual parameter value. Indeed, our

method identified four non-redundant solutions when fitting the

early time point only time course (Figure 6, orange).

Phenotyping B Lymphocytes Lacking NFkB Family
Members

We next applied the integrated phenotyping tool, FlowMax, to

a well-studied experimental system: the dynamics of B cell

populations triggered by ex vivo stimulation with pathogen-

associated molecular patterns (PAMPs) or antigen-receptor ago-

nists. B cell expansion is regulated by the transcription factor

Figure 3. The fcyton cell proliferation model. (A) A graphical representation summarizing the model parameters required to calculate the total
number of cells in each generation as a function of time. Division and death times are assumed to be log-normally distributed and different between
undivided and dividing cells. Progressor fractions (Fs) determine the fraction of responding cells in each generation committed to division and
protected from death. (B,C) Analysis of the accuracy associated with fitting fcyton parameters for a set of 1,000 generated realistic datasets of
generational cell counts assuming perfect cell counts and an optimized ad hoc objective function (see Text S1 and Tables S3 and S4). (B) Average
percent error in generational cell counts normalized to the maximum generational cell count for each time course. Numbers indicate an error $ 0.5%.
(C) Analysis of the error associated with determining key fcyton parameters. Box plots represent 5, 25, 50, 75, and 95 percentile values. Outliers are
not shown. For analysis of all fcyton parameter errors see also Figure S2 (green).
doi:10.1371/journal.pone.0067620.g003
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NFkB, which may control cell division and/or survival. Indeed,

mice lacking different NFkB family members have been shown to

have distinct B cell expansion phenotypes in response to different

mitogenic stimuli [19].

Using published studies as a benchmark, we tested the utility of

FlowMax. Using purified naı̈ve B lymphocytes from WT, nfkb12/2,

and rel2/2 mice, stained with CFSE, we obtained flow-cytometry

data following LPS and anti-IgM stimulation over a six day time

course. We then used FlowMax to arrive at the best-fit single-cell

representation of the CFSE population data for each experimental

condition tested (Figure 7A and Figure S6) and tabulated the

cellular parameter values from the best family of clustered solutions

for all conditions tested alongside our summary of the previously-

published results (Figure 7B). The best-fit solution clusters fit the

time courses well (11.95% median normalized percent area error),

with the larger errors naturally biased toward weekly proliferating

populations (Figure S6). Our analysis revealed that in response to

anti-IgM cRel-deficient B cells are unable to enter the cell division

program, as evidenced by a low F0 value. However, in response to

LPS, rel2/2 and nfkb12/2 B-cells show both cell survival and

activation phenotypes, suggesting the involvement of other nfkb1

functions downstream of the receptor TLR4 (Figure S7). These

computational phenotyping results are in agreement with the

conclusions reached in prior studies using traditional methods such

as tritiated thymidine incorporation, as well as staining for DNA

content or membrane integrity (propidium iodide) to measure cell

population growth as well as the fractions of cycling and dying cells,

respectively [11]. In particular, in response to LPS, the nfkb1 gene

product p105 (rather than p50) was shown to mediate B-cell survival

via the Tpl2/ERK axis [12]. However, our results extend the

published analysis by quantifying the contributions of the cell

survival and decision making functions of these genes to B

lymphocyte expansion. For example, whereas nfkb1 and rel appear

to equally contribute to cell cycle and survival, rel has a more critical

role in the cellular decision to enter the cell division program

(Figure 7 and Figure S7).

Interestingly, in response to anti-IgM, our analysis reveals a

previously unknown suppressive role for nfkb1 of limiting the

number of divisions that cells undergo (Figure 7, compare Dm and

Ds). In response to LPS, Fs are reduced in nfkb12/2 B cells, but

they are higher in response to anti-IgM. This affects mostly the

later progressor fractions, e.g. F1, F2. To examine the contribution

of each parameter type (decision making, cell cycle times, death

times) we developed a solution analysis tool, which allows for

model simulations with mixed knockout- and wildtype-specific

parameters to illustrate which parameter or combination of

Figure 4. Accuracy of phenotyping generated datasets in a sequential or integrated manner. The accuracy associated with sequential
fitting Gaussians to fluorescence data to obtain cell counts for each generation (blue) and integrated fitting of the fcyton model to fluorescence data
directly using fitted fluorescence parameters as adaptors (purple) was determined for 1,000 sets of randomly generated realistic CFSE time courses
(see also Tables S3 and S4). (A) Average percent error in generational cell counts normalized to the maximum generational cell count for each time
course. Numbers indicate an error $ 0.5%. (B) Analysis of the error associated with determining key fcyton cellular parameters. Box plots represent
5,25,50,75, and 95 percentile values. Outliers are not shown. For a comparison of all 12 parameters see Figure S1 (blue) and Figure S2 (purple).
doi:10.1371/journal.pone.0067620.g004
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cellular processes substantially contribute to the knockout pheno-

type. In the case of IgM-stimulated nfkb12/2, this analysis reveals

that the later cell decision parameters (e.g. F1,2,…) are necessary

and largely sufficient to produce the observed phenotype

(Figure 7C, Figure S7).

