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Abstract

Gestures and speech are clearly synchronized in many ways. However, previous studies have shown
that the semantic similarity between gestures and speech breaks down as people approach transitions in
understanding. Explanations for these gesture–speech mismatches, which focus on gestures and speech
expressing different cognitive strategies, have been criticized for disregarding gestures’ and speech’s
integration and synchronization. In the current study, we applied three different perspectives to inves-
tigate gesture–speech synchronization in an easy and a difficult task: temporal alignment, semantic
similarity, and complexity matching. Participants engaged in a simple cognitive task and were assigned
to either an easy or a difficult condition. We automatically measured pointing gestures, and we coded
participant’s speech, to determine the temporal alignment and semantic similarity between gestures
and speech. Multifractal detrended fluctuation analysis was used to determine the extent of complexity
matching between gestures and speech. We found that task difficulty indeed influenced gesture–speech
synchronization in all three domains. We thereby extended the phenomenon of gesture–speech mis-
matches to difficult tasks in general. Furthermore, we investigated how temporal alignment, semantic
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similarity, and complexity matching were related in each condition, and how they predicted partici-
pants’ task performance. Our study illustrates how combining multiple perspectives, originating from
different research areas (i.e., coordination dynamics, complexity science, cognitive psychology), pro-
vides novel understanding about cognitive concepts in general and about gesture–speech synchroniza-
tion and task difficulty in particular.

Keywords: Gestures; Speech; Synchronization; Gesture–speech mismatches; Complexity matching;
Multifractal detrended fluctuation analysis

1. Introduction

Gestures and speech are two salient aspects of multimodal communication in humans.
When people tell a story, explain a difficult problem, or talk about daily affairs, they tend
to move their hands in all kinds of ways. Many researchers have therefore proposed that ges-
tures and speech are tightly coupled (e.g., Goldin-Meadow, 2003; McNeill, 1985). Moreover,
this tight coupling has been conceptualized as gesture–speech synchronization (e.g., Iverson
& Thelen, 1999; Pouw & Dixon, 2019b; Treffner & Peter, 2002). Gestures and speech syn-
chronize in time, semantic content, emphasis, and emotional valence (for a comprehensive
review, see Wagner, Malisz, & Kopp, 2014).

However, the semantic similarity between gesture and speech has been shown to break
down as people approach transitions in understanding (e.g., an insight into a difficult problem;
Church & Goldin-Meadow, 1986; Goldin-Meadow, 2003). For instance, in a liquid conserva-
tion task a researcher pours equal amount of water into a wide glass and a narrow glass and
asks a child which glass contains more water. When a child is about to learn the concept of
conservation, they might say that there is more water in the narrow glass because the level of
water is higher, while they gesture about the width of the glasses (Church & Goldin-Meadow,
1986). These instances of semantic dissimilarity are called gesture–speech mismatches.

Different explanations exist for the breakdown in the semantic similarity between ges-
ture and speech when people approach transitions in understanding. Goldin-Meadow and
colleagues’ (Church & Goldin-Meadow, 1986; Goldin-Meadow, 2003) explanations center
around participants’ conflicting cognitive strategies and hypotheses that are thought to exist
just before participants achieve new insight into the problem they are working on (e.g., liq-
uid conversation task). These conflicting strategies and hypotheses are then somehow dif-
ferently expressed in gestures than in speech, during gesture–speech mismatches. However,
Koschmann (2017) questions the existence of gesture–speech mismatches in the first place
and suggests that they are an artifact of the disintegrated methodological coding systems that
led to their discovery. Furthermore, Pouw, van Gog, Zwaan, and Paas (2017; also see Pouw,
de Nooijer, van Gog, Zwaan, & Paas, 2014) highlight an explanatory gap in how an integrated
gesture–speech system could produce disintegrated gesture–speech mismatches and suggest
taking a dynamically embodied perspective to address this gap.

From a dynamically embodied, complex system’s perspective, a change in understanding
can be seen as a system of interrelated components that transitions from one stable state to a
new, likely more advanced, stable state (Smith & Thelen, 2003; Stephen, Boncoddo, Magnu-
son, & Dixon, 2009; Stephen, Dixon, & Isenhower, 2009; Thelen & Smith, 1994, 2007; Van
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Fig. 1. Synchronization of coupled metronomes.

Geert, 2008, 2011). A transition from one stable state to another entails a reorganization of a
system’s components and their relations. This reorganization is elicited by a perturbation, that
is, the learning situation. As put forward by De Jonge-Hoekstra et al. (2020), a metaphor for
this reorganization is building a new LEGO-structure from an old structure, which is only pos-
sible when you break (perturb) the old structure and use the bricks to create a new structure.
Taking such a dynamically embodied, complex system’s perspective, De Jonge-Hoekstra, Van
der Steen, Van Geert, and Cox (2016) suggest that difficult tasks perturb a system, thereby
inducing a suboptimal coordination between gestures and speech, which could then lead to
various forms of gesture–speech mismatches.

In this study, we empirically address whether task difficulty indeed affects gesture–speech
synchronization. We will approach gesture–speech synchronization in three ways: (a) tem-
poral alignment, (b) semantic similarity, and (c) complexity matching (explanation follows
below). We will investigate how task difficulty affects temporal alignment, semantic similar-
ity, and complexity matching between gestures and speech and how these different forms of
gesture–speech synchronization are related. In addition, we will investigate how these three
gesture–speech synchronization measures predict task performance.

1.1. Synchronization

Synchronization usually means that two (or more) systems start to behave in a similar way
due to coupling (Pikovsky, Kurths, & Rosenblum, 2001). In cognitive science, synchroniza-
tion comes in different forms, including temporal alignment, semantic similarity, and com-
plexity matching. We will explain these three forms below, and describe how they have been
linked to gesture–speech synchronization.

1.1.1. Temporal alignment
Temporal alignment is a well-known form of synchronization. A simple and widely used

example of temporal alignment is two asynchronously ticking metronomes, which start to
tick in synchrony when they are placed on a shelf on top of two cans that act like wheels (the
movement of each metronome is transmitted through the wheels thus providing coupling; see
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Fig. 1). Also within humans, body parts such as fingers (e.g., Haken, Kelso, & Bunz, 1985;
Kelso, 1994) and legs (Clark, Whitall, & Phillips, 1988) have been shown to synchronize and
temporally align in rhythmic patterns. Moreover, a recent study by Pouw, De Jonge-Hoekstra,
and Dixon (2018) shows that speech is more rhythmic when it goes together with more ges-
tures, suggesting a rhythmic synchronization between gestures and speech within humans.
This paradigm of one-to-one temporal alignment of behavior has been applied to coordination
between humans, where it has been found that humans tend to move in synchrony while rock-
ing in rocking chairs (Richardson, Marsh, Isenhower, Goodman, & Schmidt, 2007), swinging
pendulums (Richardson, Marsh, & Schmidt, 2005; Schmidt & O’Brien, 1997), or telling jokes
(Schmidt, Nie, Franco, & Richardson, 2014), to name a few examples.

With regard to temporal alignment between gestures and speech, adult’s gestures and
speech are highly aligned in time (see Wagner et al., 2014, for an overview). In other words,
most gestures beat in-phase and at the same rhythm as speech (Prieto & Roseano, 2018;
also see Pouw et al., 2018). For gestures, this rhythm consists of changes in hand-movement
velocity over time, while for speech, this rhythm refers to the organization and contrast of
a sequence of repeated speech events and can be tracked acoustically through the amplitude
envelope of speech (also see Fowler, 2010). To support the existence of temporal alignment
between gestures and speech, several studies indicated that the moment of maximum effort
in gestures goes together with changes in pitch (i.e., relative frequency, “highness” or “low-
ness”) of speech (Kendon, 1972; Kita, Van Gijn, & Van der Hulst, 1998; Leonard & Cummins,
2011). Recent studies by Pouw and colleagues (Pouw & Dixon, 2019a, 2019b; Pouw et al.,
2018) showed that this relation between maximum gestural effort and speech is actually a
tight alignment of peak velocity in gestures and peak pitch in speech.

Some circumstances affect the temporal alignment between gestures and speech. Children’s
age is a robust correlate with the temporal alignment between gestures and speech. According
to Iverson and Thelen (1999), the coupling between gestures and speech in infants emerges
from natural oscillations of hand movements and vocal acts, which synchronize and become
entrained over time (see also Esteve-Gibert & Prieto, 2014; Iverson & Fagan, 2004). As a con-
sequence of this entrainment, the temporal alignment between gestures and speech becomes
higher when infants and toddlers grow older (Butcher & Goldin-Meadow, 2000; also see
Iverson & Thelen, 1999). Adults’ gestures and speech are so tightly coupled in time that
perturbing and delaying speech with a delayed auditory feedback also delays gestures (e.g.,
Rusiewicz, Shaiman, Iverson, & Szuminsky, 2013, 2014). Pouw and Dixon (2019) found that
a delayed auditory feedback actually increases the temporal alignment between gestures and
speech. Last, Bergmann, Aksu, and Kopp (2011) found that gestures and speech were more
temporally aligned when their semantic content was more similar.

