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Lung cancer screening and reporting systems

Lung cancer is the leading cause of cancer-related death 
worldwide, for which the 5-year survival rates have yet 
to surpass 20% (1,2). Tobacco smoking remains the main 
risk factor for lung cancer. Although there is a decreasing 
prevalence of smokers in most countries, tobacco control is 
not the only measure for decreasing lung cancer mortality 
(3,4). In 2011, the National Lung Screening Trial (NLST) 
was the first multicenter randomized controlled trial (RCT) 
to demonstrate that three rounds of annual screening of 
a high-risk population using low-dose chest computed 
tomography (CT) lead to 20% fewer lung cancer deaths 
after seven years of follow-up, compared to annual screening 
with chest radiography (5). Over 53,000 participants 
were included in this landmark study. The Dutch-Belgian 
NELSON trial—the second largest RCT with 15,789 

participants—recently published their results and showed 
a 24% mortality reduction in a high-risk population of 
men compared to no screening (6). Various other smaller 
RCTs have also reported evidence for the beneficial effects 
of screening, such as the German Lung cancer Screening 
Intervention (LUSI) (7) and the Multicentric Italian Lung 
Detection (MILD) trials (8), but were underpowered.

In the screening workflow, the main task for a radiologist 
is to search for pulmonary nodules and assess the 
malignancy risk of these nodules based on characteristics 
such as size, type, morphology, location, and growth 
(if prior scans are available). The NLST definition of a 
positive screen—the presence of at least one solid nodule 
>4 mm—led to a 24% false positive rate (5). The results of 
the NELSON trial showed that growth-rate assessment for 
indeterminate nodules is an effective way to reduce the false 
positive rate to approximately 2% (6). Taking these findings 
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into consideration, various CT reporting systems were 
published with the aim of improving the false positive rate 
while maintaining a high sensitivity.

There is currently one major reporting system for the 
interpretation of the annual screening CT scans in the 
United States: Lung-RADS (9). Usage of this classification 
system is obligatory for screening centers in the United 
States to receive reimbursement. Other nodule management 
guidelines designated for screening settings are those from 
the British Thoracic Society (10), National Comprehensive 
Cancer Network (11), European Union Position Statement 
on Lung Cancer Screening (12), and International Early 
Lung Cancer Action Program (13); these recommendations 
were summarized by Kauczor et al. (14).

Such reporting systems require radiologists to assess 
the quality of a scan, to search, measure, classify and 
characterize pulmonary nodules, to look for other 
significant findings, and finally to determine the malignancy 
risk of the screenee and decide on the follow-up. The 
categorization of these scans is laborious, has a substantial 
reader variability (15), and thus influences the effectiveness 
of lung cancer screening. In this non-systematic review, we 
discuss the potential role of artificial intelligence (AI) and 
whether state-of-the-art algorithms are ready for practice. 
If screening will be implemented on a large scale, AI may 
be able to play an important role in reducing costs and 
improving the efficiency of screening.

Current performance of artificial intelligence 
algorithms

AI is a broad term that has no clear definition, but typically 
refers to computer systems that can interpret and learn 
from data to perform certain tasks and reach certain goals. 
Deep learning, a methodology where computers can learn 
high dimensional features from large amounts of data, has 
led to a revolution in the field of AI because its use resulted 
in major improvements in the performance of AI systems. 
Deep learning gained momentum in 2012 when Krizhevsky 
et al. (16) successfully implemented a so-called convolutional 
neural network (CNN) which beat the best performing 
algorithm in the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC), an annual competition where 
algorithms compete to correctly classify and detect objects 
and scenes in natural images, by a substantial margin. This 
methodology is currently used for many applications such 
as autonomous driving, natural language processing, big 
data analytics, and medical image interpretation. In medical 

image analysis, CNNs are the methodology of choice and 
their performance is reaching or even surpassing human 
performance on an increasing number of tasks (17).

The first papers describing algorithms for automatically 
detecting and characterizing pulmonary nodules on CT 
were published over two decades ago. The number of 
studies on this topic has increased markedly in the last 
10 years. This can mainly be attributed to the rise of 
deep learning, the organization of several challenges, 
the availability of public datasets, and the imminent 
implementation of lung cancer screening. 

In the next paragraphs, the current status of algorithms 
for various subtasks of the interpretation of a lung cancer 
screening CT scan are discussed.