Discussion

Recent advances in flow cytometry and mathematical modeling

have made it possible to study cell population dynamics in terms of

stochastic cellular processes that describe cell response, cell cycle,

and life span. Interpreting CFSE dye dilution population

experiments in terms of biologically intuitive cellular parameters

remains a difficult problem due to experimental and biological

heterogeneity on the cellular level. While available population

models may be fitted to generational cell counts, a remaining

challenge lies in determining the redundancy and size of the

solution space, a requirement for developing confidence in the

quantitative deconvolution of CFSE data. Developing a method-

ology for objective interpretation of CFSE data may lead to

quantitative mechanism-oriented insights about cellular decision-

making, and allow for improved and automated diagnosis of such

data in the clinic.

In this study we present an integrated phenotyping methodol-

ogy, exemplified by the computational tool FlowMax, which

addresses these challenges. FlowMax comprises the tools needed to

construct CFSE histograms from flow cytometry data, fit a

fluorescence model to each histogram, determine sets of best fit

cellular parameters that best describe the CFSE fluorescence time

series, and estimate the sensitivity and redundancy of the best fit

parameters (Figure 1). By using the cell fluorescence model to

translate between generation-specific cell counts of the cell

Figure 5. Comparison of FlowMax to the Cyton Calculator. The Cyton Calculator [9] and a computational tool implementing our
methodology, ‘‘FlowMax,’’ were used to train the cyton model with log-normally distributed division and death times on a CFSE time course of
wildtype B cells stimulated with lipopolysaccharides (LPS). The best-fit generational cell counts were input to the Cyton Calculator. (A) Visual
summary of solution quality estimation pipeline implemented as part of FlowMax. Candidate parameter sets are filtered by the normalized % area
difference score, parameter sensitivity ranges are calculated, parameter sensitivity ranges are clustered to reveal non-redundant maximum-likelihood
parameter ranges (red ranges). Jagged lines represent the sum of uniform parameter distributions in each cluster. (B) Best fit cyton model parameters
determined using the Cyton Calculator (blue dots) and our phenotyping tool, FlowMax (square red individual fits with sensitivity ranges represented
by error bars and square green weighted cluster averages with error bars representing the intersection of parameter sensitivity ranges for 41
solutions in the only identified cluster). (C) Plots of Fs (the fraction of cells dividing to the next generation), and log-normal distributions for the time
to divide and die of undivided and dividing cells sampled uniformly from best-fit cluster ranges in (B). (D) Generational (colors) and total cell counts
(black) are plotted as a function of time for 250 cyton parameter sets sampled uniformly from the intersection of best-fit cluster parameter ranges.
Red dots show average experimental cell counts for each time point. Error bars show standard deviation for duplicate runs.
doi:10.1371/journal.pone.0067620.g005
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population model and the CFSE fluorescence profiles, the method

ensures that the population dynamics model is trained directly on

the experimental fluorescence data, without relying on ad hoc

scoring functions. While our general methodology can be relatively

easily adopted for use with any population dynamics and cell

fluorescence models (including population models that incorporate

both CFSE label and population dynamics [13,16–18]), we

adopted a version of the cyton model because it explicitly

incorporates most features of proliferating lymphocytes in an

intuitive manner, forms the basis of the Cyton Calculator tool, and

could be easily adapted to include new observations from single-

cell studies. While, the cyton model is over-determined and it is

possible that minimal alternative models may describe the noisy

CFSE data equally-well [7]. For example, it is possible that models

with exponential distributions for the time to divide and die, or

models which do not include generational dependence for

division/death may be able to describe the data. However,

independent studies have shown that lymphocyte cycling and

programmed cell death show delay times and conform to log-

normal distributions, and that the fraction of lymphocytes exiting

the cell cycle as well as the timing for division and death of

lymphocytes are generation-dependent [2,3,20]. Our attempts at

fitting a typical experimental dataset using minimal models

confirmed that to model B cell dynamics both a delay in

division/death timing (e.g. using log-normal distributions) as well

as distinguishing between generations (e.g. undivided/divided) is

essential (unpublished data). Within FlowMax we chose to

decouple treatment of cell fluorescence from population dynamics

and allow for manual compensation for general fluorescence

changes such as dye catabolism (See Text S2). Treating such

experimental heterogeneity separately from biological variability

was essential for computational tractability of solution finding via

repeated fitting.

Fitting generated datasets allowed us to evaluate individual

fitting steps, and when these were combined in an integrated or

sequential manner. While, the cell fluorescence model is readily

trained on the generated data, especially if multiple peaks are

present (Figure 2B–C), not all fcyton model parameters are equally

determinable, as parameters for Tdie1+ and Dm were associated

with significant median errors (Figure 3C and Figure S2). When

Figure 6. Testing the accuracy of the proposed approach as a function of data quality. Six typical CFSE time courses of varying quality
were generated and fitted using our methodology (Figure 1). (A-F) The best-fit cluster solutions are shown as overlays on top of black histograms for
indicated time points. Conditions tested were (A) low CV, (B) high CV (e.g. poor staining), (C) 10% Gaussian count noise (e.g. mixed populations), (D)
10% Gaussian scale noise (poor mixing of cells), (E) four distributed time points (e.g. infrequent time points), (F) four early time points from the first 48
hours (see Methods for full description). (G) Parameter sensitivity ranges for each solution in each non-redundant cluster next to the maximum
likelihood parameter ranges are shown for fcyton fitting. The actual parameter value is shown first (black dot).
doi:10.1371/journal.pone.0067620.g006
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both models were fitted, doing so in an integrated manner (using

the fitted cell fluorescence parameters as adaptors during

population model optimization) outperformed doing so sequen-

tially in terms of both solution statistical significance (Figure 4A)