1.1.2. Semantic similarity
Semantic similarity refers to similarities in meaning. Humans can synchronize on a seman-

tic level, whereby they align their “[…] understanding of the world with others […]” (Dumas
& Fairhurst, 2019, p. 10). Important to note is that semantic synchronization is not confined
to (spoken) language but can take other action forms involving other body movements as well
(Dumas & Fairhurst, 2019). Bodily forms of semantic, meaningful synchronization, such as
playing give-and-take-games, or interpersonal movement coordination when a parent dresses
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their child, seem to be essential for language development. Furthermore, differences in the
semantic similarity of two people’s words influence their bodily synchronization (see Shock-
ley, Richardson, & Dale, 2009, for an overview).

Gestures and speech are considered to be semantically similar when a gesture is temporally
aligned with a word or phrase, and both gesture and word/phrase convey the same meaning
(cf. Wagner et al., 2014). Based on this definition, a distinction has been made between ges-
tures that convey either redundant, complementary, non-redundant, or mismatching1 semantic
content to speech. Most of our gestures are either redundant (e.g., saying “The shelf is long”
while gesturing that something is long) or complementary (e.g., saying “The shelf is [this]
long” while gesturing the length of the shelf) to speech. Studies with participants from dif-
ferent languages show that the typical structure and semantic content of a language influence
the semantic content of gestures (Allen et al., 2007; Kita & Özyürek, 2003), highlighting the
usually strong semantic similarity between gesture and speech.

However, sometimes the semantic content of gestures and speech does not overlap and is
thus non-redundant in general (Goldin-Meadow, Nusbaum, Garber, Church, 1993). Examples
of non-redundant semantic content are a child who points to a cup while saying that they are
thirsty, or a teacher who explains two strategies for a problem at the same time: one in speech
and the other in gestures. In these examples, the semantic content of gestures and speech does
not overlap, but their meaning is related and falls within an overarching theme (“drinking”and
“problem solutions”). Mismatches between gestures and speech are a specific kind of non-
redundant semantic content. As previously described, mismatches are known to occur when a
child (or adult) learns a new strategy for a difficult cognitive problem (e.g., Church & Goldin-
Meadow, 1986; Goldin-Meadow, 2003; Goldin-Meadow, Alibali & Church, 1993). Similar to
non-redundant semantic content, the meaning of gestures and speech during mismatches does
not overlap but is related.

1.1.3. Complexity matching
Notwithstanding the impact and relevance of the synchronization examples above, involv-

ing temporal alignment and semantic similarity, complex systems in the real world often do
not synchronize as one-to-one matching of behavior (Delignières, Almurad, & Roume, 2016).
Complex systems, such as gestures and speech, can synchronize on many (time) scales of
organization, which is called complexity matching (Stephen, Stepp, Dixon, & Turvey, 2008;
West, Geneston, & Grigolini., 2008; see also Abney, 2016; Abney et al., 2014; Den Hartigh,
Marmelat, & Cox, 2018). During complexity matching, the information exchange between
complex systems is maximized (West et al., 2008). Complexity matching occurs when both
systems are complex, and the degree of the two systems’ complexity is similar.

1.1.3.1. Gestures and speech as complex systems. Gestures and speech are complex sys-
tems. They consist of many different and interacting components and scales and involve
coordination of all these different components and scales of a system over time (e.g., Van
Orden, Holden, & Turvey, 2003). Gestures’ and speech’s scales range from action potentials
of neurons to overarching conversational goals and beyond (see also De Jonge-Hoekstra et al.,
2016). For example, numerous muscles and bones in a person’s arms, chest (and even legs),
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lungs, and central nervous system are involved in each gesture. Importantly, speaking also
involves a large number of components; it is estimated that we use more than 70 muscles for
each syllable that we utter (e.g., Turvey, 2007).

Infants clearly show how complex gesturing and speaking actually is. Before the first point-
ing gestures emerge, infants have learned to control their eye movements to focus on an object
(Adolph & Franchak, 2017), to use their hands to grasp things, and have learned about dis-
tances by crawling forward (Clearfield, 2004). All these actions and perceptions, which are
great coordinative accomplishments in themselves, come together in their first pointing ges-
tures. When infant’s first words emerge, infants partly “build” on what they had accomplished
for their first gestures (Esteve-Gibert & Prieto, 2014; Goldin-Meadow, 2007). However, utter-
ing their first word involves another set of challenges too. Coordinating all different compo-
nents to pronounce a specific syllable is a complex task as well, and it usually takes an infant
many tries before they grasp the correct configuration. This process is nicely illustrated by
Roy (Roy, Frank, DeCamp, Miller, & Roy, 2015; also see Roy, 2011), who showed how his
son went from saying “gaaaa” to the word “water,” over numerous trials, in about 6 months’
time.

1.1.3.2. Complexity and fractal scaling. A complex system’s coordination over time
(e.g., Van Orden et al., 2003) can be more or less fluent. When the coordination of compo-
nents and layers of a system over time is fluent, the changes of behavior at all different scales
are related (e.g., Wijnants, 2014). In other words, variability across time scales is related and
dependent, which means that changes on smaller time scales (e.g., neuronal level) influence
changes on larger time scales (e.g., conversational goals) and vice versa. If one would plot that
system’s behavior over time (e.g., the time between word onsets during an affective conversa-
tion), one would see that small changes in the time series (visible as small waves) are nested
within larger changes (larger waves; e.g., see Fig. 2a). Furthermore, if one would zoom in or
out, the plotted time series would look similar at different levels of magnification. In other
words, the variability at the level of milliseconds looks like the variability at the level of sec-
onds, which looks like the variability at the level of minutes, and so forth. Objects that show
such self-similarity, such as the Koch snowflake (Fig. 2c) or Romanesco broccoli (Fig. 2d) are
also called fractal objects. Similarly, a nested and self-similar2 structure of variability in the
temporal domain is called (mono)fractal or pink noise (see Fig. 2a). Monofractal variability
has been proposed as an index of optimal balance between rigid and random behavior and is
often found in complex systems that change over time (Van Orden et al., 2003; Van Orden,
Kloos, & Wallot, 2011; Wijnants, 2014). Indeed, many studies found that expert performance
on repetitive motor tasks is more pink than non-expert behavior (e.g., Den Hartigh, Cox, &
Gernigon, 2015; Kloos & Van Orden, 2010; Van Orden et al., 2011). Monofractal variability
has thus been considered as an identifying feature of complex systems, corresponding to a
systems’ degree of complexity.

However, different from relatively repetitive motor tasks, more diverse human behavior
shows sudden jumps and periods of relative stability mixed with intermittent bursts of vari-
ability (Dixon, Holden, Mirman, & Stephen, 2012; Ihlen & Vereijken, 2010; Kelty-Stephen,
Palatinus, Saltzman, & Dixon, 2013; Stephen, Anastas, & Dixon, 2012). Moreover, these



L. De Jonge-Hoekstra et al. / Cognitive Science 45 (2021) 7 of 35

Fig. 2. Examples of fractal structures. Panel A shows a time series with a monofractal structure of variability
(source: script in https://doi.org/10.3389/fphys.2012.00141). Panel B shows a time series with a multifractal struc-
ture of variability, whereby periods of monofractal variability are intermitted by periods of large fluctuations
and periods of small fluctuations (source: script in https://doi.org/10.3389/fphys.2012.00141). Panel C displays
the Koch snowflake (seventh iteration; source: bit.ly/2PGeRAd). Panel D displays Romanesco broccoli (source:
bit.ly/2wiEccN). The monofractal structures in panels A, C, and D are self-similar, which means that they look the
same at different levels of magnification. The multifractal structure in panel D is less self-similar.

increases in variability have been related to transitions, which are a hallmark of human (and
other complex systems’) development. Examples of a sudden jump, which would go along
with a burst in variability, are an abrupt change in conversation goals, or the “aha”-moment
of acquiring new understanding (Dixon et al., 2012). Delignières et al. (2016), Dixon et al.
(2012), Ihlen and Vereijken (2010), Kelty-Stephen et al. (2013), and Stephen et al. (2012)
argue that timescales themselves also interact and that these interactions between timescales
lead to these large changes in variability (for a clear and more in-depth explanation, please

https://doi.org/10.3389/fphys.2012.00141
https://doi.org/10.3389/fphys.2012.00141
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see Kelty-Stephen et al., 2013). When variability with a monofractal (pink noise) structure is
mixed with periods of changes in variability, these time series display a multifractal structure
(see Fig. 2b). Therefore, identifying complex systems and establishing a system’s degree of
complexity should also incorporate multifractal variability (Delignières et al., 2016; Dixon
et al., 2012; Ihlen & Vereijken, 2010; Kelty-Stephen et al., 2013; Stephen et al., 2012).

