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A B S T R A C T   

SARS-CoV-2-induced COVID-19 is a serious pandemic of the 21st century, which has caused a devastating loss of 
lives and a global economic catastrophe. A successful vaccine against SARS-CoV-2 has suffered a delay due to 
lack of substantial knowledge about its mechanisms of action. Understanding the innate immune system against 
SARS-CoV-2 and the role of heat shock proteins’ (HSP) inhibiting and resolution of inflammatory pathways may 
provide information to the low SARS-CoV-2 mortality rates in Africa. In addition, bats being a host to different 
viruses, including SARS-CoV-2 possess a well specialized IFN-innate antiviral inflammatory response, showing no 
signs of disease or pro-inflammatory cytokine storm. We discuss the molecular pathways in COVID-19 with a 
focus on innate immunity, inflammation, HSP responses, and suggest appropriate candidates for therapeutic 
targets and The contribution of the innate immune system to the efficacy of mRNA or vector based Corona 
immunizations.   

1. Introduction 

1.1. Coronavirus 

The first reported cases of the new coronavirus (CoV) occurred in 
Huanan seafood market in Wuhan City/China, where a small number of 
individuals were identified with pneumonia of unknown origin leading 
to a severe acute respiratory syndrome (SARS) (Zhu et al., 2019). Res-
piratory samples from these patients were analyzed and the etiological 
agent was identified as CoV. The novel CoV was named by the world 
health organization (WHO) as the novel pneumonia infectious disease, 
“coronavirus disease 2019 (COVID-19) or COVID-SARS-CoV-2” (Novel, 
2020). The overall genomic sequence identity of SARS-CoV-2 showed a 
concordance of 96.2% to COV-RATG13 found in bats (Zhou et al., 
2020b). According to global statistics, more than 164.284.766 people 
were infected between December 2019 and May 2021, with a mortality 
incidence of over 3.406.261 cases (https://coronavirus.jhu.edu). The 

clinical severity of COVID-19 infection may lead to severe respiratory 
failure, especially in the elderly and patients with pre-existing comor-
bidities such as hypertension, diabetes mellitus, coronary heart disease, 
and chronic obstructive lung disease (Polanco et al., 2014; Zhou et al., 
2020a). Currently, humans affected by COVID-19 may suffer from dys-
regulated immune responses, resulting in excessive inflammation, 
known as cytokine storm (Weiss and Leibowitz, 2011) (Fig. 1). Previous 
severe cases of SARS-CoV and Middle East Respiratory Syndrome 
(MERS)-CoV showed high serum levels of several pro-inflammatory 
cytokines (CHIEN et al., 2006; Kim et al., 2016). Compared to the pre-
vious CoV infections, COVID-19 is highly contagious (Liu et al., 2020b), 
and the progression rate to SARS is quick in some of the cases. Although 
research has intensively focused on understanding the pathophysiology 
of COVID-19 infection, the specific molecular and biochemical host 
factors that derive severe lung pathology are not well understood yet. A 
retrospective analysis of adult patients suffering from COVID-19 SARS 
showed that high viral titer, increased inflammatory monocytes/ 
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macrophages, neutrophil infiltration, delayed interferon (IFN) response, 
and multiple organ failure, contribute to disease severity (Channappa-
navar et al., 2017; Gorla et al., 2018; Matthay et al., 2019; Zhou et al., 
2020a). 

1.2. Infection 

The spread of the novel coronavirus SARS-CoV-2 has caused a global 
emergency, which demands an immediate solution to reduce any further 
global threat to health, social life, and the economy. 

