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Abstract
Estrogen-receptor-positive (ER+) tumors employ complex signaling that engages in cross-

talk with multiple pathways through genomic and non-genomic regulation. A greater under-

standing of these pathways is important for developing improved biomarkers that can better

determine treatment choices, risk of recurrence and cancer progression. Deficiencies in

DNA repair capacity (DRC) is a hallmark of breast cancer (BC); therefore, in this work we

tested whether ER signaling influences DRC. We analyzed the association between ER

positivity (% receptor activation) and DRC in 270 BC patients, then further stratified our

analysis by HER2 receptor status. Our results show that among HER2 negative, the likeli-

hood of having low DRC values among ER- women is 1.92 (95% CI: 1.03, 3.57) times the

likelihood of having low DRC values among ER+ women, even adjusting for different poten-

tial confounders (p<0.05); however, a contrary pattern was observed among HER2 posi-

tives women. In conclusion, there is an association between DRC levels and ER status, and

this association is modified by HER2 receptor status. Adding a DNA repair capacity test to

hormone receptor testing may provide new information on defective DNA repair pheno-

types, which could better stratify BC patients who have ER+ tumors. ER+/HER2- tumors

are heterogeneous, incompletely defined, and clinically challenging to treat; the addition of

a DRC test could better characterize and classify these patients as well as help clinicians

select optimal therapies, which could improve outcomes and reduce recurrences.

Introduction
Worldwide, breast cancer (BC) is a growing health problem, both in its increasing incidence
[1] and resistance to treatment [2]. Between 2008 and 2013, the worldwide incidence of BC

PLOSONE | DOI:10.1371/journal.pone.0152422 March 31, 2016 1 / 14

a11111

OPEN ACCESS

Citation: Matta J, Morales L, Ortiz C, Adams D,
Vargas W, Casbas P, et al. (2016) Estrogen Receptor
Expression Is Associated with DNA Repair Capacity
in Breast Cancer. PLoS ONE 11(3): e0152422.
doi:10.1371/journal.pone.0152422

Editor:William B. Coleman, University of North
Carolina School of Medicine, UNITED STATES

Received: December 25, 2015

Accepted: March 14, 2016

Published: March 31, 2016

Copyright: © 2016 Matta et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This study was supported by grants from
the NCI Center to Reduce Health Disparities and
NIH-MBRS Program grant # S06 GM008239-20 and
9SC1CA182846-04 to Ponce School of Medicine
through Dr. J. Matta and PSM-MCC Partnership grant
# 5U54CA163071-04. Carmen Ortiz was supported
by MBRS-RISE GM082406 [NIH-NIGMS]. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0152422&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0152422&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0152422&domain=pdf
http://creativecommons.org/licenses/by/4.0/


rose by 20% [3]. Additionally, 30% of all estrogen-receptor-positive (ER+) breast tumors
exhibit de novo resistance, and 40% of patients who initially respond to treatment will acquire
resistance despite remaining ER+ [4,5].

ER status is an established therapeutic and prognostic biomarker for BC [6–10]. Although
hormone receptor status is a mainstay for molecular and clinicopathological classification of
BC [11–15], it provides an incomplete molecular model for classifying BC tumors. Although
significant progress has been made in the clinical management of ER+ tumors, prevailing chal-
lenges are associated with their molecular heterogeneity, resistance to standard endocrine ther-
apy, and the risk of late recurrence. These challenges are driving intense research efforts to find
predictors of chemosensitivity in ER+ BC.

The majority of BC deaths ultimately occur in ER+ women. ER signaling is complex and
highly regulated; it affects both proliferation and survival [16]. Understanding the scope and
influence of ER signaling is challenging—including how it affects therapeutic response.
Approximately 75% of all breast tumors are ER+ [17–21], but only about half of all ER+ tumors
respond to anti-estrogen therapy [19,22–24]. Additionally, only 20% of those tumors stop
expressing ER when they become endocrine resistant [25,26]. There is therefore an urgent
need to find effective interventions [27,28].