Scan quality

For humans or AI to be able to diagnostically assess a CT 
scan, a minimum quality level is required. In the screening 
setting, it is especially important to keep the radiation dose 
as low as reasonably possible. Due to the high contrast 
between air and lung parenchyma, high quality scans 
were already obtainable using an average effective dose of  
1.5 mSv. These low-dose CTs were used for most lung 
cancer screening trials, including the NLST (5). Since 
2009, technological advancements enabled the introduction 
of iterative reconstruction algorithms to clinical practice. As 
opposed to filtered back projection, this technique revises 
each reconstructed image for multiple iterations in order 
to remove artefacts and improve overall image quality (18). 
This development also led to the introduction of ultra-low-
dose CTs, boasting a radiation dose approaching that of 
X-rays for scanning the chest (approximately 0.5 mSv on 
average).

In the last years, deep learning techniques have also 
been incorporated to optimize both radiation dose and 
reconstruction time (18). A pilot study found that all nodules 
>2 mm which were visible in standard low-dose CT scans 
were also found in the ultra-low-dose images (19). Another 
study reported that two independent observers had a higher 
sensitivity on ultra-low-dose CT with iterative reconstruction 
than low-dose CT with filtered back projection (20).

Nodule detection

The typical visual manifestation of lung cancer on CT is in 
the form of opacities in the lung parenchyma which are not 
considered part of the normal anatomy, more commonly 
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referred to as pulmonary nodules. The first step in the 
workflow towards lung cancer diagnosis is the detection of 
all pulmonary nodules. It is known that radiologists do not 
find all nodules and that there is considerable disagreement 
to what constitutes a pulmonary nodule (21,22). Searching 
for something specific in an image cluttered with vessels and 
airways is a difficult task for humans, especially when under 
time pressure and when the number of nodules present is 
unknown.

Numerous  papers  have  been  publ i shed  on  AI 
algorithms for detecting lung nodules (23,24). Among 
scientific publications, it is difficult to compare algorithms’ 
performances because each study may use a different 
dataset, reference standard, and evaluation metric. This is 
why challenges are important in the field of AI: challenges 
are competitions open to the public for developing an 
algorithm for a specified task. They allow researchers to 
compare different methodological approaches for a certain 
task on the same dataset and using the same evaluation 
metric. 

The first web-based framework for comparing nodule 
detection algorithms from lung cancer screening CT scans 
was the Automated Nodule Detection 2009 (ANODE09) 
study (25). All submitted algorithms would be tested on 
the same 50 anonymized scans and evaluated using the 
same procedure; the reference values of the 207 nodules 
were kept secret. This study also proposed a method for 
combining the output from various AI algorithms to achieve 
an improved combined performance level. The main 
limitation of this study was the dataset size and uniformity; 
all were obtained from one center using the same scanner 
and protocol.

To account for these limitations, the Lung Nodule 
Analysis 2016 (LUNA16) challenge was set up using 
888 scans with 1,186 nodule annotations from the Lung 
Image Database Consortium (LIDC) and Image Database 
Resource Initiative (IDRI) database for training and testing 
(22,26). To ensure robustness, the reference values for each 
scan were based on annotations from four radiologists. At 
the time of publication of the challenge, the best algorithm 
reached a sensitivity of 97.2% at the expense of 1 false 
positive per scan on average. The LUNA16 challenge was 
officially closed in January 2018, but the organizers open-
sourced the evaluation scripts and all data; this challenge 
therefore continues to be used as a benchmark for more 
recent AI algorithms.

Most comparative studies between AI algorithms and 
humans as individual readers for this specific task were 

performed over a decade ago. Algorithms showed slightly 
inferior or equivalent sensitivities compared to radiologists 
at the expense of a noticeable increase in the false positive 
rate (27-30). 

Nodule classification and measurement

After nodules are found, guidelines stratify them into 
malignancy risk groups based on two main criteria: size 
and type (9-12). Automatic measurement or classification 
of nodules was not included as a task in the ANODE09 or 
LUNA16 challenge (22,25). 

With the aim of automatically classifying clinically 
relevant nodule types, Ciompi et al. (31) developed an AI 
algorithm for differentiating between six nodule types: solid, 
part-solid, non-solid, perifissural, calcified, and spiculated. 
The algorithm was validated in an external dataset which 
was also assessed by four experienced human readers. The 
authors found that the performance of the AI algorithm was 
within the inter-observer variability of the four experienced 
readers, thus performing equivalently to an independent 
human expert. It was concluded that the algorithm could be 
reliably used to automatically categorize pulmonary nodules 
in lung cancer screening.

