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Application of deep learning to predict underestimation in ductal 
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Background: To develop an ultrasound-based deep learning model to predict postoperative upgrading of 
pure ductal carcinoma in situ (DCIS) diagnosed by core needle biopsy (CNB) before surgery.
Methods: Of the 360 patients with DCIS diagnosed by CNB and identified retrospectively, 180 had 
lesions upstaged to ductal carcinoma in situ with microinvasion (DCISM) or invasive ductal carcinoma 
(IDC) postoperatively. Ultrasound images obtained from the hospital database were divided into a training 
set (n=240) and validation set (n=120), with a ratio of 2:1 in chronological order. Four deep learning 
models, based on the ResNet and VggNet structures, were established to classify the ultrasound images into 
postoperative upgrade and pure DCIS. We obtained the area under the receiver operating characteristic 
curve (AUROC), specificity, sensitivity, accuracy, positive predictive value (PPV), and negative predictive 
value (NPV) to estimate the performance of the predictive models. The robustness of the models was 
evaluated by a 3-fold cross-validation.
Results: Clinical features were not significantly different between the training set and the test set (P value 
>0.05). The area under the receiver operating characteristic curve of our models ranged from 0.724 to 0.804. 
The sensitivity, specificity, and accuracy of the optimal model were 0.733, 0.750, and 0.742, respectively. The 
three-fold cross-validation results showed that the model was very robust.
Conclusions: The ultrasound-based deep learning prediction model is effective in predicting DCIS that 
will be upgraded postoperatively.
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Introduction

In recent years, with the global spread and development 
of breast cancer screening, the detection rate of ductal 
carcinoma in situ (DCIS) is increasing, accounting for 
about 20% of diagnosed breast cancers (1). Presently, the 
main treatment of DCIS is surgery. For a breast mass, the 
treatment would include mastectomy or lumpectomy plus 
radiation therapy. According to the American Society of 
Clinical Oncology guidelines, patients diagnosed with pure 
DCIS by core needle biopsy (CNB) before surgery should 
undergo sentinel lymph node biopsy (SLNB) if they choose 
mastectomy (2); patients who undergo lumpectomy should 
undergo SLNB if DCIS is upgraded postoperatively.

The treatment of DCIS such as the management of 
lymph nodes is controversial. Theoretically, pure DCIS 
does not have axillary lymph node metastases. However, 
approximately 12–32% of cases diagnosed by CNB before 
surgery involve upstaging to a microinvasion; this indicates 
the invasion of cancer cells beyond the basement membrane 
into at least 1 mm of the adjacent tissue or the diagnosis of 
an invasive cancer on postoperative specimen analysis (3-6).  
The major cause of upstaging cannot be determined by 
CNB, and imaging manifestations, biopsy techniques, and 
the DCIS size could also affect the preoperative diagnosis 
(3-6). Therefore, overtreatment and undertreatment 
may occur in the management of axillary lymph nodes in 
patients with DCIS. For example, clinicians may perform 
SLNB at the time of initial surgery if DCIS was upstaged 
before surgery. On the other hand, patients who choose 
lumpectomy may require a second operation for SNLB, 
which may increase the financial and psychological burden.

To prevent overtreatment caused by over-diagnosis of 
DCIS in clinical practice, prospective studies on whether 
patients can be treated with active monitoring, follow-up, 
radiotherapy, and other non-surgical treatments instead 
of traditional surgical treatments are currently ongoing in 
the United Kingdom [Low Risk DCIS trial (LORIS)] (7)  
and in the United States [the comparison of operative 
versus medical endocrine therapy for low-risk DCIS trials 
(COMET)] (8). DCIS at high risk of stromal invasion 
should be excluded before non-surgical treatment is 
considered. Therefore, predictors of postsurgical upstaging 
of preoperatively diagnosed pure DCIS by CNB are critical.

Presently, DCIS is mainly screened using mammography. 
Its main imaging manifestation is the presence of clustered 
microcalcifications, but this feature is not unique to DCIS. 
Therefore, it is difficult to distinguish DCIS from invasive 

carcinoma using imaging studies. In addition, postoperative 
upstaging is observed in patients diagnosed with DCIS 
using puncture biopsy. Distinction between DCIS and 
invasive carcinoma before surgery has been addressed 
previously. Recently, research has focused on corresponding 
clinical factors as predictors of postoperative upstaging 
of pure DCIS diagnosed preoperatively by CNB (3,9,10). 
However, the evaluation of some of these clinical factors 
have been subjective, and the factors are difficult to apply in 
clinical practice. Recently, with the development of artificial 
intelligence (AI), researchers have evaluated models that 
can extract effective features through large-scale images 
and clinical data to predict postoperative upgrading of pure 
DCIS diagnosed by CNB. Currently, all AI prediction 
studies are based on mammography or magnetic resonance 
imaging (MRI). While ultrasonography is commonly used 
in breast examination, there are no AI studies that use 
ultrasound images to predict the postoperative upgrade of 
pure DCIS diagnosed by CNB. The purpose of this study 
was to predict the postoperative upgrading of pure DCIS, 
diagnosed by preoperative CNB using deep learning based 
on two-dimensional ultrasound images. We presented 
the following article in accordance with the STARD 2015 
reporting checklist (available at http://dx.doi.org/10.21037/
atm-20-3981).