and fcyton parameter error distributions (Figure 4B and Figure

S1). This is not surprising as the integrated method avoids errors

introduced during fluorescence model fitting, by optimizing the

cell population model on the fluorescence histograms directly

(Figure S2). Furthermore, by using the fluorescence model as an

adaptor, contributions from each fluorescence intensity bin are

automatically given appropriate weight during population model

fitting, while the sequential approach must rely on ad hoc scoring

functions to achieve reasonable, albeit worse, fits. The accuracy of

the integrated fitting approach improves asymptotically with the

number of fit points used (Figure S3), and is dependent on the

choice of time points used, with errors in key fcyton model early

F0, N, and late Tdie0 parameters especially sensitive to sufficiently

early and late time points, respectively (Figure S4). Testing

potential scoring functions demonstrated that while the method-

ology is relatively robust to specific objective function selection, an

objective function including both a mean root sum of squared

deviations as well as a correlation term resulted in lower errors in

average fitted generational counts (Figure S5). Finally, fitting both

the cell fluorescence and fcyton model typically requires only a few

minutes on a modern computer (Table S1), suggesting that our

methodology and tool can be used to process a long duplicate time

course in about a day.

The analysis of our fitting methodology revealed a limit on the

accuracy of fitted model parameters, even under idealized

conditions of perfect knowledge of experimental heterogeneity

and assuming the fcyton model is a perfect description of B cell

dynamics (Figure 3), suggesting that objective interpretation

requires solution sensitivity and redundancy estimation. We

compared several qualitatively good model fits obtained with the

Cyton Calculator [9] to our phenotyping tool FlowMax (Table S2

and Figure 5). Using the Cyton Calculator, best-fit parameter sets

(Figure 5B blue dots) are subject to choice of initial parameters

(Table S2). Repeated fitting with different fitting conditions

yielded qualitatively good solutions with different parameter

values. Conversely, the solution quality estimation integrated into

Figure 7. Phenotyping WT, nfkb12/2, and rel2/2 B cells stimulated with anti-IgM and LPS. (A) Visual summaries of best-fit phenotype
clusters for WT (top), nfkb12/2 (middle), and rel2/2 (bottom) genotypes stimulated with anti-IgM (left), and LPS (right). To visualize cellular parameter
sensitivity, 250 sets of parameters were selected randomly from within parameter sensitivity ranges and used to depict individual curves for the
fraction of responding cells in each generation (Fs) and lognormal distributions for time-dependent probabilities to divide (Tdiv) and die (Tdie) for
undivided and divided cells. (B) Tables summarizing the best fit cellular parameters determined using the integrated computational tool, FlowMax, as
well as the relative amount of cell cycling and survival reported in previous studies [12]. Values in parentheses represent the lognormal standard
deviation parameters. (C) Total cell counts simulated with the fcyton model when indicated combinations of nfkb12/2specific parameters were
substituted by WT-specific parameters during anti-IgM stimulation (‘‘chimeric’’ solutions). Dots show WT (red) and nfkb12/2 (blue) experimental
counts. Error bars show cell count standard deviation for duplicate runs.
doi:10.1371/journal.pone.0067620.g007
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our methodology (Figure 5A) revealed that only one set of

parameters best describes the dataset, and that only a relatively

small range of maximum-likelihood parameter values was

common to good fits (Figure 5B green dots and ranges).

Interestingly, most of the fitted parameters are in approximate

quantitative agreement between the two methods, however, the

maximum-likelihood parameter ranges determined by our meth-

odology usually showed agreement with outlying parameter values

determined by the Cyton Calculator, suggesting that picking a

specific or average solution may be inappropriate (Figure 5B).

Testing how data quality affects solution redundancy and

sensitivity reveals that the methodology is relatively robust to poor

CFSE staining (high CV) as well as the frequency of time points

used for fitting, assuming they are spaced throughout the time

course (Figure 6). However, this is only true if time points are

selected such that they capture the population behavior through-

out the response, as picking only early time points resulted in

global parameter insensitivity, degeneracy, and large parameter

errors. Furthermore, poor mixing/preparation of cells (scale noise)

or the presence of other cell populations (count noise) resulted in

qualitatively good fits at the cost of some errors in perceived

population parameters, highlighting the importance of fitting to

two or more replicate time courses and working with a single cell

type.

Finally, to demonstrate that our computational tool can provide

valuable insights into the cellular processes underlying lymphocyte

dynamics, we used FlowMax to phenotype B cells from NFkB-

deficient mice, which show strong proliferative and survival

phenotypes when stimulated with anti-IgM and LPS mitogenic

signals (Figure S6). Our analysis of these cells confirmed the

previously published data [11,12] and extended the analysis to

specific cellular processes in a quantitative manner. We found for

example that the phenotype of nfkb12/2 and rel2/2 is similar in

the proliferation and survival of B-cells, except in the ability of

resting B cells to exit the G0 stage, which is more critically

controlled by rel gene product cRel (Figure 7A). This may reflect

that while cRel is activated early and required for all aspects of B-

cell proliferation, the nfkb1 gene product p105 is thought to

provide for lasting ERK1 activity [21] that may facilitate primarily

later stages of B-cell proliferation. Furthermore, our analysis

revealed a previously unappreciated anti-proliferative role for

NFkB gene nfkb1 during anti-IgM stimulation (Figure 7B).