Global strategies focus on controlling SARS-CoV-2 by suppressing 
transmission of the virus and therapeutic intervention. According to 
current evidences, it has been suggested that SARS-CoV-2 can spread 
from person to person. However, understanding how, when, and envi-
ronmental settings favoring SARS-CoV-2 spread is crucial to the devel-
opment of effective infection prevention and control measures. SARS- 
CoV-2 possible modes of transmission includes droplet, airborne, 
fomite, fecal-oral, blood borne, mother to child, and animal-to-human 
transmission. Transmission of SARS-CoV-2 can occur through direct 
close contact with infected people through saliva and respiratory se-
cretions or their respiratory droplets, which are released when an 
infected person coughs, sneezes, talks or sings (Burke et al., 2020; Ghinai 
et al., 2020; Liu et al., 2020a). SARS-CoV-2 transmission can also occur 
by dissemination of droplet nuclei (aerosols) that remain infectious 
when suspended in air over long distances and time (Organization, 
2014, 2020). 

Microscopic aerosols generated from infected patients can evaporate 
and can be exhaled during normal breathing and talking. As a result, a 
susceptible person could inhale aerosols and become infected. The 
amount of SARS-CoV-2 in aerosol sufficient to cause infection in another 
person is yet known. However, studies have found SARS-CoV-2 RNA in 
air samples 3 h and 16 h after the induction of aerosols (Fears et al., 
2020; Van Doremalen et al., 2020). Studies have also found SARS-CoV-2 
RNA in air samples without aerosol induction in a health care setting 
(Chia et al., 2020; Guo et al., 2020; Liu et al., 2020c; Santarpia et al., 
2020; Zhang et al., 2020). SARS-CoV-2 RNA are found to be viable from 

hours to days under a favorable condition (temperature and humidity) 
and the type of surface. Therefore, transmission may occur through 
direct contact with surfaces in the immediate environment contami-
nated with virus from an infected person. 

At the moment, there are no published reports of transmission of 
SARS-CoV-2 through feces or urine, but recently, SARS-CoV-2 RNA has 
been detected in urine and feces of infected patients (Guan et al., 2020; 
Sun et al., 2020a; Wang et al., 2020b; Zheng et al., 2020). Also, some 
studies have reported detection of SARS-CoV-2 RNA in either plasma or 
serum, with complete replication in blood cells. However, the role of 
blood borne transmission remains uncertain. Low viral titers in plasma 
and serum suggest that the risk of transmission through this route may 
be low (Le Chang et al., 2020; Wang et al., 2020b). 

The spike protein (S) of SARS-CoV-2 binds to the human receptor 
angiotensin converting enzyme 2 (ACE2) initiating the infection of host 
cells. ACE2 could therefore serve as a primary target for vaccines pre-
venting viral entry into host cells (Li, 2016; Panda et al., 2020). The 
receptor binding domains (RBD) between SARS-CoV-1 and SARS-CoV-2 
show a structural difference in S protein, and therefore it is not possible 
to use the available SARS-CoV-1 vaccine for the treatment of SARS-CoV- 
2 (Berry et al., 2004). In high-risk COVID-19 patients, the innate im-
mune system lacks the possibility to reduce inflammation and prevent 
the cytokine storm (Sun et al., 2020b). 

This review article summarizes the innate immunity, inflammation, 
and heat shock protein (HSPs) responses activated by SARS-CoV-2. The 
responses to SARS-CoV-2 infection in Africa and lessons learned from 
bats are discussed in the second section of this review. Finally, we 
discuss. 

novel potential clinical studies and alternative treatments for COVID- 
19 patients and the innate immune response to the mRNA or vector 
based Corona immunizations. 

2. Innate immune response to SARS-CoV-2 

The evolutionary conserved innate immune system is the host’s first 
defense line of action against viral infections (Netea et al., 2019). The 

Fig. 1. Schematic representation of clinical features versus pathogenic inflammatory cytokine response in CoV-2 infections.  
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innate immune system plays a role in the removal of virus-infected cells, 
leading to rapid coordinated adaptive immune response (Catanzaro 
et al., 2020). 

