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Abstract: Although starch based materials have an array of fascinating industrial applications, the
native starches do not show good mechanical strength, thermal stability, and rheological properties
for their use in the mainstream processing industry. For example, the use of starches for producing
controlled release fertilizers is a new research endeavor with detailed knowledge still to come. The
thermal processing of native starches with water as a plasticizer results in poor physical and pasting
properties of the final product. Therefore in this study, corn starch was thermally processed with
urea and borate in a water medium. The pure starch (PS), starch-urea (SU), starch-borate (SB), and
starch-urea-borate (SUB) samples were prepared and characterized for their rheological traits. The
PS sample exhibited a peak viscosity of 299 cP after 17 min of thermal processing. Further heating
of the suspension caused a decrease in viscosity of 38 points due to thermal cracking of the starch
granules. A similar trend was depicted in the viscosity measurements of SU, SB, and SUB adhesives.
However, the viscosity of these samples remained slightly higher than that for PS. Also, the reduction
in viscosity after the peak value was not as notable as for PS. The modified starch behaved like a gel
and its storage modulus was significantly higher than the loss modulus. The lower magnitudes of
storage and loss moduli revealed that the modified starch was in the form of a weak gel and not a
solid. The PS is more fluid in nature with dominating loss modulus at lower angular frequencies.
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1. Introduction

Starch is a tasteless white-colored carbohydrate powder, which occurs in the form of amylose and
amylopectin in tubers, seeds, and other parts of plants. Amylose, a linear polymer, is the simplest form
of starch while amylopectin is its branched form. Applications of pure and modified starches have been
reported by many researchers during the past few decades [1,2]. The starches are generated from water
and carbon dioxide through photosynthesis in plants [3,4]. Native starches are known for low cost,
complete biodegradability, and renewability, and therefore are promising candidates for the production
of sustainable materials [5]. In many forms, starches are being used in water folders, gelling agents,
emulsions, backing, coatings, thickeners, etc. It has also been reported that starches, in their pure form,
do not show the good mechanical strength, thermal stability, and rheological properties, generally
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required for their use in the mainstream processing industry [6,7]. For example, in the paper binding
industry, side-seam adhesives should have viscosity in the range 2–4 Pa·s for a total solid content of
20–22% [8]. Such adhesives are prepared with highly soluble white dextrin or acid treated starches
to achieve low viscosity of the suspension. Conversely, the bottom paste adhesives, used to seal the
bottom of paper bags, are more viscous than the side-seam adhesives. These adhesives are formed
of white dextrin and their viscosity can be as high as 140 Pa·s at room temperature. It reveals that
chemical modification of native starches is normally required to achieve the desired physico–chemical
traits [9].

Starch derivatives are usually produced by reacting some other components with the hydroxyl
groups in the native starch molecules. The modified starch shows notably different physico–chemical
properties from the parent starch without compromising the biodegradability [10,11]. Substituting
the hydroxyl groups in the starch with other groups is an effective way of preparing starch-based
materials for an array of industrial applications. The chemical modifications are carried out by adding
some minerals or poly(vinyl acetate) to the native starches and heating them at temperatures below
the water boiling point. The hydrophobicity of the starch-based adhesives can be improved by
adding a fractional amount of poly(vinyl alcohol) or urea-formaldehyde into the dispersion. In some
cases, the adhesives are supplemented with plasticizer for minimization of the brittleness of the final
product [12]. For example, Mulder et al. [13] modified starch with lignin to produce slow release
coatings. Perez et al. [14] mixed and heated urea with kraft lignin to produce slow release fertilizers.
Recently, some literature has also been reported on the development of starch-based polymers for
conservation of petrochemical resources, reduction of environmental impact, and some other novel
applications [10].

Owing to their unique thermal processing properties, starch-based polymers are much more
complex than their conventional counterparts [3]. Multiple physical and chemical reactions, including
water diffusion, gelatinization, granular expansion, decomposition, melting, and recrystallization
are possible during the thermal processing of the starches. Also, many starch-based polymers show
non-miscible character, which reflects their poor mechanical properties. It is worth mentioning that the
gelatinization trait of starches is of key importance and closely related to the other traits. Gelatinization
refers to the destruction of the crystalline structures of granular starch. It is an irreversible multistage
process, which starts with granular swelling followed by the native crystalline melting and molecular
solubilization. Good information on gelatinization is explicitly required for better conversion of
starches into thermoplastics.