ER signaling works through both genomic and non-genomic mechanisms that engage in
crosstalk [25,29]. ER signaling has a propensity to increase proliferation, which can lead to
mutations when DNA repair is dysregulated. Such dysregulation is a hallmark of breast carci-
nogenesis [30–34] and confers a phenotype of increased cellular division or decreased apopto-
sis [35]. Indeed, recent studies have documented interactions between ER and DNA damage
response/repair [36,37]. Moreover, our previous work showed that DNA repair capacity
(DRC) in BC patients is approximately half that of women without the disease (p<0.001) [38],
and deficiency in the nucleotide excision repair (NER) pathway figures prominently in the
pathobiology of sporadic BC [39].

The relationship between ER activation/signaling and DNA damage/repair is only starting
to be investigated. This manuscript: (1) explains our recent findings regarding the association
between ER status and the defective DNA repair phenotype, controlling for different variables
including HER2 receptor status [38,39], (2) outlines potential mechanisms behind what we
found for future mechanistic studies, and (3) proposes how our findings could form the basis
for a new combination of biomarker testing that may better characterize BC tumors, which
could improve diagnostic, prognostic, and therapeutic efforts.

Results

Study population
The average age of women with BC was 56.4 years (±12.2) at the time of initial diagnosis. All of
the women were untreated BC cases. Approximately, 18.5% were younger than 45 years and
24.4% were older than 65 years. Nearly 25% of the women with BC studied reported having
consumed multivitamins in the last 5 years, 17.6% reported having consumed calcium in the
last 5 years. Approximately 65% were menopausal women, and 24.8% of patients had a family
history of BC. About 52% (n = 127) of the women studied with BC had grade II tumors, fol-
lowed by 36% of the women with grade III tumors (n = 88), only 13% (n = 31) had grade I
tumors (Table 1).

The overall mean value DRC was 3.0% (±2.8% S.D.) and the median DRC value was 2.1%,
with an interquartile range of 2.8% (75th percentile minus 25th percentile) (Table 1). Nearly
73% of the BC patients had tumors classified as ER positive, 23.7% had HER2 positive tumors
and 63% were progesterone positive (Table 1). When the DRC distribution was described by
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Table 1. Characteristics of study group consisting of womenwith breast cancer. Women with BC his-
tory, menopausal and their tumor grade and receptor status (estrogen, HER2, progesterone) classification
expressed as numerical and % values (n = 270).

Variables Summary measures(N = 270)
N (%)

DRC (%)* 3.05 ± 2.8

Median DRC (P25, P75) 2.1 (1.24%, 4.07%)

DRC (tertiles)

< 1.6% 90 (33.3)

1.6–3.2% 90 (33.3)

> 3.2% 90 (33.3)

Age

< 45 50 (18.5)

46–55 79 (29.3)

56–65 75 (27.8)

> 65 66 (24.4)

Median Age (SD) 56.4 ± 12.2

History of breast cancer

Yes 67 (24.8)

No 203 (75.2)

Menopausal status

Yes 174 (64.4)

No 96 (35.6)

Multivitamin consumption in the last 5 years

Yes 66 (25.2)

No 204 (74.8)

Calcium consumption in the last 5 years

Yes 46 (17.6)

No 224 (82.4)

Tumor grade

I 31 (12.6)

II 127 (51.6)

III 88 (35.8)

Missing 24

Receptor status

Estrogen Receptor

Negative 73 (27.0)

Positive 197 (73.0)

HER2 Receptor

Negative 206 (76.3)

Positive 64 (23.7)

Progesterone Receptor

Negative 100 (37.0)

Positive 170 (63.0)

* Value of % DNA repair capacity (DRC) measured in lymphocytes expressed as mean ( �X �), ± 1 standard

deviation (SD) and median values including percentile 25 (P25) and percentile 75 (P75).

doi:10.1371/journal.pone.0152422.t001
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HER2 (+,-) and ER (+,-) status among women with BC, different patterns were observed. In all
four combinations of the categories of these two receptors, the DRC values showed a positive
skew (were highly concentrated at low values) (Fig 1). The highest median DRC value (2.83%)
was in the ER-HER2+ group, the ER-HER2- group had a DRC value (1.75%), representing a
reduction of approximately 38%. However, among HER2 negatives, a higher number of
women had low DRC values, independently of the ER status (Fig 1).