1.1.3.3. When does complexity matching occur? As previously described, complexity
matching means that the degree of the system’s complexity is similar due to coupling. In other
words, when coupled systems match their complexity, the fractal structure of their temporal
variability is alike.

Circumstances influence complexity matching. Abney et al. (2014) found that type of con-
versation influences whether complexity matching between two participants in speech occurs.
Specifically, when participants discussed things that they had in common, the fractal scaling
of participants’ acoustic onset events was similar, and their speech thus showed complexity
matching. However, no complexity matching was found when participants discussed issues
on which they had different opinions. Furthermore, Almurad et al. (2017) investigated com-
plexity matching between participants who were instructed to walk in synchrony. Participants
walked either side-by-side or arm-in-arm (or independently), and the researchers measured
the duration of the intervals between their strides. Participants in both (non-independent)
conditions showed high levels of complexity matching, whereby arm-in-arm walking led to
slightly higher levels of complexity matching than walking side-by-side. With regard to man-
ual coordination between participants in terms of intervals between finger taps, fractal hand
movements, and a larger magnitude of hand movement’s variation, leads to stronger com-
plexity matching between a leader and a follower than random hand movements (Coey et al.,
2016). In addition, complexity matching is stronger when participants coordinate movements
of both their hands than when they coordinate the movements of one of their hands to those
of a partner (Coey et al., 2018). Most of these studies show that stronger coupling between
systems goes together with higher levels of complexity matching (Cox, 2016).

Interestingly, research findings are mixed about whether complexity matching is functional
in terms of task performance: While Fusaroli, Abney, Bahrami, Kello, and Tylén (2013) and
Abney et al. (2014) found better task performance with higher levels of complexity matching,
Schloesser, Kello, and Marmelat (2019) and Abney et al. (2015) found an inverse relation.
With regard to gestures and speech, De Jonge-Hoekstra et al. (2016) suggest that difficult
tasks may influence whether and how gestures and speech synchronize on multiple scales.
This would imply that difficult tasks influence complexity matching between gestures and
speech.

1.2. Current study

In this study, we investigated how a difference in task difficulty influences the synchro-
nization between participant’s gestures and speech, in terms of temporal alignment, semantic
similarity, and complexity matching. We asked participants to repeatedly match targets of the
same colors presented on a tablet with a touch screen, by means of pointing to these targets



L. De Jonge-Hoekstra et al. / Cognitive Science 45 (2021) 9 of 35

and saying their location. Participants were assigned to either a predictable easy condition or
to an unpredictable difficult condition.

Our first research question is: How does task difficulty influence temporal alignment,
semantic similarity, and complexity matching between participant’s gestures and speech?
With regards to temporal alignment, Pouw and Dixon (2019b) found that gestures and speech
became more synchronized in the more difficult delayed auditory feedback condition. We,
therefore, expected that gestures and speech would be more synchronized in the difficult than
in the easy condition (hypothesis 1A). Regarding semantic similarity, Goldin-Meadow and
colleagues (e.g., Church & Goldin-Meadow, 1986; Goldin-Meadow, 2003; Goldin-Meadow,
Alibali et al., 1993) found that gestures and speech mismatch in semantic content when people
are about to understand a task which they do not understand yet, and thus the task is difficult
for them. We, therefore, expected less semantic similarity between gestures and speech in
the difficult than in the easy condition (hypothesis 1B). With respect to complexity match-
ing, there are no studies that directly investigated how task difficulty influences complexity
matching. As described above, we do know that the level of complexity matching increases
when the coupling between systems is stronger (Abney et al., 2014; Almurad, Roume, &
Delignières, 2017; Coey et al., 2016, 2018). Our previously stated hypothesis 1A suggests
that gestures and speech become more temporally aligned in the difficult condition, and thus
a stronger coupling. However, our previously stated hypothesis 1B suggests that gestures and
speech become less semantically similar in the difficult condition, and thus a weaker cou-
pling. Because of this contradiction, we have no specific hypothesis for the influence of task
difficulty on the level of complexity matching between gestures and speech.

Our second research question is: How are temporal alignment, semantic similarity, and
complexity matching between gestures and speech related in the easy and difficult condi-
tions? Bergmann et al. (2011) found that gestures and speech were more synchronized in time
when their semantic content was more similar. This suggests that a higher temporal alignment
between gestures and speech would go together with a higher semantic similarity. On the other
hand, hypotheses 1A and 1B suggest a higher temporal alignment and a lower semantic sim-
ilarity in the difficult condition. We, therefore, expected a positive relation between gestures’
and speech’s temporal alignment and semantic similarity in the easy condition (hypothesis
2A), and a negative relation between temporal alignment and semantic similarity in the dif-
ficult condition (hypothesis 2B). In line with a higher level of complexity matching when
the coupling is stronger (Abney et al., 2014; Almurad et al., 2017; Coey et al., 2016, 2018)
and in line with hypothesis 2A (positive relation between temporal alignment and semantic
similarity in easy condition), for the easy condition, we expected a positive relation between
gestures’ and speech’s temporal alignment, semantic similarity, and complexity matching as
well (hypothesis 2C). Our expected negative relation between temporal alignment and seman-
tic similarity (hypothesis 2B) in the difficult condition suggests an inverse relation in coupling
strength. Therefore, we have no specific hypotheses about how complexity matching is related
to either temporal alignment or semantic similarity in the difficult condition.

Our third research question is: How do temporal alignment, semantic similarity, and com-
plexity matching between gestures and speech predict task performance? We assessed task
performance in terms of the time needed to finish the task. Our experimental manipulation
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of task difficulty will influence task performance, as difficult tasks typically take longer to
perform. Therefore, we controlled for the influence of condition (task difficulty) when we
investigated whether temporal alignment, semantic similarity, and complexity matching
between gestures and speech predict task performance. According to Iverson and Thelen
(1999; also see Butcher & Goldin-Meadow, 2000; Esteve-Gibert & Guellaï, 2018) the tempo-
ral alignment between gestures and speech becomes higher when infants and toddlers grow
older. As children’s language skills change and become more advanced during that time too
(e.g., Tamis-LeMonda et al., 1998, 2001), this could imply that more temporal alignment goes
together with a better language performance. Mismatches are a form of semantic dissimilarity
and predict better performance on subsequent tasks (e.g., Church & Goldin-Meadow, 1986;
Goldin-Meadow, 2003; Goldin-Meadow, Alibali et al., 1993). Findings of a link between
complexity matching and task performance are mixed, whereby some studies found a pos-
itive relation (Abney, 2016; Abney et al., 2021; Fusaroli et al., 2013) while others found a
negative relation (Schloesser et al., 2019). Taken together, these findings are not sufficiently
conclusive to formulate hypotheses about how temporal alignment, semantic similarity, and
complexity matching predict task performance.

2. Method

2.1. Participants

We included3 30 participants (20 F, 10 M) between 18 and 27 years (M = 20.70, SD =
2.39) in our study. All participants were students with a Dutch nationality at a University in
the Netherlands, who participated in the experiment in exchange for course credit or mone-
tary compensation. The participants provided written consent. The ethical committee of the
Psychology Department of the University of Groningen approved of the study.

2.2. Materials

Participants performed the task on a tablet (Lenovo MIIX 320-10ICR 1.44GHz x5-Z8350)
with a 10.1 inch touchscreen (1280 × 800 pixels) and Windows 10 operating system. To facil-
itate pointing, the tablet was positioned in a 45° angle from the table using a tablet stand (see
Fig. 3). The experiment was programmed using OpenSesame [version 3.0.0] (Mathôt, Schreij,
& Theeuwes, 2012), which is an open-source program to build (social science) experiments.
Using OpenSesame, we could run the task at the tablet (a detailed description follows below),
and simultaneously record the time and x- and y-coordinates of participants’ pointing (touch-
ing) at the screen as well as participants’ speech signal.