Since the decomposition temperature of starches is reported to be lower than their melting
temperature [3], the starch-based polymers cannot be thermally processed in the absence of a plasticizer
or gelatinization agent. Numerous plasticizers and additives have been assessed for gelatinizing
starches during thermal processing. Water is the most popular plasticizer for cooking starch. However,
gelatinization of starches, using water as a plasticizer, produces poor mechanical properties and high
brittleness due to fast retrogradation. Therefore, to improve the processing properties and performance
of the thermally processed starches, other plasticizers and polyols have been widely used in starch
processing. These modifiers include glycerol, glycol, sorbitol, sugars, urea, formamide, acetamide,
ethylenebisformamide, ethanolamine, citric acid, etc. [15,16]. In general, the characteristics of the
native starches such as gelatinization temperature, viscosity, clarity after cooking, retrogradation, and
texture not only depend on the nature and wt % of the modifiers but also on the physical environment
provided to the starch processing.

In this study, corn starch was thermally processed with urea and borate. The obtained adhesives
were highly viscous and non-Newtonian in character, and therefore tested for their rheological traits.
The urea was believed to work as a plasticizer other than the water and to facilitate the movement
of polymer chains. The borate ions, produced during the dissociation of di-sodium tetraborate, were
assumed to be the reactive species for cross-linking [17]. The cross-linking minimizes the starch
sensitivity to temperature and stirring rate, and consequently improves resistance against viscosity
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losses. Therefore, these ingredients in the starch dispersion may ensure the growth of the physical
properties desired for the specific use of the starch based polymers.

2. Materials and Methods

2.1. Preparation of Modified Starch Samples

The food grade corn starch was purchased from the local market (Faisalabad, Pakistan) and
dried under sunlight to removal the moisture content. The plasticizer was 98% de-ionized water
whereas the other constituents were urea and borate (Na2B4O7·10H2O) of Analytical Reagent (AR)
grade (Faisalabad, Pakistan). The starch with degree of substitution of 0.81 was reacted with urea and
borate in water medium. The degree of substitution of a polymer is defined as the average number of
substituent groups attached with a base unit or a monomeric unit. Six samples of the modified starch
were prepared and characterized for their physical and rheological traits. Details of the formulation of
theses starch based adhesives are given in Table 1.

Table 1. Composition of the modified starch samples described below.

Sample Water (mL) Starch (g) Urea (g) Borate (g)

PS 100 5 - -
SU 100 5 1 -
SU 100 5 2 -
SB 100 5 - 1
SB 100 5 - 2

SUB 100 5 1 1
SUB 100 5 2 2

Initially, 100 mL of de-ionized water was taken in a beaker. The beaker was placed over a hot
plate to heat the water to 85 ◦C. The solution was stirred with a magnetic bar, immersed in the solution,
for uniform mixing and heat transfer. Once the desired temperature was reached, 5 g of the completely
dried starch was added to the hot water. For complete gelatinization of the starch, the solution was
further heated for 30 min at the same temperature. The pure starch (PS) sample was left to cool
overnight at room temperature. For the starch-urea (SU) sample, first 5 g of starch was added to the hot
water. The starch dispersion was heated for 10 min for better gelatinization. Thereafter, the solution
was supplemented with 1 g of urea and heated further for 20 min to complete the reaction. A similar
procedure was repeated to prepare the starch-borate (SB) and starch-urea-borate (SUB) samples by
adding 1 g of each urea and borate in the starch dispersion at a processing temperature of 85 ◦C. The
whole procedure was repeated again to modify the starch with 2 g of urea and borate and to study the
effect of the modifier weight on the rheological traits.

2.2. Properties of Modified Starch Samples

The effect of the modifiers on the properties of the modified starch samples was evaluated using
different characterization techniques. The gelatinization time, viscosity, as well as storage modulus and
loss modulus of the prepared samples were evaluated as a function of temperature and heating time.
The controlled experiments were performed by dividing the samples into two groups: Pure starch
control (PS) and experimental group of six modified starch compositions. The reliability of the results
of viscosity, surface tension, density and other fluid flow parameters was checked by comparison
between the controlled and uncontrolled measurements.