Although more subtle, this phenotype was revealed because we

were able to distinguish between early pro-proliferative cellular

processes (F0, Tdiv0, Tdie0) and later ones (F1+, Tdiv1+, Tdie1+),

which may otherwise be overshadowed by early parameters that

more prominently determine bulk population dynamics, but

importantly determine the proliferative capacity of B cells. We

confirmed the importance of the later parameters by modeling

population dynamics with ‘‘chimeric’’ parameter sets derived from

wildtype and knockout model fits (Figure 7C and Figure S7). How

nfkb1 may dampen late proliferative functions in response to anti-

IgM but not LPS remains to be investigated. Preliminary results

indicate that the nfkb1 gene product p50, which may have

repressive effects as homodimers, is actually less abundant

following anti-IgM than LPS stimulation. Conversely the nfkb1

gene product p105 is more abundant following anti-IgM than LPS

stimulation and could inhibit signaling in two ways. Induced

expression of p105 may block MEK1/ERK activation by Tpl2

[22], or it may function to provide negative feedback on NFkB

activity, as a component of the inhibitory IkBsome complex

[23,24]. Future studies may distinguish between these mechanisms

and examine the role of the IkBsome in limiting the proliferative

capacity of antigen-stimulated B cells.

Models and Methods

Ethics Statement
Wildtype and gene-deficient rel and nfkb1 mice were maintained

in ventilated cages. Animal studies were approved by the

Institutional Animal Care and Use Committee of the University

of California, San Diego.

Modeling Experimental Cell Fluorescence Variability
For the cell fluorescence model, we adopted a mixture of

Gaussians model for representing log-fluorescence CFSE histo-

grams. The mean, m, and standard deviation, s, for a Gaussian

distribution of cellular fluorescence in a specific generation, g, is

calculated as

mg~log10(10m0 :rgzb)zs, ð1Þ

sg~s~m0
:CV , ð2Þ

where r represents the halving ratio (,0.5), b the background

(autofluorescence) [25], s is a shift parameter used to adjust the

fluorescence of the whole distribution during fitting, and CV is the

generation-invariant Gaussian coefficient of variation. While the

CV is generation-invariant, fluorescence parameters are allowed

to vary from time point to time point during fitting. These

fluorescence parameters must be combined with generation-

specific cell counts to describe a weighted fluorescence histogram

that resembles typical CFSE data. Recent studies have shown that

a mixture of Gaussians closely approximates experimental CFSE

log-fluorescence histograms [9,14,15]. Our model is based on

those suggested by Hodgkin et al [9]. In addition, Hasenauer et al

suggest a mixture of log-normal distributions to approximate the

combined heterogeneity in CFSE staining and autofluorescence

[13]. A description of our model fitting strategy can be found in

the Supplementary Methods (Text S1).

Modeling Population Dynamics
For modeling population dynamics, we started with the

generalized cyton model, which straightforwardly incorporates

most biological features of lymphocyte proliferation [2], and forms

the basis of the Cyton Calculator [9], the current state-of-the-art

computational tool for interpreting CFSE-derived generational

cell count data. To reflect the recent experimental finding that

growing (i.e. responding) cells are resistant to death [3] we logically

decoupled the division and death processes by explicitly removing

the cell fate competition. In the so called, fcyton model, the

fraction of responding cells in each generation (the Fs) control cell

fate by ensuring that responding cells are protected from death,

however the timing to the chosen fate (division or death) is still

stochastically distributed. Specifically, the number of cells that

divide and die for each cell generation, g, as a function of time, t, is

found using

ndiv
g~0 tð Þ~F0

:N:w0 tð Þ, ð3Þ

ndie
g~0 tð Þ~(1{F0):N:y0(t), ð4Þ
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ndiv
gw0 tð Þ~2:Fg

:
ðt

0

ndiv
g{1 t

0� �
w1z t{t

0� �
dt
0
, ð5Þ

ndie
gw0 tð Þ~2: 1{Fg

� �
:
ðt

0

ndiv
g{1 t

0� �
:y1z t{t

0� �
dt
0
: ð6Þ

In equations (3–6) w0 tð Þ, w1z tð Þ, y0(t) and y1z(t) represent the

cell age-dependent probability density functions that undivided

cells will divide, divided cells will divide, undivided cells will die,

and divided cells will die, respectively. The parameters N and Fi,

represent the starting cell count, and fraction of cells responding in

generation i, respectively. The total number of cells, Ng tð Þ at time

t and generation g is given by

Ng~0 tð Þ~N{

ðt

0

ndiv
0 t

0� �
zndie

0 t
0� �� �

dt
0
, ð7Þ

Ngw0 tð Þ~
ðt

0

2ndiv
g{1 t

0� �
{ndiv

g t
0� �

{ndie
g t

0� �� �
dt
0
: ð8Þ

The progressor fractions, Fi§1, are calculated using a truncated

Gaussian distribution similar to the ‘‘division destiny’’ curve

suggested by Hawkins et al in the cyton model [2]:

Fi§1~

1{cdf (i)
1{cdf (i{1)

, cdf (i{1)v1

0, cdf (i{1)~1

8<
: , ð9Þ

where cdf (i) is the cumulative normal distribution with mean Dm

and standard deviation Ds. Since lymphocyte inter-division and

death times are well-approximated by log-normal distributions [2],

a total of 12 parameters are required to determine the cell count at

any point in time in each generation: N, F0, Dm, Ds, and eight

parameters specifying the log-normal division and death distribu-

tions. For a full list of parameters and the ranges used during

fitting, refer to Table S3. A description of our model fitting

strategy can be found in the Supplementary Methods (Text S1).