Ordinal Logistic regression model
The ordinal logistic model was utilized to analyze the data with different cutoff points in the
DRC according to the HER2 status. This was done in order to more precisely assess the rela-
tionship between DRC expressed as a categorical variable in tertiles and ER status. Different
patterns were observed, as presented in Table 2. These were divided into two groups:

Fig 1. Distribution of levels of % DNA repair capacity (DRC) in 270 womenwith breast cancer separated in four groups according to estrogen
receptor (ER) and HER2 status. The height of the rectangle denotes the percentage of women with a specific %DRC level. The line denotes the Kernel
density estimation (KDE) to show the smoothing distribution of the %DRC. Between parentheses indicates percentile 25 and percentile 75.

doi:10.1371/journal.pone.0152422.g001
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Women with HER2 negative breast cancer tumors
The results indicate that the likelihood of having a DRC below 1.6% among women with ER-
tumors is 2.23 (95% CI: 1.13, 4.68) times the likelihood of having a DRC below 1.6% among ER
+ women. After adjusting for different potential confounders, this excess likelihood was statis-
tically significant (p<0.05). When the cutoff point of the DRC of 3.2% is used (Table 2), the
likelihood of having a DRC below 3.2% among ER- women is 1.42 (95% CI: 0.67, 2.99) times
the likelihood of having a DRC below 3.2% among ER+ women, even adjusting for different
potential confounders; however, this excess was not statistically significant (p>0.05). When we
assessed the proportional odds assumption of the ordinal logistic model, the results were not
significant (p> 0.05); hence, only one OR can be estimated without depending on the cutoff
point. Therefore, the results indicate that the likelihood of having low DRC values among ER-
women is 1.92 (95% CI: 1.03, 3.57) times the likelihood of having low DRC values among ER
+ women, even adjusting for different potential confounders; this excess likelihood was statisti-
cally significant (p<0.05).

Women with HER2 positive breast cancer tumors
Women with HER2 BC tumors showed the opposite pattern, the likelihood of having low DRC
values among ER- women is 33% (OR: 0.67, 95% CI: 0.25, 1.79) lower than the likelihood of
having low DRC values among ER+ women, even adjusting for different potential confounders;
however, this reduction was not statistically significant (p>0.05).

Discussion
We found that DRC and ER levels are associated and that this association is modified by HER2
receptor status in women whose BC tumors are HER2-. This association suggests that DRC and
ER levels are linked: as DRC levels increase, ER levels also increase, and vice versa. Although pre-
vious studies have established that a defective DNA repair phenotype is commonly found in
women with BC [38–40], to our knowledge, this is the first study to show that ER status is associ-
ated with a defective DNA repair phenotype. Our previous study (Matta et al. 2012) using a case
control design with 824 women showed the usefulness of DRC level as a measure of BC risk. For
every percent unit of decrease in DRC, there is 64%more likelihood of having BC. Thus, the sub-
tle differences in DRC in women with BC divided into the four groups presented in Fig 1, provide
additional evidence on how DRC is associated with BC risk. For example, the two groups with

Table 2. Magnitude of the association between tertiles of levels % DNA repair capacity (DRC) according to estrogen receptor (ER) and HER2 recep-
tor status (n = 270).

HER2 ER %DRC Adjusted# Adjusted# Adjusted#

<1.6% 1.6–3.2% >3.2% ORð�1:6Þ
ER�vs:ERþ ORð�3:2Þ

ER�vs:ERþ ORðlow DRC levelð1ÞÞ
ER�vs:ERþ

Negative Negative 24 14 12 2.23* (1.13, 4.38) 1.42 (.67, 2.99) 1.92* (1.03, 3.57)

(n = 206) Positive 46 60 50 1 1 1

Positive Negative 5 8 10 0.38 (0.11, 1.32) 0.92 (0.31,2.73) 0.67 (0.25,1.79)

(n = 64) Positive 15 8 18 1 1 1

Total Negative 29 22 22 1.48 (0.84, 2.61) 1.26 (0.70, 2.27) 1.38 (0.83, 2.29)

(n = 270) Positive 61 68 68 1 1 1

#Adjusted for menopausal status, breast cancer history age, multivitamin and/or calcium consumption in the last 5 years