An ORCADATM operated viscometer (Faisalabad, Pakistan) was used for viscosity measurements.
It is a portable viscometer for advanced research for the most required fluid parameters. This fully
automated viscometer was capable of measuring the viscosity of adhesives, polymers, stimulation
fluids, drilling fluids, completion fluids, and cements at varying temperature, shear rate, shear stress
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and time. In the present case, the sample temperature and shear rate were varied from 20 to 100 ◦C
and from 0 to 1000 s−1, respectively. For high accuracy in the measurements, the test temperature was
achieved and maintained for 2 min before each run.

The surface tension measurements were carried out using a spinning drop tensiometer. This
tensiometer was suitable for very low to high surface tension measurements. The equipment was
fitted with a controlled temperature measuring cell. This removable measuring cell included a water
coolable high dynamic measuring drive. Inside the measuring cell, helium gas was used as heat carrier
to raise the temperature of the measuring capillary to the required level before recording the surface
tension of the sample.

Fourier transform infrared spectroscopy (FTIR) was used to produce infrared spectra and to
understand the gelatinization mechanism of the pure and modified starches. FTIR is used to identify
the bonds in a sample by producing an infrared absorption spectrum. It is also an effective analytical
instrument for detecting functional groups and characterizing bond information. An Anton Paar
density meter (Faisalabad, Pakistan) was used to measure the density of the prepared samples under
similar conditions set for both viscosity and surface tension measurements. The density measurements
were based on the oscillating U-tube principle, which ensured high accuracy of the recorded data.

3. Results and Discussion

The temperature at which the starch particles undergo a change in state by forming a gel is called
the gelatinization temperature. This temperature provides useful information about the heterogeneity
of the starch granules. The past reports reveal that most of the starches gelatinize at temperatures
ranging from 80 to 90 ◦C [17–19]. It has also been reported that the processing of starches in this
temperature range produces adhesive materials of improved physical properties [17–20]. However,
the gelatinization temperature of a starch strongly depends on the heterogeneity of the crystallites
within the starch particles [21,22]. The temperature, used for thermal processing of the corn starch,
reflected a high resolution of heterogeneity among the crystallites and varying tightness in the particles’
compactness [23].

The industrial applications of the starch based materials involve the suspension of the starches in
water at temperatures slightly above their gelatinization temperature [23]. Sometimes, the processing
conditions imposed on a starch suspension may cause a change in apparent gelatinization temperature
and time [24]. Figure 1 shows the time-based viscosity plots of the pure and modified starch samples.
It was observed that the urea and borate modifiers together significantly influence the viscosity of
the starch based polymers, but for a specific formulation, the amount of the modifiers did not leave a
notable impression on the viscosity profiles. For example, a close agreement between the viscosity
profiles of the urea modified starch samples (SU), obtained with 1 and 2 g of urea, was noticed in
the presented work. A similar trend was reported for SB and SUB compositions. However, a notable
difference was observed between the viscosity measurements of SUB and the other compositions (PS,
SU and SB).

A further comparison of the PS and those modified with 2 g of the urea and borate is provided
in Figure 2. The PS viscosity attained a peak point value after 17 min of heating time at a fixed
processing temperature of 85 ◦C. With further heating of the PS suspension, the viscosity exhibited
a slight decrease of 38 points over time. After 27 min of heating time, the viscosity plot reached a
constant state and did not vary over time. The peak viscosity of the PS was measured at about 299 cP.
A similar trend was depicted in time based viscosity plots of SU, SB, and SUB adhesives. However, the
viscosity peaks of these samples were reported slightly higher and the viscosity curves reached their
peak values a little latter than the PS viscosity. Also, a reduction in viscosity after the peak point was
not as notable as for PS. In the stable region of the viscosity profiles, the viscosities of the PS and SUB
samples were measured at about 266 and 330 cP, respectively. It reveals that the viscosity of the starch
dispersion was increased by 64 cP after modifying it with small amounts of urea and borate.
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modified starch suspensions retain their tightness and the breakdown was not as bad as in the case 
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Figure 2. A comparison of the time-based viscosity plots of PS, SU, SB, and SUB adhesives obtained
with 2 g of urea and borate.