Testing Model Accuracy with Generated CFSE
Fluorescence Time Courses

A total of 1,000 sets of randomized fcyton and fluorescence

parameters within realistic ranges [2,3,9,26], were generated

(Table S3). The randomized fcyton parameters were applied to

construct cell counts for eight generations ten time points up to192

hours (Table S4). The randomly chosen fluorescence parameters

were then applied to construct weighted fluorescence histograms

(Figure 2A). To test the accuracy of cell fluorescence model fitting,

we trained the fluorescence model on the generated histogram

time courses one histogram at a time. During fitting, peak weights

were calculated analytically using a non-linear regression ap-

proach (see Text S1). Resulting best-fit model histogram areas

under each peak were compared to their generated counterparts

and the average percent errors of the counts normalized to the

maximum generational count for each parameter set were plotted

(Figure 2B, 3B, 4A, S1A, S2A, S3A, S4A, and S5A). To test the

fcyton cell population model, we trained the model on known

generational cell counts from the generated datasets. Resulting

best-fit model generational counts and fcyton parameters were

compared to their generated counterparts (Figure 2). To evaluate

the accuracy of sequential model fitting, the generated datasets

were used to first train the cell fluorescence model followed by a

round of fcyton model fitting on the resulting best-fit generational

cell counts using a simple squared deviation and a more complex

ad hoc objective function (Figure 4(blue) and Figure S1). Next, the

generated datasets were used to first train the cell fluorescence

model followed by a round of fcyton model fitting to the

fluorescence histograms using the best-fit cell fluorescence

parameters to generate log-fluorescence histograms with peak

weights determined by the population model, which were

compared to generated histograms directly (proposed integrated

fitting methodology). Different time point schedules were used

when testing three or five time point time courses (see Table S4).

For demonstrating how data quality affects fitting of typical time

courses, we used the fitted experimental wildtype LPS cluster

solutions to generate six separate in silico time courses: a low CV

time course (8 time points, CV = 0.18, ratio = 0.5, back-

ground = 100,shift = 0), a high CV time course (8 time points,

CV = 0.23, ratio = 0.5, background = 100, shift = 0), a generation

count noise time course (8 time points, CV = 0.18, ratio = 0.5,

background = 100, shift = 0, each peak count scaled randomly by

1+N(m= 0,s= 0.1)), a scaled noise time course (8 time points,

CV = 0.18, ratio = 0.5, background = 100, shift = 0, number of

cells in histogram scaled randomly by 1+N(m= 0,s= 0.1)), an

infrequent time point time course (4 time points from 24–144 h,

CV = 0.18, ratio = 0.5, background = 100, shift = 0), and an early

time point time course (4 time points from 12–48 h, CV = 0.18,

ratio = 0.5, background = 100, shift = 0). Each time course was

fitted 100 times using our full methodology (Figure 1), and

parameter solution clusters were plotted (Figure 6). Refer to Table

S4 for specific time point schedules used. Model fitting procedures

are described in Text S1.

Developing Measures of Confidence for Parameter Fits
We implemented a computational pipeline for estimating the

redundancy and sensitivity of model solutions (Figure 1 step 3). A

stochastic simulated annealing fitting procedure [27] was used to

determine multiple best-fit solutions with random initial param-

eters (see Text S1). Next, we used a normalized percent area error

(NPAE) metric for solution quality estimation which ranges

between 0% and 100% difference in histogram areas:

NPAE~50:

Pt
i~1

Pr
j~1 Cells

j
i
:Pm

k~1DH
j
i k½ �{Mi k½ �DPt

i~1

Pr
j~1 Cells

j
i

, ð10Þ

where i and j represent time point i, and experimental run j, and

Cells, H, and M represent total cell counts, experimental discrete

histogram density, and model discrete histogram density with m

total bins, respectively. Solution candidates with NPAE within 0.1

of the top were kept for quality estimation:

Candidates~fS1,S2, . . . ,Sng, ð11Þ

where Sx represents the xth set of best-fit parameters. These fits

were subjected to one-dimensional parameter sensitivity estima-

tion, which establishes an upper and lower bound on each
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parameter value that would result in the weighted percent

histogram area error (NPAE) to, increase by 1 (1% normalized

area difference increase), yielding two sets of sensitivity values for

each parameter:

Sensitivities~fvL1,H1w,vL2,H2w, . . . ,vLn,Hnwg ð12Þ

where vLx,Hxw represents a 2-tuple consisting of sets of lower

and upper parameter sets for Sx, respectively (see Text S1). Since

more than one non-redundant set of parameters may exist, we

developed an agglomerative clustering algorithm which is designed

to combine clusters with the highest parameter sensitivity overlap,

arriving at sets of non-redundant maximum likelihood parameter

ranges (see Text S1 for motivation and notes). Briefly, the solutions

are clustered by continually agglomerating pairs of clusters Cx,Cy

with highest total normalized overlap Dx,y between parameters:

Dx,y~
Xparams

i

di,di~

Ay i½ �zHy i½ �
� �

{(Ax i½ �{Lx½i�)
� �

DAx i½ �zHx½i�DzDAy½i�zHy½i�D , ifAxwAy

Ax i½ �zHx i½ �
� �

{(Ay i½ �{Ly½i�)
� �

DAx i½ �zHx½i�DzDAy½i�zHy½i�D , ifAxƒAy

8>><
>>:

, ð13Þ

where Ax and Ayare weighted parameter averages for clusters Cx and Cy,

respectively. The agglomerated parameter sensitivity ranges are defined to

be the intersection of ranges supported by all candidate solutions in the

cluster, resulting in increasingly tighter estimates of the maximum

likelihood parameter sensitivity ranges as more solutions are incorporated

into the cluster. Clustering is terminated when cluster pairs for which

parameter ranges are overlapping for all parameters no longer exist. When

clustering parameter ranges, we keep track of a weighted average value

that is guaranteed to be within the overlap between ranges being clustered,

however its position is weighted according to the relative maximum

distance from the average of each of the starting cluster averages:

da~Hc{Aa,

db~Ab{Lc,

Ac~
db

dazdb

Hc{Lc½ �zLc~Hc{
da

dazdb

Hc{Lc½ �,

ð14Þ

where the distance (d), high(H), average (A), and low (L) values are used to

agglomerate clusters a and b into cluster c and letting Aa,Ab. Finally,

since solution clusters represent linear independent combinations

of parameters, solution clusters are sampled uniformly (n = 1,000)

within the clustered maximum- likelihood parameter ranges for all

parameters simultaneously and clusters with median NPAE within

1% of the top cluster’s NPAE are kept to ensure that unrealistic

parameter combinations were removed. Algorithms and motiva-

tion for sensitivity analysis and clustering are detailed in the

supplement (Text S1).

Comparing FlowMax to the Cyton Calculator
We used counts derived after fitting the cellular fluorescence

model to the experimental wildtype B cell proliferation time

courses stimulated with LPS (Figure S6), to repeatedly fit the cyton

model using the Cyton Calculator [9] and compared to results

from fitting the cyton model using FlowMax, a tool that

implements our methodology and solution quality estimation

procedure (Figure 5A). For the Cyton Claculator we used counts

derived from fitting the cellular fluorescence model as input, while

for FlowMax, we used the fluorescence data directly. To find

Cyton Calculator solutions, we carried out Cyton Calculator

fitting multiple times using varied starting parameters values

sampled from ranges in Table S3, as suggested. Most-parameter

combinations yielded qualitatively poor fits (determined visually by

comparing total and generation cell counts to experimental data),

and were discarded. Four qualitatively good solutions, determined

visually by comparing total and generational cell counts to

experimental data, were found using starting parameters listed in

Table S2 (Figure 5B, blue dots). Using FlowMax involved 1,000

fits, automated solution filtering, parameter sensitivity estimation,

and solution clustering. This allowed visualization of a family of

solutions sampled from the maximum-likelihood sensitivity ranges

for the only solution cluster identified.

Testing how our Methodology is Affected by the Choice
of Objective Function

To analyze how our methodology is affected by choice of

objective function during fitting, we used 1,000 generated time

courses to fit the fcyton model using best-fit cell fluorescence

parameters as adaptors (our proposed integrated methodology).

We tested three objective functions for comparing the model

histograms to generated histograms: a simple mean sum of

absolute deviations (MAD):

ObjMAD~

Pt
i~1

Pr
j~1 Cellsi,j

:Pm
k~1DHi,j k½ �{Mi k½ �DPt

i~1

Pr
j~1 Cellsi,j

, ð15Þ

a mean root sum of squared deviations (MRSD) objective

function:

ObjMRSD~

Pt
i~1

Pr
j~1 Cellsi,j

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k~1 Hi,j k½ �{Mi k½ �
� �2

q
Pt

i~1

Pr
j~1 Cellsi,j

, ð16Þ

and a mean root sum of squared deviations with Pearson

correlation (MRSD+) objective function:

ObjMRSDz~

Pt
i~1

Pr
j~1

Cellsi,j
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k~1

Hi,j k½ �{Mi k½ �
� �2

q

cor Hi,j ,Mi

� �2

Pt
i~1

Pr
j~1

Cellsi,j
: ð17Þ

In the above equations, Cells
j
i is the total cell count in run j for

time point i, and cor(x,y) represents the Pearson correlation

coefficient between the experimental histogram, H
j
i , and modeled

histogram, Mi. See also Figure S5 and Text S1.

Generating Chimeric Solutions from Two Phenotypes
To dissect the contributions of several components of complex

phenotypes, we used two sets of parameters (i.e. wildtype and

mutant) and generated a ‘‘chimeric’’ set of parameters with

combinations of F0, F1+ (Dm, Ds), Tdivs (E[Tdiv0], s.d.[Tdi-

v0],E[Tdiv1+], s.d.[Tdiv1+]), and Tdies (E[Tdie0], s.d.[Tdie0],E[T-

die1+], s.d.[Tdie1+]), copied from either set. The generated

‘‘chimeric’’ phenotypes were visualized (see below) and qualita-

tively compared to visualizations from the two originating

phenotypes. In the case of nfkb12/2 anti-IgM stimulated B cells,

this analysis confirmed that misregulation of the late progressor

fractions (F1+) constituted the primary phenotype (Figure 7C).