*P-value < 0.05

(1) Only 1 OR is reported because the proportional odds assumption was met (p>0.05).

doi:10.1371/journal.pone.0152422.t002
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the lowest DRC (ER-/HER2-, ER+/HER2-) represented 76% of the study group comprised of
270 women. DNA repair genes, particularly those involved in base excision repair may have a
significant effect on estrogen-driven breast cancer specific survival (BCSS) as recently shown by
Abdel-Fatah et al. (2014). They studied 1,406 women with ER positive early stage BCs with 20
years long term clinical follow-up data. Multivariate Cox proportional hazards model was used
to calculate a DNA repair prognostic index and correlated to clinicopathological variables and
survival outcomes. Key base excision repair proteins including XRCC1, APE1, SMUG1 and
FEN1 were independently associated with poor BCSS [36].

Background related to findings
Most ER+ breast tumors are classified as luminal [13–15,41]. Luminal A is characterized by ER
+/PR+/HER2-/low Ki-67 [42] and typically responds well to endocrine therapy [28]. In con-
trast, Luminal B is either HER2+ or HER2- but is ER+/PR+/high Ki-67 [42]; such tumors are
complex diagnostically and therapeutically [28]. Luminal A tumors are considered as more dif-
ferentiated, indolent, and sensitive to endocrine therapy, whereas Luminal B tumors are more
aggressive and resistant to endocrine therapy [43]. Indeed, Lips’ 2012 analysis of biopsies from
211 treatment-naïve ER+/HER2- primary breast tumors could not define a subgroup that
would be most likely to benefit from neoadjuvant therapy, much less predict chemosensitivity
or treatment outcome. Biopsies of the same patients taken post-treatment but prior to surgery
were equally unrevealing [41].

Despite today’s availability of comprehensive gene signature assays (see review by Issa et al.
2014) and our increasing knowledge of which genes are dysregulated in BC and how, the infor-
mation has not always resulted in increased clinical utility or better prognostic tools [44]. San-
tarpia’s 2013 research on a 145-gene expression profile to try to characterize ER+/HER2-
subgroups yielded interesting but inconclusive information [37]. But problems exist even with
genes that have been studied in depth for years. For example, EGFR is amplified in many BCs,
and its crosstalk with ER signaling is well established. Yet large randomized trials of treatment-
naïve ER+/HER- patients did not respond any better to treatment when an EGFR signaling
inhibitor was coupled with an aromatase inhibitor [41]. Similar results occurred in studies
using a fibroblast growth factor receptor inhibitor [41]. ASCO’s 2014 guidelines acknowledge
this knowledge gap and note that no optimal first- or second-line treatment exists for advanced
ER+/HER2- BC [8]. Collectively this underscores the need for better molecular classification
[19,23,41,45], and ER+/HER2- breast tumors may be the “canary in the coal mine” pointing us
to a more effective predictive model: a combination of receptor assays and DRC. Even though
research has made great strides in the molecular characterization of DNA repair pathways—
and efforts to map NER and two other pathways were awarded 2015 Nobel Prizes in Chemis-
try—our knowledge still remains incomplete. Because of this we propose that the combination
of molecular signatures data, including the DNA repair prognostic index recently developed by
Abdel-Fatah et al. (2014), with DNA repair phenotypic data can enable more accurate diagnos-
tic and therapeutic decisions [36].

Biological plausibility of our findings
In healthy people, ER signaling generally downregulates DNA damage response (DDR) [46]
while simultaneously promoting proliferation [46,47]. Seventy percent of ER activity is gov-
erned by highly regulated genetics that keep ER’s influence in check [23]. However, dysregu-
lated ER signaling confers a phenotype of increased proliferation or decreased apoptosis [35].
Sustained ER signaling permits accumulation of low-level DNA damage, an event documented
early in tumorigenesis [48].
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ER activation leads to transcriptional responses both in genes with and without estrogen
response elements. Additionally, ER activation can elicit non-transcriptional cellular
responses, all of which favor cell proliferation and survival [21,49]. This diversity points to
traditional (canonical) genomic signaling in the nucleus, as well as plasma-membrane-bound
(non-canonical) signaling. The former involves ER binding directly to a cognate ligand on
the promoter region of a gene. In the latter, ER “tethers” to “pioneer factors” that enable ER
to influence pathways that eventually act on downstream target transcription factors (such as
ER’s interactions with VEGF and AP-1) [21]. Both types of activities result in altered gene
expression, and both can lead to point mutations and uncontrolled cellular proliferation—
despite the former being genomic while the latter is not [45]. More importantly, sustained ER
signaling can lead to greater expression of proliferation-related genes that may rely less on
expression of traditional ER genes but more on alternate pathways for activation and tumor
growth [28].