Methods 

Patients

For optimal performance of the convolution network 
model, the sample sizes in the two groups (upstaged and 
pure DCIS) should be equal (11). Previous research has 
shown a wide variability of the number of cases in the two 
groups, with an upgrade rate of pure DCIS after surgery 
of 12–32% (3-6). Therefore, to balance the number of 
upstaged and pure DCIS, we retrospectively enrolled 180 
upstaged and 180 pure DCIS eligible patients. Taking 
January 1, 2018 as the base point, we consecutively enrolled 
120 pure DCIS before and 60 pure DCIS after. The same 
enrollment method was used for the upstaged patients. 
Data were collected between March 2016 and July 2018.
The patients’ ultrasound images were obtained from the 
hospital database. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). This 
study was approved by the ethics committee of the principal 
investigator’s hospital and is registered at ClinicalTrials.
gov (050432-4-1911D).  Because of the retrospective nature 
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of the research, the requirement for informed consent was 
waived.

The inclusion criteria were as follows: (I) the pathological 
diagnosis with CNB was pure DCIS; (II) the surgery was 
done at the Shanghai Cancer Hospital; (III) no adjuvant 
therapy, such as neoadjuvant chemotherapy, was performed 
before the operation; (IV) breast ultrasound examination 
was performed within a month before CNB, and the images 
were saved in the database. Patients were excluded from 
the study if the suspected anatomical sites based on the 
images did not have cancer on pathological analysis and 
if no obvious mass or non-mass lesion was detected by 
radiologists on ultrasound images. 

We enrolled the patients consecutively. The first two-
thirds of the patients in the two groups made up the training 
set (n=240), while the others made up the validation set 
(n=120).

Image acquisition and processing

The images in our research were from the Shanghai Cancer 
Hospital. DCIS is complex and has diverse ultrasound 

images. Some lesions are diffusely distributed along the 
ducts (12,13). Therefore, it is difficult for radiologists to 
select a suitable region of interest (ROI) (see Figure 1). 
Therefore, the whole ultrasound image was taken as the 
ROI. Due to the variation in the image dimensions which 
were determined by the different ultrasound machines, 
all the images were resized into 200×200 pixels before 
putting them into the model. The label of each image was 
determined by the corresponding histopathological results; 
pure DCIS was 0, while upstaged DCIS was 1.

In our study, the models referred to the classical 
convolution neural network (CNN), including ResNet 
and VggNet (14-16). The classical model has been proven 
to be feasible in image feature recognition after many 
experiments. Therefore, our model retained their structure, 
and some adjustments were made to fit our data. In detail, 
as lesions occupy most of the images, and the training 
images were on a relatively small scale, we used fewer layers 
and changed the size of the frontier convolution kernel 
from 3×3 to 5×5. The output ranged from 0 to 1, indicating 
the probability of being upgraded.

Training set expansion was performed by mirror inversion 

A B

C D

Figure 1 Complex and diverse ultrasound images of ductal carcinoma in situ. (A) Calcification is the main manifestation; (B) duct 
abnormalities are the main manifestation; (C) the mass is the main manifestation; (D) the structural disorder is the main manifestation.
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and rotation in multiples of 90°. The data expansion retained 
the image features and displayed features from different 
angles, which helped improve the robustness of the model 
and avoided overfitting. The training set, after expansion, 
was used to train the model, while the validation set was 
used to validate the performance of the model (Figure 2).

Due to the lack of test sets in this study, cross-validation 
was used to verify the stability and generalization of the model. 
Cross-validation can inhibit the sensitivity of the model to the 
data, so as to validate whether the model is stable.

We used a 3-fold cross-validation on the original data. 

We randomly divided the two types of data into three parts, 
and took one part to constitute a validation set, while the 
others constituted the training set. Therefore, we had three 
combinations, and all of them were used to train and verify 
the performance of the model. Finally, we assessed the 
robustness of the model through the output. 

We obtained the area under the receiver operating 
characteristic curve (AUROC), specificity, sensitivity, 
accuracy, positive predictive value (PPV), and negative 
predictive value (NPV) of the model output for analysis. 

Statistical analysis

We collected clinical data including age, family history, 
menopause, and tumor size on ultrasonography. A chi-square 
test was conducted to compare the clinical characteristics 
of the verification and test groups. A two-sided P value was 
used. P<0.05 was considered statistically significant. All 
statistical analyses were performed using SPSS version 25.0.