Larger nodule size and nodule growth are by far 
the best CT predictors of malignancy (32-34). Size is 
traditionally determined by manually measuring the 
longest and perpendicular diameters in the transverse 
plane. This is prone to inter- and intra-radiologist 
variability (35), which can influence the diagnostic workup 
recommendation (15,36). Volumetric segmentation 
methods have been around for more than a decade; they 
have the advantage of being more reproducible and less 
subject to intra- and interobserver variability, but are not 
commonly available and were not used in most lung cancer 
screening trials (37).

In studies where two scans of the same patient are made 
within the same day, the volume differences have been 
found to be in the order of ±25% (38,39). Additionally, 
there is a large variation among different algorithms 
(37,40). Therefore, for the purpose of reliably measuring 
growth over time, the same segmentation algorithm and 
version should be used. The reported variability would 
likely be reduced if these studies would be repeated using 
novel AI-based volumetric segmentation algorithms and 
more modern CT data, but no studies have been reported 
to date. Nevertheless, its key role in several screening 
trials has led to lung nodule management guidelines 
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advocating for the use of (semi-)automatic volumetric 
segmentation (9,10,12,13). Note that the diameter can 
also be automatically measured from the resulting three-
dimensional segmentation. A recent study found that mean 
diameter derived from a CAD is just as predictive for 
malignancy as the CAD-derived volume when used in a 
multivariable logistic regression model (41).

Malignancy prediction

Ultimately, the goal of lung cancer CT screening is to 
predict whether a participant has lung cancer. In the 
screening workflow, malignancy risk is estimated after 
detecting and characterizing nodules on CT. The most 
renown statistical risk model for estimating nodule 
malignancy risk is the Brock model (also known as the 
PanCan model) (34), currently incorporated into the British 
Thoracic Society nodule management guidelines (10) and 
recommended in Lung-RADS version 1.1 (9). This model 
was developed using data from the PanCan screening trial 
and has shown good performance on other independent 
screening and clinical datasets (32,42). Though the Brock 
model incorporates several predictors based on patient 
demographics, nodule size, type, and morphology, previous 
studies have shown that radiologists can more accurately 
assess the malignancy risk of a nodule (43,44). However, 
when radiologists were asked to characterize the signs of 
malignancy, no consensus is found (43).

We describe two challenges on the topic of malignancy 
prediction in chest CT scans. The first is the LUNGx 
Challenge (45) which provided scans from The University 
of Chicago containing 37 benign and 36 malignant size-
matched nodules for testing algorithms. Without having 
to search for the nodules, the objective was to classify 
each nodule as either benign or malignant. Of the 11 
participating algorithms, only three achieved an area 
under the receiver operating characteristic curve (AUC) 
statistically superior to random guessing (range, 0.50–0.68). 
In comparison, six participating radiologists obtained AUCs 
between 0.70 and 0.85, three of which were statistically 
better than the best performing algorithm.

A subsequent major challenge was the 2017 Kaggle 
Data Science Bowl which focused on the detection of lung 
cancer on CT and included a total prize money purse 
of one million dollars (46). Rather than estimating each 
nodule’s malignancy risk, the primary aim was to develop 
an AI algorithm which can predict whether a person would 
get a lung cancer diagnosis within 1 year based on a CT 

scan. In total, over 2000 teams worked on this challenge. 
The winning team published a paper about their winning 
solution (47). The top 10 prize winners were required to 
make their code publicly available online, such that these 
algorithms could be used by future efforts to integrate them 
into screening practice.

Considering the number of participants, it can be 
assumed that the winning algorithms were among the best 
available worldwide at that moment. An observer study 
including 11 radiologists (of which seven were specialized 
in the chest) found that, on average, human expert readers 
still performed only slightly superior to the top three 
algorithms [AUC =0.90 (95% confidence intervals from 
1,000 bootstrap iterations: 0.85–0.94) vs. 0.86 (0.81–0.91), 
respectively] (48).

In 2019, Ardila et al. (49) published a study claiming 
a superior performance of their deep learning network 
compared to six radiologists when assessing lung cancer risk 
from one CT scan (absolute false positive reduction =11%; 
absolute false negative reduction =5%). When multiple 
scans were available, the model performance was on par 
with that of radiologists. The authors concluded that these 
algorithms may already be able to work independently on 
certain tasks. Despite the promising results, the conclusion 
was argued to have been too strong (50): validation 
was performed on a subset of the cohort that was used 
for training (NLST) and a small independent cohort, 
radiologists’ performances were based on Lung-RADS (a 
nodule management guideline, not a 1-year lung cancer risk 
model), and the radiologists were not thoracic radiologists. 
The resulting code was not made publicly available and 
cannot be independently assessed.