In the mammalian hosts, microbial recognition receptors (MRRs) 
including Toll-like receptors (TLRs) and the nucleotide-binding oligo-
merization domain (NOD)-like receptor family proteins (NLRs) are 
involved in the detection of various microbes (Franchi et al., 2008; 
Franchi et al., 2009b; Sansonetti, 2006). The pattern recognition re-
ceptors (PRRs) assemble multiple proteins to form a complex called 
inflammasome (Man et al., 2017), which can induce membrane pore 
formation and proinflammatory cytokine overload leading to inflam-
matory cell death called pyroptosis (He et al., 2015; Man et al., 2017; Shi 
et al., 2015). Therefore, the response point between the host innate 
immune response and viral replication is a potential therapeutic target 
in viral infections by reducing excessive inflammation while retaining 
antiviral functions. 

2.1. NLRP3 inflammasome pathogenesis in SARS-CoV-2 infection 

Among pattern-recognition receptors, nucleotide-binding and olig-
omerization domain (NOD)-like receptors (NLRs) are unique cytosolic 
receptors, which constantly patrol for invading pathogens in the 
cytoplasm. 

NLRP3 inflammasome is a well-studied activated inflammasome in 
many families of viruses. Full NLRP3 inflammasome activation requires 
two signaling pathways (Shrivastava et al., 2016). The primary, or 
priming signal can be initiated by TLRs and RIG-I-like receptors (RLRs) 
or by a protein receptor, which leads to the upregulation of pro-caspase- 
1 and pro-IL-1β and pro-IL-18 (Bauemfeind et al., 2009). The second 
signal pathway of NLRP3 inflammasome activation, involves pro- 
caspase-1 recruitment to NLRP3 and the subsequent production of 
mature caspase-1 and IL-1β and IL-18, the main stress signals associated 
with tissue damage or infection (Franchi et al., 2008). The complete 
mechanisms of NLRP3 inflammasome activation are still not fully un-
derstood. However, three diverse classes of stimuli are involved in the 
activation of NLRP3 inflammasome: the invading microbial pathogens 
and their products, including lipopolysaccharide, muramyl dipeptide, 
nucleic acids, and pore-forming toxins; the endogenous danger signals 
like extracellular ATP, urate crystals, hyaluronan, and fibrillar amyloid- 
β; and the crystalline environmental pollutants, such as alum adjuvant, 
and ultraviolet irradiation (Baral et al., 2014; Feldmeyer et al., 2007; 
Franchi et al., 2009a; Schroder and Tschopp, 2010; Sha et al., 2014). 

As previously mentioned, SARS-CoV-2 genome encodes S proteins 
that bind to the host cell receptor ACE2, which facilitates viral entry. 