Results

The average age of the patients with pure DCIS was  
54.9 years, and that of the upstaged patients was 49.9 years. 
The clinical data of the entire cohort is shown in Table 1. 
The training set included 240 patients, and the verification 
set included 120 patients. The ratio of upgraded DCIS to 
pure DCIS was 1:1 in both sets. Age, maximum tumor size 
on ultrasonography, family history, and menopause were 
not significantly different between the training set and the 
test set (P value >0.05) (Table 2). 

Table 1 Baseline characteristics of the patients

Pure DCIS (n=180) Upstaged DCIS (n=180) %

Age

≤50 66 93 44.16

>50 114 87 56.83

Tumor size on ultrasonography

≤20 108 39 40.83

>20 72 141 59.16

Family history

No 136 152 80.00

Yes 44 28 20.00

Menopause

No 94 114 57.77

Yes 86 66 42.22

DCIS, ductal carcinoma in situ.

Input image resize Data argumentation 

mirror

rotation

Output

P

Deep learning model 

Validation set CNN model 

Training set 

Pure DCIS (P>P*)

Upgrade (P≤P*)

Figure 2 Schematic presentation of our proposal for classifying pure ductal carcinoma in situ (DCIS) and upgraded DCIS.
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Approximately 40% and 78% of “non-upgraded” and 
“upgraded” patients had a tumor size above 20 mm on 
the ultrasound image. Patients without a family history of 
upgraded DCI accounted for about 24%, and upgraded 
patients accounted for about 16%. Menopause patients 
accounted for about 48%, and upgraded patients accounted 
for approximately 37%. The age, maximum tumor size on 
ultrasonography, family history, and proportion of patients 
in menopause were comparable between the two groups (P 
value >0.05 for all).

Figure 3 and Table 3 show the results of the validation set 

and training set in the two types of models. Among ResNet 
models, the AUCROC of the validation set in the Resnet-b0 
model was 0.804, with a sensitivity, specificity, accuracy, 
PPV, and NPV of 0.767, 0.716, 0.742, 0.730, and 0.754, 
respectively. The AUCROC of the validation set in the 
Resnet-b1 model was 0.821, with a sensitivity, specificity, 
accuracy, PPV, and NPV of 0.802, 0.733, 0.742, 0.746, 
and 0.738, respectively; the AUCROC of the validation 
set in the Resnet-b2 model was 0.737, with a sensitivity, 
specificity, accuracy, PPV, and NPV of 0.667, 0.683, 0.675, 
0.678, and 0.672, respectively. In the Vgg-change model, 
the AUCROC of the validation set was 0.724, and the 
sensitivity, specificity, accuracy, PPV, and NPV were 0.717, 
0.650, 0.683, 0.696, and 0.672, respectively. Considering the 
result of the training set (see Figure 3B), the performance 
between the training set and validation set was significantly 
different, which means that the Vgg-change model was 
overfitting and was not feasible for the data.

In the robustness verification experiments, a 3-fold cross-
validation was used for all the models. The AUROCs of 
the 3-fold data sets in the ResNet-b0 model were 0.766, 
0.817, and 0.738; they were 0.767, 0.808, and 0.760 in the 
ResNet-b1 model; and they were 0.759, 0.790, and 0.736 in 
the ResNet-b2 model (Figure 4). The performance of the 
ResNet-b1 model was the most feasible and stable.

Discussion

In this study, we established a deep learning model that uses 
two-dimensional ultrasound images to predict whether pure 
DCIS diagnosed by CNB will be upstaged postoperatively. 
The AUCROC of ResNet-b1 was 0.802, which is relatively 
stable. The accuracy and sensitivity of the validation set 

Table 2 Comparison of clinical features between the patients in the 
training set and validation set

Training set 
(n=240)

Validation set 
(n=120)

Univariate 
P value

Age 0.178

≤50 years 105 54

>50 years 135 66

Tumor size on ultrasonography 0.495

≤20 95 52

>20 145 68

Family history 0.855

No 190 98

Yes 50 22

Menopause 0.097

No 146 62

Yes 94 58

Figure 3 Receiver operating curve (ROC) for the four models. (A) ROC of the validation set; (B) ROC of the training set.
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Table 3 Diagnostic performance of the deep learning algorithms for the test dataset

Algorithm
Validation

Sensitivity Specificity PPV NPV
AUROC Accuracy

ResNet-b0 0.804 0.742 0.767 0.716 0.730 0.753

ResNet-b1 0.802 0.742 0.733 0.750 0.745 0.738

ResNet-b2 0.737 0.675 0.667 0.683 0.678 0.672

Vgg-change 0.724 0.683 0.717 0.650 0.696 0.671

AUROC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.