The SEM micrographs of pre- and post-cracking of the corn starch are shown in Figure 3 while
Figure 4 illustrates the time-based swelling of the starch particles by using a typical viscosity profile.
The alleviation of the PS viscosity after the peak point may be attributed to the reasonably high
processing temperature and the extended heating time. As the decomposition temperature of the
starch is reported to be lower than its melting point [3], the starch particles quickly expanded over
time, as illustrated in Figure 4. Thereafter the particles started to crack by losing their tightness and
consequently the adhesive viscosity.

The typical viscosity profile revealed the possibility of change in shape of the particles during
thermal processing of the corn starch. The inset provides a photographic view of the thermally
processed starch for 30 min. The viscosity breakdown in the time based curve of the pure starch, as
suggested in Figure 4, can be prevented or minimized by adding a cross-linking and or plasticizing
agent to the starch suspension [25,26]. In Figure 2, a small difference between the peak point and
the end point viscosities of the SUB sample suggests that the urea and borate modifiers in the starch
suspension significantly reduce the cracking of the starch particles. Therefore, the granules in modified
starch suspensions retain their tightness and the breakdown was not as bad as in the case of PS.
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Figure 4. Illustration of time-based swelling of pure starch.

A linear increase in viscosity during the early stage of heating is attributed to the swelling and
amylose leaching from the starch particles. The viscosity profile attains the peak value after the majority
of the particles have swelled out. A further heating of the suspension results in a decrease in viscosity
due to break-down of the starch particles under the shear field of the instrument. The mechanical
action of the instrument ruptures the swelled particles, in particular the native starch particles. After
break-down the amylopectin molecules start to shear and solubilize by reducing the molecular weight
of the amylopectin, subsequently, the adhesive viscosity [27,28]. In line with this, the shape of the
pasting curve may also depend on the starch type, chemical additives, pH of the suspension, applied
shear rate, heating time, temperature, and impurities [29]. The other physical conditions, applied
during the starch processing, also influence the gelatinization time and shape of the pasting curve [24].

Since modified starch samples revealed an almost similar trend in viscosity profiles, only PS
and SUB samples were compared and discussed further. In SUB complex, it is believed that the
di-sodium tetraborate molecules dissociate into sodium and borate ions [17]. FTIR technique was used
to understand the gelatinization mechanism of the pure and modified starches by producing infrared
spectra. Figure 5 shows the FTIR spectra of PS and SUB samples in the range of 500–4000 cm−1. A new
peak appeared in the FTIR spectrum of the SUB sample at a wavenumber of 1555 cm−1. This peak
shows the presence of secondary amide in the SUB sample. In a secondary amide, the amido-group
(nitrogen) is directly bonded to two carbon atoms. This secondary amide was produced during a
polymerization reaction between urea and starch in the presence of borate. In response, molecular
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weight, density, viscosity and surface tension of the adhesive were improved in the presence of urea
and borate in the starch suspension [27].
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Figure 6 reports the change in storage modulus with time. The modified starch showed good
stability whereas PS exhibited poor stability over time. A sharp decrease in storage modulus of PS after
300 s suggests that the gel structure is not stable and breaks down after a certain interval of time. It is
also observed that the modified starch retains its gel structure and slightly thickens over time after 380 s.
The reason for the apparent thickness of the modified starch gel may be twofold: water evaporation
and thixotropy. The tendency of water to evaporate during longer periods of measurements may result
in false thickening of the gel. Another possibility is that the solution could be thixotropic, i.e., the
behavior changes over time.
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Figure 6. The storage modulus plot of pure and modified starch.

The viscosity of the concentrated dispersions, when subjected to the stress or shear rate, does
not reach a steady state for some time due to the instability of the internal network structures. The
structures, fragmented by the shearing, take time to rebuild. A steady state would appear in the
respective viscosity plot soon after establishment of an equilibrium between the breakdown and
rebuilding of the structures. Figure 7 shows the stress ramp and yield stress at room temperature. This
plot was used to measure the yield stress: the stress value below which the sample behaves like an
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elastic fluid and which above this value, the sample starts to flow. In this plot, the PS behaved like a
fluid which started to flow immediately with the application of stress and SUB behaved like a week
gel with a yield stress of 9.4 Pa.