Visualizing Solution Clusters
Solution clusters were defined as sets of maximum-likelihood

parameter sensitivity ranges that are overlapping between all

ð13Þ
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solutions in a cluster (see Text S1). To visualize these solutions,

parameter sets were sampled uniformly from within the clustered

maximum-likelihood parameter sensitivity ranges independently

for each parameter. For parameter visualization, the sampled

parameters were used to plot the four lognormal distribution

probability density functions (Tdiv0, Tdie0, Tdiv1+, Tdie1+),

normalizing by the maximum probability per distribution. The

fraction of responding cells in each generation (Fs) are plotted

using connected dots on a scale between 0 and 1 for each

generation (x axis), with the larger dot representing the indepen-

dent F0 parameter (Figure 7). For population count visualization,

the sampled parameter values were used to calculate cell count

time series data by solving the fcyton model with the sampled

parameters (Figure 7C and Figure S7). FlowMax provides options

for plotting either the sampled solutions or the best-fit solutions

found during model fitting. The best-fit cluster average solution

(see also TextS1) is shown as an overlay for each experimental

dataset (Figure S6).

Using FlowMax to Phenotype CFSE Time Courses
We used a computational tool, which implements all of the steps

for fitting experimental CFSE B cell datasets. A succinct tutorial is

included in the supplementary text (Text S2). In brief, we used our

computational tool to construct log-fluorescence CFSE histograms

of viable B cells from raw CFSE data (see experimental methods

below). For each log fluorescence histogram, the average

fluorescence of undivided cells was selected manually based on

previous time points. Then the cell fluorescence parameters were

automatically determined for each time course subject to user

constraints for the coefficient of variation, background autofluo-

rescence, and die halving ratio, and shift of the undivided peak as

well as an estimate of the maximum number of generations to be

fitted to each time course (The default is set to eight [9]).The fitted

cell fluorescence parameters were then used during the population

dynamics fitting step to represent generational cell counts derived

from the fcyton model. The population dynamics fitting step was

repeated 1,000 times, poor results were removed from consider-

ation, parameter sensitivity ranges were calculated (see Supple-

mentary Methods in Text S1) and solutions were clustered to

estimate solution redundancy (see Supplementary Methods in

Text S1). The resulting best-fit families of solutions (determined by

average error in histogram area sampled from parameter

sensitivity ranges) for each experimental condition were compared.

Experimental Methods
Primary splenocytes were isolated from 6–8 week old mice,

naı̈ve B cells purified using magnetic bead separation (Miltenyi

Biotec), labeled with 4 mM 5(6)-Carboxyfluorescein diacetate, N-

succinimidyl ester (CFSE) dye (Axxora) for 5 minutes at room

temperature, and stimulated with 10 mg/mL LPS (Sigma) or

10 mg/mL goat anti-mouse IgM (Jackson Immunoresearch Inc.) B

cells were grown in fresh media with 1% penicillin streptomycin

solution (Mediatech Inc.), 5 mM L-glutamine (Mediatech Inc.),

25 mM HEPES buffer (Mediatech Inc.), 10% FCS and 2 mL/

500 mL BME (Fisher Scientific) at a concentration of 2.56105

cells/mL in 48 well plates at 37uC for a period of 6 days.Cells were

removed from media, stained with 10 ng/mL propidium iodide,

and measured using an Accuri C6 Flow Cytometer (Accuri Inc.) at

28, 40, 43, 54, 59.5, 67.5, 74.5, 89, and 145 hours post

stimulation. CFSE histograms were constructed after software

compensation for fluorescence spillover and manual gating on

viable (PI-negative) B cells using the FlowMax software. All

measurements were performed in duplicate (B cells from the same

spleen were cultured in separate wells, two wells per time point to

ensure that each time course represented a single population of

cells subject to only experimental variability).

Supporting Information

Figure S1 Accuracy of fitting the population model to
generated fitted generational cell counts. The simple

squared deviation (grey) and ad hoc optimized (blue) scoring

functions were used to fit the fcyton model to fitted generational

cell counts for 1,000 sets of randomly generated CFSE time

courses with parameters sampled uniformly from ranges in Table

S3, and evaluated at times described in Table S4. (A) Average

percent error in fitted generational cell counts normalized to the

maximum generational cell count for each generated time course.

Numbers indicate an error $ 0.5%. (B) Analysis of the error

associated with determining all fcyton cellular parameters. Box

plots represent 5, 25, 50, 75, and 95 percentile values. Outliers are

not shown.

(TIF)

Figure S2 Comparison of the integrated model fitting
approach to training each model independently. A

collection of 1,000 randomly generated sets of CFSE time courses

was used to analyze the errors associated with training the cell

fluorescence model only (red), training the fcyton model on known

cell counts (green), training the fcyton model using the known

(orange) or fitted (purple) cell fluorescence parameters as adaptors

during fcyton population model fitting. See also Tables S3, and

S4. (A) Average percent error in fitted generational cell counts

normalized to the maximum generational cell count for each

generated time course. Numbers indicate an error $ 0.5%. (B)

Analysis of the error associated with determining all fcyton cellular

parameters. Box plots represent 5, 25, 50, 75, and 95 percentile

values. Outliers are not shown.

(TIF)

Figure S3 Analysis of the phenotyping accuracy as a
function of the number of fit attempts (trials). For each

experiment, 1,000 CFSE time courses were generated with model

parameters within ranges described in Table S3 and times

described in Table S4. Generated time courses were used to fit

the fcyton population model using the fitted cell fluorescence

parameters as adaptors, using the best of one (light), three

(medium), or eight (dark) fit trials. (A) Average percent error in

fitted generational cell counts normalized to the maximum

generational cell count for each generated time course. Numbers

indicate an error $ 0.5%. (B) Analysis of the error associated with

determining all fcyton cellular parameters. Box plots represent 5,

25, 50, 75, and 95 percentile values. Outliers are not shown.