Growth of a nodule on CT is the most important 
predictor of cancer, and growth cannot be assessed from 
a single scan. The publication by Ardila et al. (49) is a 
good example where the analysis of multiple scans led to 
a performance on par with or better than radiologists. 
Another recent publication that designed a neural network 
to assess the lung cancer risk of follow-up CT scans showed 
good performance on an independent dataset (51).

Next to the binary prediction of malignancy, it is 
important to differentiate between different types of 
tumor. Subsolid nodules have a higher risk of malignancy 
than solid nodules, but when malignant tend to present 
an indolent behavior, showing a slower growth rate and 
a lower metastatic potential (52,53). The previously 
mentioned medical imaging challenges did not perform 
subgroup-analysis to investigate the performance of AI for 
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malignancy risk prediction of solid and subsolid nodules 
separately.

How can artificial intelligence be used?

Though the claims require more extensive validation, the 
previous section indicates that state-of-the-art AI algorithms 
for detecting lung cancer CT detection may have achieved 
radiologist-level performance. However, these studies only 
compared individual performances and did not consider a 
collaboration between man and machine. Certain tasks which 
are considered more difficult for the radiologist may be easier 
for the algorithm, and vice versa. For example, it is known 
that subsolid nodules are more often missed by radiologists 
since there is less contrast with the lung parenchyma (54,55); 
alternatively, very irregular nodules may not be recognized 
by the AI due to their rarity in the training data.

Three paradigms have been described for a human reader 
receiving assistance from an AI system: second reader, 
concurrent reader, and first reader. As a second reader, the 
AI system is only enabled after the radiologist has finished 
reading the scan. This allows the radiologist to perform an 
initial unbiased assessment, subsequently going through 
the AI’s findings to check whether nodules were missed or 
misinterpreted. In the concurrent reading paradigm, the 
radiologist has immediate access to the results of the AI 
system and uses this while interpreting the image. Finally, a 
first reader AI system would only have the radiologist assess 
the nodules already detected by the AI. The latter strategy 
restricts the radiologist interpretation to areas of interest 
and hence enables the shortest reading times, but nodules 
missed by the AI system will go undetected. For the first 
reader paradigm, a high AI sensitivity is crucial. Note that 
commercial systems for nodule detection to date have only 
been approved for use as a concurrent or second reader.

When an AI system is used as a second reader to the 
radiologist, the goal is that the nodule detection sensitivity 
is increased. From before the rise of deep learning, Roos  
et al. (56) confirmed this hypothesis by reporting an 
algorithm which detected 74% (141/190) of the nodules 
on CT of which 18% (25/141) were not detected by any of 
the three independent radiologists; on the other hand, 14% 
(27/190) of the nodules detected by at least one radiologist 
were missed by the software. Liang et al. (57) sought out 
lung cancer nodules from the NLST which had been visible 
in a prior scan but had been missed by the radiologists. 
They ran four nodule detection systems on the prior scans 
and found nodule detection rates between 56% and 70%. 

However, in the subsequent scan which ultimately led to the 
lung cancer diagnoses, the detection rate ranged from 74% 
to 82%. Both studies concluded that the algorithms could 
function as a second reader, but the proof that humans 
and computers would likely complement each other had 
originated much earlier. 

In 2004, Wormanns et al. (29) was the first to publish 
the pulmonary nodule detection performance on CT of 
a commercial AI and its added value as a second reader. 
Individually, the AI had a similar sensitivity to three 
radiologists (0.55 vs. 0.51 to 0.55, respectively). When 
double reading, the sensitivity of two radiologists was 
between 0.67 and 0.68 while that between a radiologist and 
AI was between 0.77 and 0.81. This was at the expense of 
a 7% greater false positive rate compared to radiologists. 
Since then, various other publications have mirrored these 
results (27,28,30,58-60).

A good example of a concurrent reader paradigm is a 
commercial AI system which creates a second CT image 
with suppressed vessels and detected lung nodules that can 
be simultaneously viewed as the original CT scan (61). 
The study reported a significantly increased sensitivity for 
actionable lung nodules at a somewhat reduced specificity 
and a significantly reduced interpretation time.