Polymers 2017, 9, 361 8 of 11 

 

a fluid which started to flow immediately with the application of stress and SUB behaved like a week 
gel with a yield stress of 9.4 Pa. 

100 200 300 400 500 600 700 800

0.1

1

10

SUB
Vi

sc
os

ity
 (P

a.
s)

Shear stress (Pa)

Yield stress = 9.4 Pa 

PS

 
Figure 7. Stress ramp for measurement of yield stress. 

The frequency sweep response of PS and SUB adhesives at 1% strain is compared in Figure 8. 
The storage and loss moduli of the samples were obtained by changing the angular frequency at room 
temperature. The modified starch behaved like a gel and its storage modulus was significantly higher 
than the loss modulus. Conversely, the PS showed dense fluid like character. The gel-like behavior 
of the SUB sample is attributed to a significantly higher elastic component than a viscous component. 
However, for a strong gel, the magnitudes of both elastic and viscous components should reach up 
to a million. 

0.1 1 10

1

10

M
od

ul
us

 G
' , G

''  (P
a)

Angular frequency (rad/s)

 G' of SUB
 G'' of SUB
 G' of PS
 G'' of PS

 
Figure 8. Frequency sweep response of pure and modified starch. 

The low magnitudes, as depicted from the frequency sweep curves, indicate that the modified 
starch was in the form of a weak gel but not a solid. The PS was more fluid in nature with the viscous 
component being more dominant at the lower angular frequencies. One can say that in spray coating 
applications, these modified starch samples would produce larger droplets with steady jet breakup. 
Finally, the elastic and viscous components of the PS showed an almost similar increasing trend over 

Figure 7. Stress ramp for measurement of yield stress.

The frequency sweep response of PS and SUB adhesives at 1% strain is compared in Figure 8. The
storage and loss moduli of the samples were obtained by changing the angular frequency at room
temperature. The modified starch behaved like a gel and its storage modulus was significantly higher
than the loss modulus. Conversely, the PS showed dense fluid like character. The gel-like behavior of
the SUB sample is attributed to a significantly higher elastic component than a viscous component.
However, for a strong gel, the magnitudes of both elastic and viscous components should reach up to
a million.
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The low magnitudes, as depicted from the frequency sweep curves, indicate that the modified
starch was in the form of a weak gel but not a solid. The PS was more fluid in nature with the viscous
component being more dominant at the lower angular frequencies. One can say that in spray coating
applications, these modified starch samples would produce larger droplets with steady jet breakup.
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Finally, the elastic and viscous components of the PS showed an almost similar increasing trend over
changing angular frequency. Both parameters were in good agreement at higher angular frequencies.
The reported literature reveals that thermally processed starches show shear-thickening response when
the quantity of the modifier in the dispersion is high enough to cause particle crowding [27,30].

Figure 9 shows a typical temperature dependent density profile of the SUB sample. The pure
and modified starch samples were also tested for their surface tension and density. The results of
these measurements are given in Table 2. Both parameters exhibited slightly decreasing trend with
a rise in run temperature from room temperature. The surface tension of SUB remained negligibly
higher than PS [27] at all temperatures. Conversely, the density of the SUB sample remained slightly
higher than the PS at lower temperatures (30–70 ◦C) but reached the same values as the PS at higher
temperatures. These results show that the modifiers in the dispersion did not significantly influence its
surface tension and density.

Polymers 2017, 9, 361 9 of 11 

 

changing angular frequency. Both parameters were in good agreement at higher angular frequencies. 
The reported literature reveals that thermally processed starches show shear-thickening response 
when the quantity of the modifier in the dispersion is high enough to cause particle crowding [27,30]. 