Participants’ speech was recorded at 44.1 kHz using a basic hands-free microphone that
was plugged into the 3.5 mm audio jack of the tablet. We used Audacity [version 2.2.2] to
normalize the volume of the speech signal and filter out background noise. Furthermore, we
used Praat (Boersma & Weenink, 2018) [version 6.0.42] and RStudio [version 1.1.456] to
calculate the amplitude envelope of the speech signal (He & Dellwo, 2016; Pouw & Trujillo,
2019, respectively; a detailed description follows below). The amplitude envelope that is cal-
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Fig. 3. Set-up of the experiment.

culated by the R-script is identical to the amplitude envelope that is calculated by the Praat
script (Pouw & Trujillo, 2019). We used a custom script in Matlab [version 2018a] to identify
the start of syllables in the speech signal and to cut the audio recordings into smaller parts
of one syllable each (a detailed description follows below). We used OpenSesame [version
3.0.0] (Mathôt et al., 2012) to manually code the semantic content of these syllables.

We used Matlab to carry out the analyses on the time series of pointing and the ampli-
tude envelope of speech. We specifically used the multifractal detrended fluctuation analysis
(MFDFA) package by Ihlen (2012) to perform MFDFA, to estimate the temporal multifractal-
ity of participant’s gestures and speech. Furthermore, we used RStudio to carry out inferential
statistics and the R-package ggplot2 (Wickham, 2016) to create plots of our data.

2.3. Procedure

Participants performed a tablet task (see Figs. 3 and 4), which can be found here:
osf.io/dj5vr/ (Scripts & Materials > Tablet task). We instructed the participants to repeatedly
(virtually) put a ring on a bar of the same color, by first pointing (touching) to the ring on
the screen and thereafter to the top of the corresponding bar. Furthermore, each time that a
participant pointed, we instructed them to say out loud the location of the ring and bar (left,
middle, right) that they were pointing to in Dutch (“links,” “midden,” “rechts,” respectively).
In addition, we instructed participants to perform the task as fast and accurately as possible
(in accordance with Fitts, 1954). We randomly assigned the participants to either the easy
(n = 14; see Fig., left panel) or the difficult condition (n = 16; see Fig. 4, right panel). In the
easy condition, the color of the ring always corresponded to the color of the above bar (see
Fig. 4, left panel). In the difficult condition, however, the color of the rings was random (see
Fig. 4, right panel). Participants were not informed about the pattern being either random
or non-random. Since it is impossible to understand a random pattern, participants in the
difficult condition were constantly needed to reorganize to the new spatial arrangement.
This state of reorganization shares similarities with the state of reorganization that precedes
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Fig. 4. Example of tablet task. The left panel displays the easy task, and the right panel displays the difficult task.

learning something new (see Kello, Beltz, Holden, & Van Orden, 2007; Stephen, Dixon, et al.,
2009).

To register participants’ pointing, we divided the screen into 3 × 6 = 18 (invisible) areas.
Each top of the bar was positioned in an area at the top row of the screen, while each ring
was positioned in an area at the second row from the bottom of the screen. The correct ring,
that is, the ring that participants needed to point to during that trial, appeared larger on the
screen as shown in Fig. 4 (upper left ring in both panels). Please note that the participants did
not have to point to the correct ring or bar for the task to proceed. However, if participants
failed to click on a ring-area or a top of the bar-area, the task did not proceed and the time
and location of every first error were recorded.

During the task, the order in which the rings were presented alternated between left to
right and right to left. For example, the correct order of the task in the left panel of Fig. 4
would be: [first row] left–left–middle–middle–right–right–[second row] right–right–middle–
middle–left–left. The correct order of the task in the right panel of Fig. 4 would be: [first
row] left–right–middle–left–right–middle–[second row] right–middle–middle–middle–left–
left. Each time a participant finished with the last ring of a row, that row disappeared from
the screen, the second row moved up, and a new row appeared at the bottom of the screen.
The participants performed 540 repetitions of the task, which is identical to 180 rows of three
rings and corresponding bars, or a total of 1080 times pointing and saying the location of
either a ring or a bar. Before starting with the actual task, the participants completed a trial
phase with 15 repetitions of the task, to get used to the set-up. The recordings of this trial
phase were not included in the analysis.
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2.4. Data preparation

To investigate the coupling between participants’ gestures and speech, we recorded the
time (ms), location (left/middle/right), and position (x- and y-coordinates) of their pointing,
and their speech signal.

2.4.1. Gestures
For gestures, the above resulted in a time series4 of (a) the duration between pointing to

rings and bars and vice versa, (b) a time series of the location of the pointing, and (c) a time
series of distances between the exact locations that participants pointed to. With regards to
distances between rings and bars, there are three possible distances5 that participants’ fingers
needed to travel while pointing: (a) a short distance of 608 pixels, when the ring and bar are
vertically aligned; (b) a middle distance of 664 pixels, when the ring and bar are one location
off (i.e., from the left ring to the middle bar) or (c) a long distance of 809 pixels, when the
ring and bar are two locations off (i.e., from the left ring to the right bar). This third, long
distance can only occur in the difficult condition, and therefore the frequency distribution of
distances between targets differs between the two conditions.

From the work by Fitts (1954), we know that the distance (D) between targets, com-
bined with the width (W) of targets (ring: 167 pixels; bar: 61 pixels), influences how diffi-
cult the movement between two targets (i.e., from ring to bar or vice versa) is to perform.
Fitts referred to this as the index of difficulty (ID), which is given by the following formula:
ID = log2( 2D

W ). Using this formula, from ring to bar, the ID for the short, middle, and long
distance is 4.317, 4.444, and 4.729, respectively. From bar to ring, the ID for the short, mid-
dle, and long distance is 2.864, 2.991, and 3.276, respectively. In the current study, we aim to
manipulate task difficulty by changing the overall task demand of matching targets of the same
color when one of the targets’ color was either random (difficult) or non-random (easy). How-
ever, any difference in movement time (MT) could potentially result from the difference in ID
between targets. To remove this possible confound, and standardize this influence of the ID
on each duration in our MT series, we divided each duration between pointing to two targets
(MT) with the ID of that particular movement. These corrected durations between pointing to
two targets corrected with the ID of each movement yielded a time series of MT/ID.

2.4.2. Speech
We recorded the participant’s speech from the moment the first experimental trial was pre-

sented until the moment the participant finished with the last experimental trial. This yielded
one long sound recording of what the participant said during the task. To increase the quality
of the sound recording, we used Audacity to normalize the sound volume and filter out back-
ground noise. We subsequently used PRAAT (He & Dellwo, 2016) or R (Pouw & Trujillo,
2019) to calculate the amplitude envelope of the speech signal. The amplitude envelope basi-
cally is a smoothed outline of a speech signal’s intensity (He & Dellwo, 2016), and its struc-
ture corresponds to the lower lip kinematics (He & Dellwo, 2017). In addition, we calculated
the velocity of the speech signal’s amplitude envelope, which captures how the amplitude
envelope increases and decreases.
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We identified the start of syllables by extracting the peaks in velocity of the amplitude
envelope, using a custom MATLAB script (osf.io/dj5vr/; Scripts & Materials > Data prepa-
ration), and saved the audio between two velocity peaks as audio segments (i.e., one syllable
per audio segment). The Dutch word “links” has one syllable, “midden” has two syllables,
and “rechts” has one syllable. Due to individual differences in speaking, extracting one word
or syllable per audio segment did not work perfectly for each participant, however.6 To ensure
that MATLAB was not too sensitive (so as to cut one syllable into multiple audio segments)
yet sensitive enough (so as to aggregate a maximum of five words into one audio segment),
we manually tweaked a sensitivity parameter in the script (osf.io/dj5vr/; Scripts & Materials
> Data preparation) for each audio recording. We subsequently coded the semantic content
of the audio segments to identify the starting times of actual words.

We coded the semantic content of the audio segments using OpenSesame (osf.io/dj5vr/;
Scripts & Materials > Data preparation). We loaded the audio segments into OpenSesame
and coded whether a segment was (a) [the first half of] “links,” (b) [the first half of] “midden,”
(c) [the first half of] “rechts,” (d) the second half of a word, (e) a sequence of multiple words,
or (f) something else (i.e., other speech, a sigh). If a segment was (e) a sequence of multiple
words, we coded the semantic content of the sequence of words in that segment. This coding
of audio segments yielded a time series of words (segments) and their starting time. For (e)
sequences of multiple words, we used the number of words in an audio segment to extract the
same amount of velocity peaks of the amplitude envelope in that particular audio segment. We
replaced the word sequences in the time series with the individual words and their velocity
peaks. We removed the (f) other speech/sighs from the time series.