The SARS-CoV-2 envelope (E) consists of a small hydrophobic protein- 
membrane (M) and nucleocapsid (N). These four SARS-CoV-2 struc-
tures are essential for viral assembly and infection (Weiss and Leibowitz, 
2011). As described before, the initial binding of SARS-CoV-2 to the host 
cell is initiated between the S protein and the ACE2 receptor (Hoffmann 
et al., 2020; Patel and Verma, 2020). SARS-CoV-2 encodes three puta-
tive ion channels (IC): protein E, ORF-3a, and ORF-8a (Chan et al., 2020; 
Ramaiah and Arumugaswami, 2020; Wu et al., 2020a). The dominant 
proteins E and ORF3a have a (PDZ) binding motif and are involved in 
triggering cytokine storm and leading to cell death via the innate im-
mune signaling sensor NLRP3 inflammasome (Nieto-Torres et al., 2015) 
(Fig. 2). Clinically this may result in increased pulmonary edema 
causing acute respiratory distress syndrome (ARDS) (Jimenez-Guardeño 
et al., 2014; Nieto-Torres et al., 2014; Torres et al., 2015). In addition, 
the E protein plays a principal role in several signaling mechanisms 
including the activation of interferon regulatory factor 3 (IRF3) and 
nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB). 
IRF3 is known to mediate the secretion of type 1 interferon, which 
causes the activation of the Janus kinase/signal transducers and acti-
vators of transcription (JAK-STAT) pathway and the expression of 
interferon-stimulated genes. On the other hand, E protein triggers the 
activation of the NF-kB inflammatory signaling cascade and the inter-
action of its PDZ-binding motif (PBM) with inflammatory factors, such 
as tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) (Wang 
et al., 2007). These changes form a calcium ion (Ca2+) channel in the 
endoplasmic reticulum/Golgi apparatus intermediate compartment 
membrane, and act as powerful stimuli activating the cytosolic innate 
immune NLRP3 inflammasome. Moreover, multiple cellular signaling 
events have been shown to activate NLRP3 at the membrane, leading to 
efflux of potassium (K+) or chloride ions (Cl− ), and flux of Ca2+ (Di 
et al., 2018; Domingo-Fernández et al., 2017; Muñoz-Planillo et al., 
2013; Perregaux and Gabel, 1994; Samways et al., 2014; Surprenant 
et al., 1996; Tang et al., 2017; Triantafilou et al., 2013) as well as 
lysosomal disruption, mitochondrial dysfunction, metabolic changes, 
and trans-Golgi disassembly (Swanson et al., 2019) (Fig. 2). Virally- 
induced activation of NLRP3 and downstream mediators often lead to 
pathological tissue injury during infection. 

The NLRP3 inflammasome assembles and activates caspase-1, 
inducing the inflammation-associated cell death process pyroptosis, 
and the maturation of the key pro-inflammatory cytokines IL-1β and IL- 
18, leading to the development of inflammatory responses (de Torre- 
Minguela et al., 2017). NLRP3 cleaves apoptosis-associated speck-like 
protein containing a caspase recruitment domain (ASC) via its N-ter-
minal pyrin domain through hemophilic interactions, resulting in the 

Fig. 2. Schematic representation of SARS-CoV, after host re-
ceptor interaction with S viral protein [angiotensin-converting 
enzyme 2 (ACE2)]. SARS-CoV mediated NLRP3 inflammasome 
activation and downstream inflammatory cascades leading to 
inflammation and cell death via the open reading frame (ORF)- 
3a translate to disrupt lysosomal membrane and the disruption 
of endoplasmic reticulum/Golgi membrane by protein E. 
However, inflammasome activates nuclear factor kappa beta 
(NF-kB) and the production of active caspase 1 can then cleave 
to pro-inflammatory cytokines tumor necrotic factor alpha 
(TNF-α), interleukin 1 (IL1), interleukin 6 (IL6), and inter-
leukin 18 (IL18) leading to inflammation and cell death.   
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formation of prion-like oligomerization (Verkhratsky and Pelegrín, 
2014). The presence of various domains such as MHC class II tran-
scription activator (CIITA), HET-E (incompatibility locus protein from 
Podospora anserina), and telomerase-associated protein located in the 
middle of the NLRP3 inflammasome complex, possess deoxynucleosid-
triphosphate (dNTPs) activity that mediates downstream oligomeriza-
tion (Lu et al., 2014; Ruland, 2014; Schmidt et al., 2016). The C-terminal 
leucine-rich repeat domain (LRR) associated with heat shock proteins 
(HSPs) and SGT1 is considered responsible for the regulation of NLRP3 
inflammasome activity (Lo et al., 2013; Mayor et al., 2007). Once the 
NLRP3 inflammasome is activated, it triggers the auto-cleavage of pro- 
caspase-1, which acts as an activator to mediate the proteolytic pro-
cessing of pro-IL-1β, pro-IL-18, and proapoptotic factor gasdermin D 
(GSDMD) (Shi et al., 2015). The GSDMD attaches and forms a pore on 
the host cells membrane, thereby facilitating the secretion of IL-1β/IL-18 
and further causing pyroptosis (He et al., 2015). Accordingly, it is 
evident that SARS-CoV E protein and ORF-3a activate the NLRP3 
inflammasome and establish host antiviral status (Zhao and Zhao, 
2020). The NLRP3 mediated inflammasome response to SARS-CoV-2 
may be a potential specific drug target for the treatment of SARS-CoV- 
2 disease. Ambient temperature, promoting the production of anti- 
inflammatory heat shock protein, may be a critical factor in the pro-
gression of SARS-CoV-2 treatment. The molecular involvement of HSPs 
has been shown to play a vital role in the resolution of the inflammatory 
pathway of COVID-19 infection (Heck et al., 2020). 