Figure 9 shows a typical temperature dependent density profile of the SUB sample. The pure 
and modified starch samples were also tested for their surface tension and density. The results of 
these measurements are given in Table 2. Both parameters exhibited slightly decreasing trend with a 
rise in run temperature from room temperature. The surface tension of SUB remained negligibly 
higher than PS [27] at all temperatures. Conversely, the density of the SUB sample remained slightly 
higher than the PS at lower temperatures (30–70 °C) but reached the same values as the PS at higher 
temperatures. These results show that the modifiers in the dispersion did not significantly influence 
its surface tension and density. 

Table 2. Density and surface tension of the thermally processed starch. 

Temp. (°C) 
Density (Kg/m3) Surface Tension (mN/m) 

PS Sample SUB Sample PS Sample SUB Sample 
30 1017 1019 68.7 69.0 
40 1013 1016 68.6 68.9 
50 1009 1011 68.4 68.5 
60 1004 1005 68.0 68.2 
70 999 1000 67.7 67.8 
80 993 993 67.2 67.4 
90 990 990 67.0 67.1 

 

 
Figure 9. A typical temperature dependent density profile of SUB sample. 

4. Conclusions 

The presence of small amounts of urea and borate in a starch dispersion can significantly alter 
the physical properties of the final product. Urea works as a plasticizer other than water and 
facilitates the movement of the polymer chains. The unmodified starch attained peak viscosity after 
17 min of heating at a fixed temperature of 85 °C. With further heating, the viscosity exhibited a slight 
decrease of 38 points over time. Although a similar trend was depicted in time based viscosity plots 
of modified starches, the peak viscosities of these samples were reported to be slightly higher than 
the pure starch. Also, the reduction in viscosity after the peak value was not as notable as for pure 
starch. A small difference between the peak point and end point viscosities of the modified starch 
samples suggested that the urea and borate modifiers significantly reduced the cracking of the starch 
particles. Therefore, the granules in modified starch suspensions retained their tightness and the 
breakdown was not as bad as in the case of PS. In the FTIR spectrum of SUB, a new peak appeared 
at a wavenumber of 1555 cm−1. This peak showed the presence of secondary amide, which was 

Figure 9. A typical temperature dependent density profile of SUB sample.

Table 2. Density and surface tension of the thermally processed starch.

Temp. (◦C) Density (Kg/m3) Surface Tension (mN/m)

PS Sample SUB Sample PS Sample SUB Sample

30 1017 1019 68.7 69.0
40 1013 1016 68.6 68.9
50 1009 1011 68.4 68.5
60 1004 1005 68.0 68.2
70 999 1000 67.7 67.8
80 993 993 67.2 67.4
90 990 990 67.0 67.1

4. Conclusions

The presence of small amounts of urea and borate in a starch dispersion can significantly alter the
physical properties of the final product. Urea works as a plasticizer other than water and facilitates
the movement of the polymer chains. The unmodified starch attained peak viscosity after 17 min of
heating at a fixed temperature of 85 ◦C. With further heating, the viscosity exhibited a slight decrease
of 38 points over time. Although a similar trend was depicted in time based viscosity plots of modified
starches, the peak viscosities of these samples were reported to be slightly higher than the pure starch.
Also, the reduction in viscosity after the peak value was not as notable as for pure starch. A small
difference between the peak point and end point viscosities of the modified starch samples suggested
that the urea and borate modifiers significantly reduced the cracking of the starch particles. Therefore,
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the granules in modified starch suspensions retained their tightness and the breakdown was not as bad
as in the case of PS. In the FTIR spectrum of SUB, a new peak appeared at a wavenumber of 1555 cm−1.
This peak showed the presence of secondary amide, which was produced during the polymerization
reaction between urea and starch in the presence of borate. In response, molecular weight, density,
viscosity, and surface tension of the SUB adhesive were improved in the presence of urea and borate in
the starch suspension.

The modified starches showed good stability whereas pure starch exhibited poor stability over
time. A sharp decrease in storage modulus of pure starch after 300 s suggested an unstable gel
structure, which breaks down after a certain interval of time. The modified starches behaved like
weak gels and their storage modulus was significantly higher than the loss modulus. Contrarily, the
pure starch showed dense fluid like character. The lower magnitudes, as depicted from the frequency
sweep curves, revealed that the modified starch was in the form of a weak gel and not a solid. The
pure starch was more fluid in nature with the viscous component being more dominant at lower
angular frequencies.
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