2.4.3. Combining gestures and speech
To investigate the temporal alignment and semantic similarity between gestures and speech,

we aligned the time series of gestures and speech by linking the gestures to the word that was
closest in time. To find the correct delay for each participant, we aligned the time series of
gestures and speech for every delay between 10 and 1,000 ms, with steps of 10 ms, and
calculated the amount of semantic content differences and the average asynchrony between
gestures and speech (for an overview, osf.io/dj5vr/; Data). Since the amount of semantic con-
tent differences for each participant went down to a minimum and then went up again, we
decided that the delay with the least amount of semantic content differences was the correct
delay. If there were more delays with the least amount of semantic content differences, we
picked the delay with the lowest average asynchrony between gestures and speech. The data
files with the maximally aligned gestures and speech can be found here: osf.io/dj5vr/; Data >

For analyses.
We calculated the difference between amplitude peaks (not velocity peaks) in the aligned

time series to create a duration-time series for speech, and we used this time series to analyze
the temporal alignment between gestures and speech. The amplitude peak of the amplitude
envelope corresponds to the stressed syllable in a word (see Fig. 5). In each of the three words
that the participants said, the first syllable of the word is stressed (links, midden, rechts). The
amplitude peak, therefore, yielded a similar time point for each of the three words. Further-
more, to analyze semantic similarity, we used the semantic content time series of speech. We
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Fig. 5. Illustration of how we calculated temporal alignment and semantic similarity within a trial. The orange
vertical line indicates the moment the participant’s finger touched the screen when the participant pointed at the
ring. The peak of the blue curve corresponds to the amplitude peak of the word that the participant said.

divided the duration time series of speech with the ID for that particular movement between
ring and bar or vice versa to create an MT/ID time series for speech. We used this time series
for speech to analyze complexity matching between gestures and speech.

2.5. Analysis

2.5.1. Calculating temporal alignment
For each trial, from ring to bar or bar to ring, we know the time between the moment the

ring or bar became activated and (a) the moment that participants pointed to and touched a
bar or ring, and (b) the amplitude peak of the word the participant said to indicate the ring’s
or bar’s location. We compared these durations between the moment of pointing and the
amplitude peak. For each participant, we calculated the average absolute difference between
moments of pointing and amplitude peak and used this as our measure of temporal alignment.
Please note that higher values correspond to lower temporal alignment. Fig. 5 displays how
we estimated temporal alignment and semantic similarity within a trial. To check whether
participant’s temporal alignment was significantly higher than the chance level, for each par-
ticipant we compared the empirical temporal alignment with the temporal alignment between
their repeatedly shuffled durations of gestures and speech.

2.5.2. Calculating semantic similarity
For each trial, from ring to bar or bar to ring, we know whether participants’ pointed to the

left, middle, or right object, and which location they mentioned in the speech. We compared
the location in gestures and speech location and identified whether they did or did not match.
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We calculated the sum of mismatches in location and used this as our measure of semantic
similarity. Please note that higher values correspond to lower semantic similarity. To check
whether the participant’s semantic similarity was significantly higher than the chance level,
for each participant we compared the empirical semantic similarity with the semantic simi-
larity between their repeatedly shuffled (mentioned) location of gestures and speech.

2.5.3. Calculating complexity matching
We applied MFDFA (Ihlen, 2012; Ihlen & Vereijken, 2010; Kantelhardt et al., 2002; Wallot,

O’Brien, Haussmann, Kloos, & Lyby, 2014) to the time series of gestures and speech. MFDFA
is a method to reliably approximate a time series temporal multifractality. MFDFA is an
extension of detrended fluctuation analysis (DFA), which is a method to reliably approximate
a time series’ temporal fractality. An accessible explanation of MFDFA can be found in
Appendix A.

In short, performing MFDFA on a time series yields a so-called multifractal spectrum (see
Fig. 6; the details of going from time series to multifractal spectrum can be found in Appendix
A). The width of this multifractal spectrum indicates the degree of temporal multifractality
of the time series and is a measure of the multifractal structure of the time series’ variabil-
ity. In short, a higher degree of multifractal structure leads to a wider multifractal spectrum,
while a lower degree of multifractal structure (or higher degree of monofractal structure) leads
to a narrower multifractal spectrum. As previously described, complexity matching requires
that the fractal structure of variability of the behavior of two complex systems matches. To
investigate the degree of complexity matching between gestures and speech, we, therefore,
calculated the difference in gestures’ and speech’s multifractal spectrum width. To check
whether complexity matching between gestures and speech was significant, for each partici-
pant, we compared the actual difference in multifractal spectrum width with the difference in
repeatedly sampled random pairs of gestures’ and speech’s multifractal spectrum width.

2.5.4. Monte Carlo permutation testing
We calculated all p-values using Monte Carlo (MC) permutation tests (Ninness et al., 2002;

Todman & Dugard, 2001) because MC permutations tests do not require a specific underlying
distribution of the data. By drawing 10,000 random samples from the original data, the prob-
ability that differences are caused by chance was measured. We used custom-made R scripts
to calculate p-values using MC permutation tests (osf.io/dj5vr/; Scripts & Materials).

3. Results

3.1. Descriptives

Participants in the difficult condition performed the task on average within 987 s (SD =
138 s). While they always pointed to the correct location of the bar and ring, they said the
incorrect location on average 119.8 out of 1080 trials (SD = 29.6), that is, 11%. A semantic
dissimilarity was thus always a combination of a correct gesture and an incorrect utterance. In
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Fig. 6. Time series of duration (ms) divided by index of difficulty (ID) (panels A and C), and corresponding multi-
fractal spectrums (panels B and D, respectively), for gestures (red) and speech (blue). Panels A and B illustrate the
movement time/ID of time series gestures and speech and corresponding multifractal spectrums of a participant
in the difficult condition and panels C and D of a participant in the easy condition. The difference in multifrac-
tal spectrum width is 0.081 for the participant in the difficult condition and 0.096 for the participant in the easy
condition. We interpret this as more complexity matching between gestures and speech for the participant in the
difficult condition, compared to the participant in the easy condition.
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Fig. 7. Density plots of temporal alignment, semantic similarity, and complexity matching in the difficult and easy
conditions.

the difficult condition, gestures’ width of the MFDFA spectrum was on average 0.473 (SD =
0.203), and speech’s width of the MFDFA-spectrum was on average 0.432 (SD = 0.178).

Participants in the easy condition performed the task on average within 749 s (SD = 151
s). Similar to the difficult condition, they always pointed to the correct location of the bar
and ring, but they said the incorrect location on average 45.8 out of 1080 trials (SD = 47.3),
that is, 4%. Gestures’ width of the MFDFA spectrum was on average 0.618 (SD = 0.169),
and speech’s width of the MFDFA spectrum was on average 0.496 (SD = 0.104), in the easy
condition.

3.2. RQ1: Task difficulty’s influence on temporal alignment, semantic similarity, and
complexity matching

With regard to temporal alignment, we found significantly less temporal alignment between
participants’ gestures and speech in the difficult condition (M = 218.538 ms, SD = 43.652)
than in the easy condition (M = 167.182 ms, SD = 62.322), p = .009 (�M = 51.356, 95%
CI�-MC = −34.598, 35.322), with a large effect size, d = 0.955 (see Fig. 7, left panel). This
finding is opposite from our hypothesis 1A, as we expected that gestures and speech would
be more temporally aligned in the difficult than in the easy condition. For all participants, the
empirically observed temporal alignment between gestures and speech throughout the task
was significantly higher than the temporal alignment between random pairs of their gestures’
and speech’s duration (p < .001).

For semantic similarity, we found significantly less semantic similarity between partici-
pants’ gestures and speech in the difficult condition (Mmismatches = 119.750, SD = 47.301)
than in the easy condition (Mmismatches = 45.769, SD = 29.601), p < .001 (�M = 73.981,
95% CI�-MC = −32.661, 32.506), with a very large effect size, d = 1.875 (see Fig. 7, center
panel). This finding is in line with our hypothesis 1B, as we expected less semantic similarity
between gestures and speech in the difficult than in the easy condition. For all participants,
the empirically observed semantic similarity between gestures and speech throughout the task
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was significantly higher than the semantic similarity between random pairs of their gestures’
and speech’s semantic content (p < .001).

With regard to complexity matching, we found more complexity matching between ges-
tures and speech for participants in the difficult condition (Mdiff. MFDFA-spectrum width = 0.065,
SD = 0.049) than in the easy condition (Mdiff. MFDFA-spectrum width = 0.123, SD = 0.102), p =
.026 (�M = −0.058, 95% CI�-MC = −0.049, 0.047), with a medium to large effect size,
d = 0.726 (see Fig. 7, right panel). When we visually inspected the density plot, partici-
pants in the difficult condition showed a striking peak around 0.0 and 0.1 in the difference of
MFDFA-spectrum width. However, participants in the easy condition showed no clear peak
in the difference in MFDFA-spectrum width but instead showed a wide range of values. In
line with this, for 15 out of 16 participants in the difficult condition, we found the difference
in MFDFA-spectrum width to be significantly smaller (p < .05) than the difference in MDFA-
spectrum between random pairs of participants’ gestures and speech, while we found this to
be true for only eight out of 14 participants in the easy condition. Note that we did not make
a prediction about the difference in complexity matching between the two conditions.