Besides the standard reading paradigm where one or 
multiple radiologists sign off all CT scans, other screening 
workflow strategies have been considered. Ritchie et al. (62) 
tested pulmonary nodule detection performance by a trained 
technician supported by an AI algorithm. For identifying 
“abnormal” CT scans with at least one nodule (≥1 mm), the 
technician plus AI had a sensitivity of 0.98 and a specificity 
of 0.98. Of the malignant nodules, the technician plus AI 
found 93% (104/112) compared to 85% (95/112) having 
been detected by PanCan radiologists without AI. With an 
average prescreen time of 208 seconds per scan, the authors 
concluded that technicians supported by an AI was a viable 
option for triaging scans for radiologists.

The replacement of radiologists with technicians 
can make screening more cost-effective and feasible in 
countries where there is a shortage of radiologists. This is 
similar to the workflow in cervical cancer screening using 
Papanicolaou (Pap) smears, where normal findings are 
signed-off by trained technologists and only the abnormal 
tests are forwarded to cyto-pathologists.

What studies are needed next?

The current state and next steps needed for detection and 
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characterization of pulmonary nodules in lung cancer CT 
screening are summarized in Table 1. The current literature 
suggests that state-of-the-art AI systems for lung nodule 
detection and characterization come close to experienced 
radiologists’ performance levels. Many AI studies describe 
novel architectures for detecting lung nodules, where the 
reference standard is set by the consensus of radiologists. 
However, the ultimate goal is not to find all nodules but to 
find all lung cancers. Future studies should therefore focus 
on a reference standard where the detection of cancer is 
measured, determined by histopathological proof or follow-
up imaging for at least 2 years (depending on morphology) 
to show stability of lesions. Unfortunately, there are no 
public datasets with a substantial number of malignant 
nodules on CT. The largest database that is publicly 
available is the NLST database, but the metadata lacks 
information which nodules were biopsied. Even with the 
information about the pathological proof and all screening 
scans available, it is not always obvious which lesions on CT 
were found to be malignant.

The AI subtask of attributing a malignancy risk score to 
a nodule is directly associated with the diagnostic follow-
up recommendation. In Lung-RADS (9), the 4X category 
is a special category for lesions that show additional signs of 
malignancy. Radiologist can assign this category to upgrade 
nodules scored 4A or lower to undergo the most urgent 
follow-up management. Chung et al. (43) showed that 
radiologist were able to pick out malignant nodules from 
lower Lung-RADS categories and appropriately upgrade 
them to 4X. If AI systems would be able to recognize 
certain malignancies typically missed by radiologists, their 
input may improve radiologists’ accuracy in upgrading 

lesions. However, to the best of our knowledge, no study 
has yet demonstrated the effect on decision making when an 
AI’s estimated malignancy risk is revealed to a radiologist. 
More specifically, are the radiologists’ decisions affected 
by this additional information? If yes, when do radiologists 
choose to deviate from the AI’s recommendation, and how 
often were they right to do so? This is an important area 
where more research is needed.

Another challenge of lung cancer screening will be to 
avoid unnecessary interventions. As with every screening 
program, overdiagnosis is a side-effect that needs to be 
carefully monitored. Although the 5-year death rate from 
lung cancer is very high, not all malignancies lead to 
morbidity or death. In an extended follow-up study of the 
NLST, the authors reported the same lung cancer incidence 
in the CT and control groups after a period of 10 years, 
indicating that there was no overdiagnosis in the NLST 
study (63). However, other studies warn for overdiagnosis 
and that the consequences must be considered (64,65). It is 
difficult to predict which patients would not benefit from 
treatment. At present, there are no AI algorithms that focus 
on this by for example predicting the histological subtype 
of screening-detected pulmonary nodules, the growth 
rate, or the metastatic potential of pulmonary nodules. 
Though there are algorithms which were designed to 
predict the time of death from a scan (66-69), there is a 
lack of appropriate data to perform studies which attempt 
to predict the risk that lung cancer progression will be the 
cause of death.