2.2. Toll-like receptors pathogenesis in SARS-CoV infection 

The TLRs are a group of innate immune receptors that are involved in 
activation of the innate immunity, regulation of the cytokine expression, 
indirect activation of the adaptive immune system, and recognition of 
the pathogen-associated molecular patterns (PAMPs). 

(Birra et al., 2020; Debnath et al., 2020; Hedayat et al., 2011). Before 
SARS-CoV-2 pandemic, several studies have shown that TLR pathways 
are important in the pathogenesis of SARS-CoV and the Middle East 
respiratory syndrome (MERS) (Birra et al., 2020). The TLRs comprise of 
ten superfamily members and are divided into membranous and endo-
somal receptors. The TLRs are expressed on different immune cells 
including the dendritic cells, macrophages, natural killer cells, and the 
adaptive immune cells (T and B cells) (Angelopoulou et al., 2020). The 
TLRs have a wide range of recognition for both single-strand and double- 
strand DNA pathogens. 

The signal transduction of TLRs involves two major pathways, the 
Myeloid differentiation primary response 88 (MyD88) and the Toll/ 
interleukin-1 receptor (TIR)-domain containing adaptor inducing 
interferon-β (IFN-β) also known as toll like receptor adaptor molecule 1 
(TRIF or TICAM1). The presence of tumor necrosis factor recep-
tor–associated factor (TRAF) and IL-1 receptor-associated kinases 
(IRAK) proteins can initiate a downstream activation of nuclear factor- 
kB (NF-kB) and Interferon regulatory factor (IRF) and lead to the pro-
duction of type 1 IFN and pro-inflammatory cytokines-interleukin-1 (IL- 
1), IL-6, tumor necrosis factor-α (TNF-α), and IL-12. The TLRs also play 
an indirect role in the adaptive immune system by modulating the 
expression of co-stimulatory molecules. The activation of TLRs by SARS- 
CoV-2 activates inflammasome and production of IL-1β and IL-6. Studies 
have reported that the long-term activation of inflammasomes has been 
the primary cause for the poor outcome in COVID-19 patients (de Rivero 
Vaccari et al., 2020). In addition, TLRs induce the activation of Janus 
kinase transducers (JAK/STAT) leading to macrophage activation syn-
drome. In a fashionable manner, TLRs mediate host cell signaling 
pathways and decrease the expression of IFN receptors and type 1 IFN 
production, which lead to systemic inflammatory response (Angelo-
poulou et al., 2020), being vital in the pathogenesis of CoVs. Several 
studies have been conducted to study the involvement of TLR members. 
These studies have shown that TLR3 act via the TIRF pathway to offer 
protection in SARS-CoV and MERS-CoV infections. A TLR3 mouse model 

has shown to activate IRF3 and NF-kB pathways, and the production of 
type 1 IFN and pro-inflammatory cytokines (Birra et al., 2020). Also, no 
reduction in the secretion of cytokines following coronavirus infection 
in TLR3 knock-out mice has been shown (Birra et al., 2020). TLR4 ac-
tivates the same pathway as TLR3, but the TLR4 is vital in bacterial 
infections and activated by oxidized phospholipids found in most of the 
viral lung infections, also being confirmed for COVID-19. 