Figure 4 Comparison of robustness between the 3 deep learning models. (A) 3-fold cross-validation performance in the ResNet-b0 model; (B) 
3-fold cross-validation performance in the ResNet-b1 model; (C) 3-fold cross-validation performance in the ResNet-b2 model.

were 74.2% and 73.3%, respectively. Our model can help 
surgeons decide whether SLNB should be performed.

Previous research has focused on exploring relevant 
clinical predictors (3,9,10,17,18). Multiple studies have 
reported clinical predictors for upstaging after CNB, such 
as age, size of the mass, and higher nuclear grade, and the 
relevant prediction models were established based on these 
factors. The AUCROC of previous models ranged from 0.58 

to 0.70. Compared with these, the results of our model were 
better. Moreover, some relevant clinical factors are difficult 
to obtain in clinical practice, and evaluations of some of 
the factors are subjective. For example, in the James’s 
model (19), the percentage of calcification remaining after 
CNB is relatively difficult to obtain, especially for non-
calcified DCIS. In addition, whether the BI-RADS rating 
reaches 5 would be significantly affected by the radiologist’s 
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experience. Although some clinical prediction models have 
a great AUC, they are difficult to apply in clinical practice. 
In the clinical prediction model developed by Coufal (20), 
although the AUCROCs reached 0.85, cases diagnosed as 
DCIS with microinvasion by CNB were included in the 
study. According to Champion et al. (21), although DCIS 
with microinvasion is a relatively special type between 
pure DCIS and invasive cancer, the current treatment and 
prognosis are closer to those of early invasive breast cancer. 
This model cannot accurately reflect the postoperative 
upstaging of pure DCIS diagnosed by CNB before surgery.

With the development of AI, the model can effectively 
integrate tumor image information and clinical information 
and transform it into an accurate clinical decision system. 
This is an important development direction for clinical 
adjuvant diagnosis and treatment in the future.

Compared with the traditional clinical models, AI is 
advantageous in that it can identify characteristic textures 
and details that radiologists cannot recognize, and it can 
quantitatively describe the image features, making its 
evaluation more objective.

To our knowledge, previous studies using AI to predict 
pure DCIS upgrades have been based on mammography 
or MRI images, and our study is the first to build a deep 
learning prediction model based on two-dimensional 
ultrasound images. In a study by Shi et al. (22), the 
researchers sketched suspicious lesions in mammography 
images and used the traditional machine learning method 
to let the computer learn the characteristics of the sketched 
suspicious lesions; its AUCROC was 0.70. Moreover, the 
ROI that was manually sketched by the radiologist was 
affected by their experience and subjective judgment. 
It is difficult to completely capture all image features of 
suspicious lesions; it is time- and labor-intensive. In the 
study by Mutasa et al. (23), although the method of deep 
learning was adopted to build a prediction model based on 
mammography images, its AUCROC was 0.71. In a study 
by Zhu et al. (24), they used MRI images as datasets of deep 
learning, but the AUCROC was 0.68 as well. Our AUC-
ROC reached 0.802, which was relatively better compared 
with previous research on AI. In comparison, our adopted 
deep learning used the whole breast image as the ROI. As 
a result, the rich internal information based on large data 
from the entire image can provide better predictive models. 
Our method can also save time and effort. Compared 
with mammography, ultrasound has a more obvious 
advantage in evaluating the structural characteristics 
of impure calcifications (such as lumps and structural 

distortions). In deep learning based on mammography (23), 
the specificity reached 92%, which is higher than ours. 
This may be because the sensitivity of ultrasound to focal 
calcifications is lower than that of mammography. However, 
it is noteworthy that the sensitivity of finding malignant 
calcifications on ultrasound is higher than that of finding 
benign calcifications (12).

According to relevant literature, only about 12–32% of 
pure DCIS diagnosed by CNB before surgery is upstaged 
to microinvasion or even to invasive cancer in postoperative 
pathology (3-6). This would result in an imbalance in the 
ratio of data between upgraded and pure DCIS, which 
might make the model’s ability to diagnose upgraded DCIS 
weaker (11). In this study, two equal datasets were selected 
to reduce the bias of the model diagnosis and improve the 
robustness of the model.

This study has some limitations. First, this was a 
retrospective study. Data was acquired by different doctors 
using different ultrasound machines; therefore, the 
homogeneity of the data may be poor. Second, our study is 
a single-center study, which lacks an external verification 
set. To solve these existing limitations, we plan to conduct 
prospective studies in future to maintain uniformity of the 
images and to carry out multi-center cooperation to add 
external verification sets.

Conclusions

The AI model based on ultrasound images has a good and 
stable performance in predicting whether pure DCIS will 
be upgraded after verification in the verification group, and 
can provide guidance to clinicians when determining the 
surgical approach for DCIS.
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