Our finding that women with BC and ER negative tumors have lower DRC values among
HER2- seems counterintuitive at first. However, this molecular response may be an early event
in tumorigenesis—perhaps ER’s attempt to induce DNA repair to offset increasing replication
errors of early mutagenesis.

This raises the question of what factor(s) could modulate that association, and how might
that affect treatment options? If such factors could be determined, more effective biomarker
panels and therapeutic regimens could be devised. Although the DRC assay is currently used
primarily as a method of estimating BC risk [38], its combination with hormone receptor status
as described here may expand its applications.

Despite the variety of gene signature assays available today, a 2014 analysis [50] shows that
even the most comprehensive assay is not cost-effective in pinpointing optimal adjuvant treat-
ment or outcomes for ER+ BCs [50]. New combinations of molecular markers such as DRC
plus hormone receptor status may allow better tumor differentiation within the same molecu-
lar subtype—and lead to more effective treatment.

Why only ER+/HER2- tumors?
Breast cells with estrogen-induced DNA damage can either delay damage response/repair or
can promote cell survival at the expense of repair [51]. So why this DRC/ER relationship would
be detectable only in the ER+/HER2- subpopulation is a tantalizing question.

ER appears to influence virtually every DNA repair pathway [46,48,52–54]. While direct
evidence for some of those pathways is sparse, dysfunction and downregulation of the NER
pathway is prominent and well-documented in BCs [38–40]. Abnormal expression of two NER
proteins (RPA, a damage sensor; and PCNA, a progressivity factor) is associated with ER
+/HER2- breast tumors [37].

Two linchpins for ER’s influence on DNA repair pathways may be p53 and PI3K. ER
appears to have a bidirectional, yin-yang relationship with p53, which influences many repair
pathways. But more evidence for how ER can shift repair signaling appears to be associated
with the PI3K pathway—a superhighway for survival signaling [26,55,56]. Hyperactivation of
the PI3K-Akt-mTOR pathway is common in BC [57]. Dysregulated expression of growth fac-
tor receptors including ER can activate the Ras/Raf/MEK/ERK pathway, Ras/PI3K/PTEN/Akt/
mTOR and other signaling pathways, creating a self-sustaining feed-forward loop of persistent
signaling [58], which could lead to resistance to hormonal therapy [59]. S1 Fig depicts our
vision of how estrogen affects DNA repair.
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Strengths and limitations of this study
To our knowledge, we are the first to explore the relationship between DRC and ER in this
manner. Additionally, we believe we are the first to explore how HER2 status affects the DRC/
ER relationship. This novel approach has great potential utility for personalized medicine. For
example, with ER emerging as a contributor to dysregulated DNA repair; it makes sense to
include testing for a DNA repair phenotype along with hormone receptor status testing. Based
on our results, our proposal using these two types of testing in combination can provide further
molecular characterization of breast tumors—with possible insights into better treatment
choices—particularly in the more clinically challenging BCs including, but not limited to ER
+/HER2- cases. Our study has robust sample size and power [38]; results were consistent after
adjustment of different sources of variability (menopausal status, history of BC, and HER2 sta-
tus) in the ordinal logistic regression model.

Conclusions
The heterogeneity of ER+ tumors, their unequal response to anti-estrogen therapy, and ER’s
capacity to influence gene expression collectively point to the need for more comprehensive
molecular characterization of BC tumors. In BC, adding a test for DRC to a genome signature
allows identification of the defective DNA repair phenotype and may enhance our capacity to
predict which Luminal B tumors are likely to be more aggressive. This allows selection of better
treatment regimens, especially for diagnostically and therapeutically complex molecular BC
subtypes such as ER+/HER2-. Our findings indicate a previously undetected, subtle difference
in ER+ tumors, which could also help explain the lack of correlation between end points
among some clinical trials for these tumors. The availability of single-cell and single-molecule
assays puts the exciting possibility of better molecular profiling within our grasp.