3.3. RQ2: Relations between temporal alignment, semantic similarity, and complexity
matching

In the difficult condition, we found a significant, moderate, positive correlation between
average temporal alignment (ms) and semantic similarity (number of gesture–speech mis-
matches), r = .555, p = .014 (95% CIr-MC = −0.422, 0.433; see Fig. 8a). This finding is oppo-
site from our hypothesis 2B, as we expected a negative relation between temporal alignment
and semantic similarity in the difficult condition. We found a significant, moderate, negative
correlation between average temporal alignment (ms) and complexity matching (difference in
MFDFA-spectrum width), r = −.481, p = .031 (95% CIr-MC = −0.430, 0.433; see Fig. 8b).
We did not state a hypothesis about the relation between temporal alignment and complexity
matching. We found a non-significant, low, negative correlation between semantic similarity
(number of gesture–speech mismatches) and complexity matching (difference in MFDFA-
spectrum width), r = −.125, p = .336 (95% CIr-MC = −0.414, 0.448; see Fig. 8c). We did
not state a hypothesis about the relation between semantic similarity and complexity match-
ing. An overview of our findings with regards to research question 2 can be found in Fig. 9.

In the easy condition, we found a significant, moderate, positive correlation between
average temporal alignment (ms) and semantic similarity (number of gesture–speech mis-
matches), r = .653, p = .013 (95% CIr-MC = −0.438, 0.511; see Fig. 8d). This finding is
in line with our hypothesis 2A, as we expected a positive relation between temporal align-
ment and semantic similarity in the easy condition. We found a non-significant, low, neg-
ative correlation between average temporal alignment (ms) and complexity matching (dif-
ference in MFDFA-spectrum width), r = −.205, p = .269 (95% CIr-MC = −0.444, 0.489;
see Fig. 8e). This finding is not in line with our hypothesis 2C, as we expected a positive
relation between temporal alignment and complexity matching. We found a non-significant,
low, negative correlation between semantic similarity (no. of gesture- speech mismatches)
and complexity matching (difference in MFDFA-spectrum width), r = −.211, p = .253 (95%
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Fig. 8. Scatterplots of relations between the variables temporal alignment (ms), semantic similarity (no. of mis-
matches), and complexity matching (difference in MFDFA-spectrum width). Panels A–C display the relations in
the difficult condition; panels D–F display the relations in the easy condition.

CIr-MC = −0.475, 0.477; see Fig. 8f). This finding is not in line with our hypothesis 2D, as
we expected a positive relation between semantic similarity and complexity matching.

3.4. RQ3: Predict task performance with temporal alignment, semantic similarity, and
complexity matching

We performed a multiple linear regression to predict task performance (total time) based
on temporal alignment, semantic similarity, and complexity matching.

With regard to the individual variables, greater temporal alignment significantly predicted
better (i.e., a more speedy) task performance than condition alone, with R2 increasing from
0.423 to 0.616, p < .001 (�Rˆ2 = 0.192, 95% CI�-MC = 0.000, 0.082). Less semantic similar-
ity did not significantly predict better task performance than condition alone, with R2 increas-
ing from 0.423 to 0.425, p = .764 (�Rˆ2 = 0.002, 95% CI�-MC = 0.000, 0.082). Less com-
plexity matching did not significantly predict better task performance than condition alone,
with R2 increasing from 0.423 to 0.456, p = .214 (�Rˆ2 = 0.033, 95% CI�-MC = 0.000,
0.079).
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Fig. 9. Overview of the empirical relations between temporal alignment, semantic similarity, and complexity
matching in the easy and difficult conditions.

Given that temporal alignment was a predictor of performance with the only condition in
the model, we asked whether semantic similarity and complexity matching would contribute
additional unique variance. When semantic similarity was included in the model with the con-
dition and temporal alignment, we obtained a significant increase in R2 from 0.616 to 0.734,
p = .003 (�Rˆ2 = 0.118, 95% CI�-MC = 0.000, 0.057), whereby greater temporal alignment
and less semantic similarity significantly predicted task performance. When we added com-
plexity matching to the model containing condition and temporal alignment, we obtained a
non-significant increase in R2 from 0.616 to 0.619, p = .628 (�Rˆ2 = 0.004, 95% CI�-MC =
0.000, 0.057). Furthermore, when we added complexity matching to the model containing
condition, temporal alignment, and semantic similarity, we obtained a non-significant increase
in R2 from 0.734 to 0.737, p = .601 (�Rˆ2 = 0.003, 95% CI�-MC = 0.000, 0.040).

4. Discussion

In this study, we investigated how a difference in task difficulty influences the synchro-
nization between participant’s gestures and speech, in terms of temporal alignment, semantic
similarity, and complexity matching.

4.1. Summary of results

Our first research question was: How does task difficulty influence temporal alignment,
semantic similarity, and complexity matching between participant’s gestures and speech? We
found significantly less temporal alignment and semantic similarity and more complexity
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matching in the difficult than in the easy condition. With regard to complexity matching, we
additionally observed a more peaked distribution of differences in MFDFA-spectrum widths
in the difficult condition, while the distribution was clearly flattered in the easy condition. This
suggests that for participants in the difficult condition, the fractal structure of variability of
gestures’ and speech’ matches to a similar degree, which also points to complexity matching.
Participants in the easy condition show a more variable degree of this matching, so no clear
complexity matching.

Our second research question was: How are temporal alignment, semantic similarity, and
complexity matching between gestures and speech related in the easy and difficult conditions?
In the difficult condition, we found: (a) a moderate and significant positive relation between
temporal alignment and semantic similarity; (b) a moderate and significant negative relation
between temporal alignment and complexity matching; and (c) a low and non-significant neg-
ative relation between complexity matching and semantic similarity. In the easy condition,
we found: (a) a moderate and significant positive relation between temporal alignment and
semantic similarity, (b) a low and non-significant negative relation between temporal align-
ment and complexity matching, and (c) a low and non-significant negative relation between
complexity matching and semantic similarity.

Our third research question was: How do temporal alignment, semantic similarity, and com-
plexity matching between gestures and speech predict task performance? With regard to indi-
vidual variables, we found that temporal alignment significantly predicted task performance,
whereby more temporal alignment went together with better (i.e., a more speedy) task per-
formance. Neither semantic similarity nor complexity matching significantly predicted task
performance. With regard to combinations of variables, we found that temporal alignment
and semantic similarity together predicted task performance better than temporal alignment
alone, whereby more temporal alignment and less semantic similarity went together with bet-
ter task performance. Adding complexity matching to the model did not significantly increase
the model’s exploratory power.

4.2. Phase synchronization

When two (weakly) coupled oscillating systems interact, their rhythm adjusts and their
frequency entrains. This phenomenon is called phase synchronization (e.g., Pikovsky et al.,
2001; Warren, 2006) and results in temporal alignment. We have viewed gestures and speech
as two coupled systems throughout this paper. Akin to oscillating systems, we observed that
participants in the easy condition rapidly got into a regular rhythm of gesturing and speaking.
However, participants in the difficult condition struggled to get into and maintain a rhythm.
In line with the higher temporal alignment that we found in the easy condition, we believe
that the participant’s gestures and speech also exhibited phase synchronization in the easy
condition. Similarly, Pouw et al. (2019) found that rhythmical arm beating, but not wrist
beating, entrained the amplitude envelope of speech. Although less pronounced than beating,
participants in the easy condition of the current study also rhythmically moved their arms.

Pouw and Dixon (2019b) investigated temporal alignment between gestures and speech
while participants told a story. As previously described, Pouw and Dixon (2019b) found an
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increase in temporal alignment between participants’ gestures and speech under delayed audi-
tory feedback. Delayed auditory feedback is a delayed stimulus that entrains both gestures and
speech, and gestures and speech become more synchronized to each other because they are
entrained together. Pouw and Dixon (2019b) reasoned that delayed auditory feedback per-
turbs hand movements and speech and that the increase in gesture–speech synchrony is a way
to stabilize rhythmic activity (such as gestures and speech) under disrupting circumstances
(also see Pikovsky et al., 2001), that is, “stability through synergy” (Pouw & Dixon, 2019b,
p. 28).