Triaging screening CT scans using trained technicians 
aided by AI algorithm is a promising direction to 
substantially reduce the costs and radiologists’ workload of 

Table 1 Summary of the current state and next steps needed for detection and characterization of pulmonary nodules in lung cancer CT screening

Task Current state Next steps

Detection, segmentation 
and classification

• Numerous publications presenting good 
performance;  
• Commercial systems are available for clinical 
use as second or concurrent reader

• Evaluate the performance of AI for pathologically proven 
cancers in solid nodules instead of suspicious nodules defined 
by a consensus of radiologists;  
• Continue evaluation studies with novel deep learning-based 
AI systems in multi-center studies;  
• Investigate workflows in which AI + trained technicians can 
triage screening CT scans to be sent for review by radiologists

Malignancy prediction • Recent publications show performance 
better than or on par with radiologists;  
• Results from Kaggle DSB 2017 demonstrate 
the potential of AI for malignancy prediction;  
• No commercial systems available that 
provide a malignancy risk score

• Evaluate the effect of an AI risk score on the performance of 
radiologists; initiate multi-center evaluation studies;  
• Evaluate whether and how an AI risk score can be integrated 
into nodule follow-up guidelines
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CT interpretation in lung cancer screening programs, but 
this reading paradigm requires more validation, preferably 
in a prospective setting. At present, every screening CT 
scan in the United States needs to be signed off by an 
American College of Radiology board certified radiologist. 
If demonstrated that trained technicians can take over a 
sizable portion of the responsibilities by triaging a large 
portion of the normal scans without reducing the quality of 
care, policy changes are needed.

Another potential strategy to reduce costs would be if the 
trained technicians would be replaced by fully autonomous 
AI algorithms that are able to perform triage and optimize 
the selection of screening CT scans that are sent to the 
screening radiologists. The first fully autonomous AI 
algorithm that is able to perform diagnostic assessment 
without supervision of an expert clinician—an AI system 
called IDx-DR which analyzes fundus photographs in a 
primary care setting to detect diabetic retinopathy—has 
recently been approved by the FDA (70). The 2017 Kaggle 
DSB challenge showed that fully automatic algorithms—
incorporating both nodule detection and malignancy risk 
estimation—reached a promising performance for one-year 
lung cancer predictions, but performed slightly inferior to 
expert radiologists (46). Post-challenge algorithms have 
reported superior performances, with Google’s lung cancer 
AI claiming superiority to or on par with radiologists (49). 
However, these fully autonomous AI algorithms need to 
be extended to be explainable and highlight all areas of 
interest. Even at a radiologist’s performance level, an AI 
black-box which overrules clinical guidelines established by 
experts will not be readily accepted (50). In addition, these 
systems should include additional components which help 
to guarantee the robustness of the AI output. For example, 
the IDx-DR system has a component which measures the 
quality of the scan and returns to the operator if deemed 
insufficient for AI analysis (67).

Various commercial products are on the market which are 
cleared for use as second reader or concurrent reader (71).  
These are ready to be adopted in screening centers to 
assist the reading of screening CTs. In the coming years, 
evaluation studies which test these AI algorithms in 
adequately sized datasets from multiple centers will give 
more insight into their effect on sensitivity, false positive 
rate, and interpretation time. Indications for ideal statistical 
and sample size considerations when testing such algorithms 
have been described (72).

In medicine, new drugs are allowed to the market after 

one or multiple prospective multicenter RCTs (phase III 
studies) have shown benefits in the target population. If 
we translate this to AI algorithms, prospective multicenter 
RCTs would be needed to build up the necessary evidence. 
Though various papers have highlighted the importance 
of extensive testing before the implementation of AI into 
practice (73-76), RCTs for AI software are not commonly 
performed and are not mandatory for regulatory approval. 
Proving the effectiveness of an AI system is complex because 
integration of AI systems into health systems depends 
on many factors which are difficult to be investigated 
simultaneously (e.g., integration into workflow, extent of 
information display, training of physicians). In addition, 
the design of RCTs for AI is complicated by the constant 
rate of improvement of AI algorithms as they are fed with 
increasing amounts of training data. Although the RCT is 
an important tool to prove causality, there is no consensus 
on its role for guiding the deployment of AI in health care.

Conclusions

Recent studies have shown that AI performance is 
approaching or already on par with radiologists for various 
tasks that are needed for the current reporting schemes 
used in lung screening. In its current state, AI algorithms 
can be used in a supportive role for radiologists when 
interpreting lung cancer screening CT scans. Future 
studies should focus on large-scale validation of novel 
deep learning-based algorithms and need to address 
novel reading paradigms. If trained readers aided by AI 
algorithms can be used for triaging normal scans, this 
may have a substantial effect on the cost-effectiveness of 
screening. This effect would be larger if fully autonomous 
algorithms would be allowed to perform triage by selecting 
potentially abnormal CT scans to be sent for review by 
radiologists. However, to guarantee that their use is safe 
and responsible, the requirements for implementing 
autonomous algorithms should be more extensive than 
when there is still a trained reader in the loop.
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