Methods

Patient Recruitment
The study was approved by the Ponce Health Sciences University Institutional Review Board
(IRB #120207-JM). Patients for this study were selected from our larger BC study (1,181
patients and controls; recruited 2006–2012), which has been previously described [38,60,61].
The cases selected for this study were women with primary diagnosis of BC and were recruited
from gynecological and oncology clinics throughout Puerto Rico.

Inclusion criteria were patients who: (1) were recently diagnosed histopathologically with
primary BC, (2) were treatment-naïve (had not received chemotherapy, blood transfusions, or
radiotherapy), and (3) had pathology reports that included hormone receptor information. We
obtained consent forms that allowed us to interview the participants, obtain blood samples,
and review their pathology reports. Among the cases, 344 women were eligible to participate in
the study; however, only 270 had complete hormone receptor status information. Therefore,
our final study group comprised 270 BC cases.

DNA Repair Capacity (DRC) Measurements
The host cell reactivation (HCR) assay with a luciferase reporter gene that we utilized to mea-
sure DRC levels in lymphocytes has been described in previously published molecular epidemi-
ological studies of cancer [40,62–68]. We have previously published details about the variability,
stability of plasmid transfection and differences between cryopreserved versus fresh blood sam-
ples for the HCR [38]. This assay measures the total DRC of transfected lymphocytes. Results
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reflect the host cells’ overall repair capacity, although HCR primarily detects activity of the
nucleotide excision repair (NER) pathway [38].

Blood collection and isolation of lymphocytes from women
We used peripheral blood samples to obtain lymphocytes, which were separated, purified and
grown from each patient sample [38]. Those cells were used as surrogate markers of the
patients’ overall DRC [69,70]. Approximately 30 mL of peripheral blood was obtained from
each participant and stored in heparinized tubes. The lymphocytes were then isolated by the
Ficoll gradient technique and suspended in 2 mL of freezing media containing 10% dimethyl
sulfoxide, 40% RPMI 1640 medium, 50% fetal bovine serum, and 1% antibiotic/antimycotic.
Aliquots were stored in a −80°C freezer for 1–3 weeks. The lymphocytes were later thawed in
batches of 5–7 samples for the HCR assay (details follow). Collection periods were approxi-
mately the same for patients and women without BC because recruitment was conducted
concurrently.

The HCR was performed on the peripheral blood lymphocytes to measure in vivo DRC, as
described in previous studies [38,40,60,61,71]. The late Dr. Lawrence Grossman (Johns Hop-
kins School of Public Health, Baltimore, MD) provided the luciferase plasmid for the HCR
assay and the protocol for its use. A nonreplicating plasmid expression vector (pCMVluc) of
4,863 base pairs was genetically engineered to contain a bacterial luciferase reporter gene that
is not present in a mammalian cell. The gene was damaged by ultraviolet C radiation (254 nm)
exposure in a controlled, quantitative manner (dose—response curve) so that the level of its
expression was a direct measure of the repair capacity of the host mammalian cell. The plasmid
construct containing the luciferase gene (LUC) was irradiated at 0, 350, and 700 J/m2 using a
254-nm UVC lamp (38). This plasmid construct and its validation have been described previ-
ously [72]. The controlled, quantitative UV exposure produced a dose—response curve so that
the level of its expression was a direct measure of the repair capacity of the host mammalian
cell. After transfection into lymphocytes, repair-transcription-blocking damage was introduced
exogenously on foreign DNA; then overall DRC was measured via HCR [71]. This approach
measured the unaffected phenotype, which reflects the cells’ inherent DRC, measured primar-
ily in terms of their NER activity [71]. Keeping the time constant for the lymphocytes to com-
plete the repair mirrored the true cellular process [70].