While the difficult task in our study did disrupt gestures’ and speech’s rhythm, task diffi-
culty did not entrain gestures and speech. The nature of our perturbation was different from
Pouw and Dixon (2019), and indeed we did not find more temporal alignment in the dif-
ficult than in the easy condition. However, we did find more complexity matching in the
difficult than in the easy condition. Extending Pouw and Dixon’s (2019) notion of “stability
through synergy,” in the difficult condition, gestures and speech may have stabilized together
by means of complexity matching, which entails coordination at multiple timescales, instead
of entrainment; that is, coordination at a single timescale. Metaphorically speaking, the diffi-
cult condition might elicit a form of gesture–speech coordination that shares similarities with
the coordination between a jazz-saxophonist and a -pianist while improvising together, which
is characterized by “…a multitude of simple and complex rhythms, all interwoven extem-
poraneously into one cohesive sound” (i.e., complexity matching; Herby Hancock Institute
of jazz, https://bit.ly/2FIypCm; also see Walton, Richardson, Langland-Hassan, & Chemero,
2015; Walton et al., 2011). The easy condition might elicit a form of gesture–speech coordina-
tion similar to clapping one’s hands in a regular monotonous rhythm (i.e., entrainment). Fur-
thermore, in the easy condition, entrainment may overrule complexity matching. This might
suggest a trade-off between phase synchronization and complexity matching, which could be
reflected in the negative relation between temporal alignment and complexity matching in the
difficult condition that we found (also see Marmelat & Delignieres, 2012). In terms of our
metaphor, if either the saxophonist or the pianist starts playing a regular monotonous rhythm,
the other musician will be drawn to that regular and monotonous rhythm and will have a
very hard time to maintain improvisation in all its complexity. We will discuss our findings’
implications for the concept of complexity matching in the next paragraphs.

4.3. Complexity matching

While a body of research has shown that complexity matching exists between different
human systems and under different circumstances (e.g., Abney, 2016; Abney et al., 2014;
Almurad et al., 2017; Coey et al., 2016, 2018; Den Hartigh et al., 2018; Fusaroli et al.,
2013; Marmelat & Delignieres, 2012; Ramirez-Aristizabal et al., 2018; Schloesser et al.,
2019; Schneider, Ramirez-Aristizabal, Gavilan, & Kello, 2019), we are still grappling with
what complexity matching actually does for people. In our study, we found more complexity
matching between gestures and speech in the difficult than in the easy condition, and we inter-
preted this as a way for gestures and speech to stabilize together when entrainment is difficult
to impossible. However, complexity matching did not predict participant’s task performance

https://bit.ly/2FIypCm


24 of 35 L. De Jonge-Hoekstra et al. / Cognitive Science 45 (2021)

in terms of time to finish the task, and complexity matching was also not related to semantic
content-alignment (i.e., number of speech errors). Apart from gestures and speech potentially
being more stable, as we proposed, it is unclear whether and how participants benefited from
more complexity matching.

Different studies about complexity matching during dyadic tasks do show that participants
who demonstrated complexity matching benefited from this, in terms of reaching a collabora-
tive goal (Abney et al., 2014; Fusaroli et al., 2013; see also Schloesser et al., 2019). Important
to note is that the performance measures in the studies by Abney et al. (2014) and Fusaroli
et al. (2013) are more sophisticated and captured higher-order goals than our simple perfor-
mance measure of total time to perform the task did. In line with our findings, Schloesser et al.
(2019) also found a weak and slightly negative relation between complexity matching—both
within and between participants—and performance in terms of total time.

From a theoretical point of view, West et al. (2008) showed that complexity matching
increases the information exchange between complex networks. However, as argued before
by Abney (2016), we know little about what this information actually is and how to opera-
tionalize it. We could speculate that complexity matching only increases performance on tasks
that involve the (re)organization of components to a higher-order structure. This higher-order
structure could be the common ground that interacting people needed to establish during a
conversation involving many different utterances (Abney et al., 2014), or the joint decision
that people needed to converge to during a series of joint decision-making (Fusaroli et al.,
2013). If it is true that complexity matching only increases performance on tasks that involve
the (re)organization of components to a higher-order structure, this could hint that the infor-
mation as proposed by West entails interactions between components that form a synergy.

An interesting study by Rigoli, Holman, Spivey, and Kello (2014; also see Schloesser et al.,
2019) similarly suggests that information in complexity matching entails interactions between
components that form a synergy. Rigoli et al. (2014)) investigated participants who were asked
to tap to a visual metronome by pressing a key. Rigoli et al. (2014)) found complexity match-
ing between the time series of participants’ key press times and durations [key press synergy],
and they found complexity matching between the time series of participants’ pupil dilation
and heart rate [anatomic synergy]. However, Rigoli et al. (2014)) did not find complexity
matching between key press and the anatomic time series. Rigoli et al. (2014)), therefore,
concluded that the key press and anatomic networks did not exchange information during the
simple and relaxed task of tapping to the visual metronome. Similarly, in the easy (simple
and relaxed) condition of the current study, we did not find complexity matching between
gestures and speech, which suggests that these systems did not exchange information either.
We did find complexity matching in the difficult condition, however, which suggests that the
gestures and speech exchanged information and (re)organized as a synergy under these diffi-
cult task constraints. Future studies could investigate whether difficult tasks, involving higher-
order goals, indeed elicit more complexity matching between systems than simple tasks. With
regard to difficult tasks involving higher order-goals for children, one example is Piagetian
conversation tasks, which have been used to study the interplay between gestures and speech
before (e.g., Alibali et al., 2000; Church & Goldin-Meadow, 1986; De Jonge-Hoekstra et al.,
2020; Pine, Lufkin, & Messer, 2004, Pine, Lufkin, Kirk, & Messer, 2007).
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4.4. Gesture–speech mismatches

As previously described, Goldin-Meadow and colleagues (e.g., Church & Goldin-Meadow,
1986; Goldin-Meadow, 2003; Goldin-Meadow, Alibali et al., 1993) found that children make
gesture–speech mismatches (i.e., semantic dissimilarities) when they are on the verge of
learning something new. Moreover, during these gesture–speech mismatches, children show a
more advanced understanding of gestures than in speech. In the current study, we found more
gesture–speech mismatches (i.e., less semantic similarity) in the difficult than in the easy con-
dition, and these gesture–speech mismatches were always due to speech errors in semantic
content. With our findings, we thus extend the phenomenon of gesture–speech mismatches
from tasks in which people acquire understanding about cognitive problems to difficult cog-
nitive tasks in general. Since a transition between “old” and “new” understanding was impos-
sible in our experiment, participants’ gesture–speech mismatches were due to something dif-
ferent than competing cognitive understanding.

First, both in the current study and in previous studies, gestures had a clear spatial compo-
nent that was directly linked to the physical properties of the task material (e.g., Bergmann
& Kopp, 2010; De Jonge-Hoekstra et al., 2020; Hostetter & Alibali, 2008; Yeo & Alibali,
2018). This is not true for speech, however, and Smith and Gasser (2005) even propose that
a too close resemblance between the physical structure of the environment and the structure
of speech would limit speech’s functionality. Maybe difficult, cognitive tasks amplify this
difference between gestures and speech in how they are coupled to the physical properties
of the spatial environment, which could result in gesture–speech mismatches. Furthermore,
we could question the extent to which speech actually needed to be functional in the cur-
rent study. Participants performed the task individually and their speech did not have to be
understandable for someone else (also see Fowler, 2010). Future studies could investigate
how task constraints related to spatial structure and social context influence the occurrence of
gesture–speech mismatches.

Second, participants had to verbally discriminate left from right in our experiment, which
is known to be notoriously difficult for children and adults alike (e.g., Fisher & Camenzuli,
1987; McKinley, Dempster, & Gormley, 2015; Vingerhoets & Sarrechia, 2009). To our knowl-
edge, no studies have investigated whether people find it difficult to discriminate between
left and right using gestures as well. However, Abarbanell & Li (2020) recently found that
instructing children to use gestures to discriminate between left and right benefits their per-
formance on a rotation task more than instructing children to say the (Spanish) words (for)
“left” and “right.” The authors explain this effect by gestures being directly linked to the spa-
tial properties of a task, similar to our reasoning in the previous paragraph. This direct link
between gestures and spatial properties of a task is particularly evident for deictic gestures,
like the pointing of participants in our study. Therefore, discriminating between left and right
using gestures was probably easier for the participants than using speech. Furthermore, while
participants in the easy condition could just repeat the same sequence of words without much
thought about their meaning, participants in the difficult condition needed to think about the
words’ meaning constantly. Participants in the difficult condition were, therefore, more prone
to confuse the words “left” and “right,” while they could correctly differentiate between left
and right by means of pointing. This could explain why we found more gesture–speech
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mismatches in the difficult than in the easy condition. Future studies need to investigate
whether this phenomenon is more evident in tasks that require left-right discrimination as
compared to spatial-temporal tasks in general as we argued in the previous paragraph.