(TIF)

Figure S4 Analysis of the fitting accuracy when using
fewer experimental time points. For each experiment, three

(light), five (medium), or ten (dark) time points were considered

from a collection of 1,000 generated CFSE time courses with

parameters sampled uniformly from ranges in Table S3, and

evaluated at times described in Table S4. Generated time courses

were then phenotyped using the integrated computational method

(cell fluorescence parameters used as adaptors during fcyton

fitting). (A) Average percent error in fitted generational cell counts

normalized to the maximum generational cell count for each

generated time course. Numbers indicate an error $ 0.3%. (B)

Box plots represent 5, 25, 50, 75, and 95 percentile error values.

Outliers are not shown.

(TIF)
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Figure S5 Analysis of the fitting accuracy as a function
of objective function choice. For each experiment, a mean

absolute deviation (ObjMAD, light), a mean root square deviation

(ObjMRSD, medium), and a mean root square deviation with

correlation (ObjMRSD+, dark) were used to phenotype a collection

of 1,000 generated CFSE time courses with parameter sampled

uniformly from ranges in Table S3, and evaluated at times

described in Table S4, using the integrated computational method

(cell fluorescence parameters used as adaptors during fcyton

fitting). (A) Average percent error in fitted generational cell counts

normalized to the maximum generational cell count for each

generated time course. Numbers indicate an error $ 0.5%. (B)

Mathematical description of the objective functions used. (C)

Analysis of the error associated with determining all fcyton cellular

parameters. Box plots represent 5, 25, 50, 75, and 95 percentile

values. Outliers are not shown.

(TIF)

Figure S6 Best-fit fcyton solution overlays for stimulat-
ed wildtype, nfkb12/2, and rel2/2 B cell CFSE time
courses. CFSE fluorescence data was collected and phenotyped

using FlowMax, a computational tool that implements our

integrated methodology. Green overlays show the weighted

average best-fit model solutions for six duplicate log-fluorescence

CFSE time courses (filled histograms). Columns represent

individual time points. Histograms are normalized to the highest

count for each time course across experimental duplicates. X-axes

are in log-fluorescence units and automatically chosen to

encompass all fluorescence values across all time-points and

experimental runs. Red line shows manually selected position of

the undivided population. Times of collection are indicated next to

each histogram. Background indicates stimulus (blue = LPS,

purple = anti-IgM). See also Figure 7.

(TIF)

Figure S7 Using chimeric model solutions to identify
key fcyton parameters. Total model cell counts determined

when combinations of best-fit wildtype parameters were replaced

by nfkb12/2 -specific (rows 1 and 3) and rel2/2specific (rows 2 and

4) best-fit maximum-likelihood parameter ranges for anti-IgM

(rows 1 and 2) and LPS (rows 3 and 4) stimulation. Dots show

wildtype (red) and knockout (blue) experimental counts. Error bars

show standard deviation of cell counts from duplicate runs. Poor

fitting indicates that the indicated parameters do not sufficiently

describe the mutant phenotype.

(TIF)

Table S1 Analysis of fit running time dependence on the
number of time points and generations. The average

running time for fitting the cell fluorescence followed by fitting the

fcyton cell population model using the best-fit cell fluorescence

parameters to 300 generated time courses with four, seven, and ten

time points is shown. Fitting was carried out using an assumed 6,

9, or 12 generations during fitting. Times are in minutes and

errors are SEM. See also Table S3 and S4.

(DOCX)

Table S2 Starting and fitted cyton model parameters
for four successful Cyton Calculator fitting trials. Starting

cyton model parameter values that resulted in successful fits of our

CFSE LPS-stimulated wildype B cell time course (columns 2–5)

were chosen manually within ranges specified in Table S3.

Corresponding Cyton Calculator [9] best-fit parameters are shown

in columns 6–9. The data for experimental replicates is shown in

Figure S6 (WT LPS).

(DOCX)

Table S3 Cell fluorescence and population parameter
ranges used to generate realistic CFSE time courses.
Selected ranges were chosen to exclude biologically implausible

scenarios. Parameters were sampled evenly from the specified

ranges whenever generating 1,000 time courses. The standard

deviation parameters for the log-normal distributions: Tdiv0,

Tdiv1+, Tdie0, Tdie1+ were further restricted to be less than or

equal to their corresponding log-normal expected value param-

eters (e.g s.d[Tdiv0] # E[Tdiv0]). Model fitting was restricted

within these parameter ranges. Refer to Table S4 for the specific

time points used.

(DOCX)

Table S4 Time points considered for analysis of
generated time courses. For generated time courses, model

solutions were sampled according to these time course schedules.

Three, five, and ten time points were used in Figure S4. Four, four

early, and eight time points were used in Figure 6. Four, seven,

and ten time points were used when generating Table S1.

Otherwise 10 time points were sampled from generated datasets.

See also Table S3.

(DOCX)

Text S1 Supplementary Methods. This text includes notes

and method for: description of CFSE time courses, fitting the cell

fluorescence model, peak weight calculations during cell fluores-

cence model fitting, fitting the fcyton model to cell counts derived

from fluorescence histograms, fitting the fcyton models to

fluorescence histograms directly, parameter sensitivity estimation,

and clustering by sensitivity agglomeration.

(DOC)

Text S2 Succinct FlowMax tutorial. This text describes the

typical steps required to build CFSE log-fluorescence histograms

from raw fcs datasets, apply the integrated fitting methodology,

and interpret the results.

(DOC)
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