To calculate the DRC, undamaged plasmid DNA was compared to repair of in-vitro-dam-
aged plasmid DNA; the results were expressed as the percentage of residual luciferase reporter
gene expression (% luciferase activity in luminescence units). The amount of gene expression
reflected DRC, expressed as a percentage. A detailed description of the assay, including separa-
tion of DRC by tertiles, is found in Matta et al. 2012 [38]. This study builds upon our labora-
tory’s 17 years of experience in performing the HCR assay to measure DRC and its validation
of the sensitivity, specificity, and usefulness as a measure of BC risk [38].

Hormone Receptor Status
We reviewed the patients’medical records to collect receptor status data on estrogen (ER), pro-
gesterone (PR) and human epidermal growth factor receptor 2 (HER2). Ten private laborato-
ries in Puerto Rico performed the receptor status assays on patients’ formalin fixed tumor
biopsies, using immunohistochemistry (IHC) methods per ASCO (American Society of Clini-
cal Oncology) and CAP (College of American Pathologists) guidelines [10,73]. ER and PR
analyses included the percentage of positive-staining cells, the intensity of staining (weak, mod-
erate, or strong), and an interpretation (“receptor positive”meant�1% of invasive tumor cells
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stained positive for ER/PR; “receptor negative”meant<1% of invasive tumor cells stained pos-
itive for ER/PR) [10].

HER2 testing also utilized IHC-based assays. All laboratories used FDA-approved IHC
assays. When an assay yielded equivocal results (2+ or 1+), Fluorescence In Situ Hybridization
(FISH) was used to determine whether those samples were HER2+ or HER2-, based on the
quantity of HER2 gene copies per nucleus [10]. For our analysis, we categorized HER2 status
as a dichotomous variable of ‘‘positive” (all 3+ results) or ‘‘negative” (2+ to 0 results).

Statistical Analysis
We used descriptive statistics to summarize quantitative variables; while for categorical vari-
ables we used percentages in each category of these variables. To assess the possibility of selec-
tion bias, a significance test was performed using the normal approach to compare the mean
DRC among women with complete (n = 270) versus incomplete (n = 74) receptor status infor-
mation. The results from this comparison did not show any significant difference (p>0.05).

An ordinal logistic regression model (OLRM) was used to assess the relationship between
DRC and ER status [74]. The OLRM is an extension of the logistic regression model that
applies to dichotomous dependent variables, allowing for more than two (ordered) response
categories. In order to apply this model to our analysis, the DRC was categorized in different
groups, using as a cut-off points the observed DRC tertiles (<1.6%, 1.6–3.2%,>3.2%). The
expression of this model is as follows:

log
P�k

P>k

¼ b0k � bEk � ERþ
X

biCi

where P�k indicates the prevalence of women with DRC equal or below tertile k, P>k indicates
the prevalence of women with DRC above tertile k, βEk indicates the coefficient associated to
ER when the kth-DRC tertile is used, ER is a dummy variables to indicate the ER status (+, -),
and βi indicates the coefficient associated to each potential confounding variables, Ci. This

model provides an estimate of the magnitude of the association (ORð�kÞ
ER�vs:ERþ) between DRC and

ER at different cut-off point of the DRC, as follows:

ORð�kÞ
ER�vs:ERþ ¼ eb̂EK�1:96SEðb̂EK Þ

where SEðb̂EKÞ indicates the standard error of b̂EK . However, if the assumption of proportional

odds (ORð�1:6Þ
ER�vs:ERþ = ORð�3:2Þ

ER�vs:ERþ) is met, then only one OR is estimated without depending of the
cutoff point of the DRC. Our data showed that this assumption was met (p>0.1); therefore,
only one estimation of the OR was reported.

Supporting Information
S1 Fig. Potential pleotropic effects of estrogen on proliferation, DNA damage and DNA
repair capacity in breast cancer cells. Estrogen can have a variety of effect on the tumor cells
some of which may involve DNA repair signaling specially among HER2(-) tumors. (A) In the
canonical pathway, ER binds to the promoter regions of genes involved in cell cycle progres-
sion. (B) Non-canonical pathways involve many other signaling cascades such as p53, mTOR
and ERK which can also lead to increased proliferation. Both of these pathways can lead to low
levels of DNA damage that may “switch on”DNA repair mechanisms (evaluated in in this
study in the patients’ circulating lymphocytes).
(DOCX)
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