Third, in line with Bergmann et al. (2011), we found a positive relation between temporal
alignment and semantic similarity in both the difficult and easy conditions, which suggests
that more temporal alignment goes together with less gesture–speech mismatches. However,
it is yet unclear whether the temporal alignment is causally related to gesture–speech mis-
matches and what the direction of this potential relation would be. According to the infor-
mation packaging hypothesis (Kita, 2000; also see Kita, Alibali, & Chu, 2017), gestures help
to organize and “package” spatial information to both enable verbalization about this spa-
tial information and ensure that the spatial information “fits” within the structure of speak-
ing. When verbalization is challenging, speakers take more time to “package” information by
means of gesturing. This would result in low temporal alignment between gestures and speech
during gesture–speech mismatches as well as low temporal alignment in the difficult condi-
tion. This is in line with the positive relation between temporal alignment and semantic simi-
larity and less temporal alignment, and also with less temporal alignment in the difficult con-
dition, that we found. Follow-up studies could research the relation between gestures, speech,
and gesture–speech mismatches in more detail, using methods to quantify the temporal direc-
tion of gesture–speech coupling, such as cross recurrence quantification analysis (see also De
Jonge-Hoekstra et al., 2016). Moreover, in previous studies, temporal information usually has
been disregarded when coding gesture–speech mismatches (e.g., Alibali et al., 2000).

4.5. Limitations

Our study has a number of limitations. We will address the limitations that we deem most
important.

First, participant’s utterances during the experiment were very limited in scope and syn-
tactic complexity (i.e., “left,” “middle,” “right”), which leaves open the question of how our
findings will correspond to more typical, fluent, and syntactically complex speaking and ges-
turing. Previous studies have found complexity matching between participant’s fluent speech
(Abney et al., 2014; Fusaroli et al., 2013). Furthermore, Abney et al. (2018) created spike
trains of participant’s language and gesture events during fluent conversations and subse-
quently calculated the burstiness of both language and gesture events. Bursty processes are
typical for complex dynamical systems (Barabási, 2005; Karsai, Kaski, Barabási, & Kertész,
2012), and in this sense, burstiness shares similarities with multifractality (albeit the scope of
burstiness analysis is not multi-scaled). The methods used by Abney and colleagues (Abney
et al., 2014, 2018; Fusaroli et al., 2013) provide viable directions for investigating complexity
matching between gestures and speech in more typical and fluent speaking and gesturing.

Second, instead of changing the physical layout and order of the task, we could have
increased task difficulty in a way that is closer to cognitive problem-solving. For instance,
we could have asked participants to follow sets of rules about when to put which color ring
on which color bar, and investigate how rules of varying difficulty influence gesture–speech
coupling. However, such manipulation would not have perturbed participants continuously as
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participants get used to rules, while the random order that we used in the current study did
continuously perturb them.

Third, while we treated the trials from ring to bar and bar to ring equally, the instruction for
these trials differed. For the trials from ring to bar, participants were instructed to select the bar
that has the same color as the ring. For the trials from bar to ring, participants were instructed
to select the enlarged ring. This difference in instruction could potentially lead to a different
pattern of multifractal scaling for the trials from ring to bar and for the trials from bar to ring.
In an interesting study, Kello et al. (2007) investigated a task whereby participants needed to
press a key on a keyboard when they saw a stimulus on screen, thereby responding as fast as
they could. Participants were allocated to either an easy, predictable condition, whereby the
time between the stimuli was constant, or to a difficult, unpredictable condition, whereby the
time between stimuli was random within a certain range. Kello et al. (2007) analyzed two time
series: (a) A time series of the time between the appearance of the stimuli and pressing the key
(reaction time), and (b) a time series of the time between pressing the key and releasing the
key again (key-contact duration). The authors argue that participants only received instruction
about reaction time (responding as fast as possible), while they received no instruction about
key-contact duration. Kello et al. (2007) found the reaction times and key-contact durations in
both conditions to be not or only weakly correlated. Furthermore, they found fractal scaling in
both the reaction and the key-contact duration time series and in both conditions. The fractal
scaling of the reaction time series of the difficult, predictable condition was lower than the
fractal scaling of the other three time series. Although the study by Kello et al. (2007) shares
some similarities with our study, there are notable differences as well. While pressing down
a key as fast as possible and releasing a key correspond to a simple instruction versus no
instruction, respectively (Kello et al., 2007), selecting a bar with the same color and selecting
an enlarged ring correspond to a more complicated instruction versus a simple instruction,
respectively (current study). Furthermore, while pressing down and releasing a key are two
different motions, involving the contraction of different muscles (Kello et al., 2007), trials
from bar to ring and ring to bar both involved pointing to a target and saying the location of
that target (current study). A follow-up study could investigate whether the ring to bar trials
differ from the bar to ring trials with regard to duration and multifractal scaling.

Fourth, our sample size is relatively small, which is largely due to failed audio recordings.
However, we do have many datapoints per participant. Fifth, the number of measurements per
participant (1,024) was on the small side for performing MFDFA (Ihlen & Vereijken, 2010),
yet sufficient. Albeit challenging, we need to come up with ways to increase the number
of measurements per participant while still keeping the task feasible for participants to do.
Furthermore, Almurad and Delignières (2016) propose an alternative way of performing DFA
(the monofractal variant of MFDFA), which allows for time series that are even shorter than
1,024 datapoints.

4.6. Conclusion

We aimed to investigate how task difficulty affects the synchronization between gestures
and speech, thereby empirically addressing De Jonge-Hoekstra et al.’s (2016) proposal. By
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doing so, we brought together different perspectives and ways of investigating gesture–speech
synchronization. We found that task difficulty indeed influences gesture–speech synchroniza-
tion in terms of temporal alignment, semantic similarity, and complexity matching. With our
findings of less semantic similarity in the difficult condition, we extended the phenomenon
of gesture–speech mismatches to difficult, cognitive tasks. Furthermore, we found more tem-
poral alignment in the easy condition, which we related to phase synchronization between
gestures and speech. We found more complexity matching between gestures and speech in
the difficult condition, which we related to gestures and speech forming a more stable syn-
ergy under the influence of more difficult task constraints. Our findings add another piece to
the puzzle of why complexity matching occurs in complex dynamical systems.

In sum, our study demonstrates how this perspective can be used to study the relation
between gestures and speech, and gesture–speech mismatches—subjects that primarily have
been studied from within cognitive psychology. While the body of research that tries to bridge
between complex dynamical systems and coordination research, and cognitive psychology is
steadily growing, we acknowledge that many gaps between the two perspectives still remain.
We look forward to future work that continues to build connections between the two fields,
and we hope that these future studies can build on our study.
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Notes

1. Studies differ in whether they differentiate between non-redundant or mismatching con-
tent (Wagner, Malisz, & Kopp, 2014).

2. Strictly speaking, time series’ variability usually is self-affine instead of self-similar
because its dimensions are scaled by different amounts in the x- and y-directions. For
purposes of brevity and clarity, we will use the term self-similar throughout the paper.

https://osf.io/dj5vr/
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3. We recruited a total of 59 participants to participate in this experiment. However, due to
technical issues with the tablets, for 29 participants, the audio was either not recorded
or recorded with insufficient quality (e.g., loud ticks on the screen, background noise).
After rigorous checks of the quality of all the audio recordings, we decided to include
the 30 participants of which the audio-recordings were of high quality. For the analyses
that we will conduct, with many datapoints, a sample of 30 participants is sufficiently
large. We have the pointing data for all 59 participants, and we will use this data for
other studies and research questions that do not involve speech.

4. A time series is a sequence of datapoints in chronological order.
5. The distances are calculated between the middle of the ring area and the middle of the

top of the bar area.
6. Some participants pronounced a very loud “s” at the end of “links” and “rechts,” and

therefore the MATLAB script identified two syllables within these words instead of one.
Conversely, some participants mumbled the word “midden” (which is quite typical for
people from the northern part of the Netherlands), and therefore the MATLAB script
identified one syllable within this word, instead of two. In addition, participants differed
in their range of speech amplitude during the task: Some spoke evenly loud during the
whole task, while others intermitted softer and louder periods of speaking. Therefore, for
some participants, a velocity peak in a softer part of the audio recording is not recognized
as a velocity peak in a louder part of the audio recording. This resulted in MATLAB
identifying multiple words as one syllable in the loud periods of speaking and multiple
words per audio segment in the softer periods.
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