Activated TLR4 pathway in the pulmonary phase of infection causes 
oxidative injury. TLR4 signaling pathway plays a role in the activation of 
neutrophil extracellular traps (NETs) and NET formation in COVID-19 
has been shown to sustain inflammation, which can lead to bad 
outcome of COVID-19 patients (Cicco et al., 2020). The SARS-CoV-2 
spike protein binds TLR1, 4, and 6, with a higher affinity for TLR4. 
TLR4 blocker could be administered as a therapeutic remedy for COVID- 
19 patients (Choudhury and Mukherjee, 2020). Studies have shown that 
TLR7 and TLR8 are highly expressed in the lung during SARS-CoV 
infection and could play a role in cytokine storm in SARS-CoV-1 (de 
Groot and Bontrop, 2020). Studies from whole genomic sequencing has 
revealed that TLR7 could be more involved in SARS-CoV-2 pathogenesis 
compared to SARS-CoV and MERS-CoV because SARS-CoV-2`s single 
stranded RNA could primarily bind to TLR7 (Van Der Made et al., 2020). 
TLR7 could be another candidate for triggering NET formation in 
COVID-19 patients, as the activation of TLR7/8 pathway induces a 
strong pro-inflammatory response in patients, resulting in acute lung 
injury. Therefore, it may have a dual role disease progression (Moreno- 
Eutimio et al., 2020; Veras et al., 2020). 

Moreover, several TLR agonists have been administered to activate 
the innate immune cells and the production of various resisting factors 
in the lung epithelial cell. In this effort to reduce COVID-19 death, 
several clinical trials have evaluated the effect of anti-inflammatory 
drugs in COVID-19 patients, using CD24Fc conjugate to block TLR 
activation (Florindo et al., 2020). Also, the antagonistic effects of gly-
cyrrhetinic acid against TLR4 has an anti-inflammatory effect in the lung 
of mice with acute respiratory distress syndrome, thereby protecting 
tissue destruction (Huang et al., 2020). It may also stimulate an anti- 
inflammatory activity downstream of the less active ACE2 and may 
also stimulate an anti-inflammatory activity downstream of the less 
active ACE2. Therefore, it could be a potential approach to control 
COVID-19 (Murck, 2020). 

3. HSPs-mediated CoV-2 tolerance versus immunopathology 

Heat shock proteins (HSPs) are intracellular proteins that act as 
molecular chaperones in protein folding and protein trafficking between 
intracellular compartments. They are increasingly expressed by oxida-
tive stress, nutritional deficiencies, and radiation. However, HSPs are 
released into the extracellular environment by not fully known mecha-
nism, but they act with numbers of innate immunological effect. One of 
the specific pre-existing comorbidities associated with severe COVID-19 
infection includes a relative deficiency of heat shock response (HSR) 
(Heck et al., 2020). A lack of sufficient HSR has been reported to be the 
likely underlying etiology for the unfavorable prognosis in most of the 
chronic inflammatory diseases (Newsholme and de Bittencourt Jr, 
2014), and is also suspected in groups with high risk for COVID-19 
mortality (Heck et al., 2020). 

The innate immune cells are highly sensitive to stimuli and rapidly 
recruit cells within minutes (neutrophils) to hours (monocyte/macro-
phages) to the site of injury. These rapid responses are orchestrated 
primarily by the expression of NF-kB, which derives inflammation 
during the early phase (Oeckinghaus and Ghosh, 2009). 
Cyclooxygenase-2 (COX-2) is an inducible protein responsible for the 
production of proinflammatory arachidonic acid-derived prostaglandin 
(PG) and other lipid mediators as well as vasoactive compounds that 
increase vascular permeability and facilitate the arrival and activation of 
inflammatory cells and tissue repair (Medzhitov, 2008). COX-2-derived 
PG-E2 induces fever by blocking thermosensory information at the 
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preoptic area of the anterior hypothalamus, and thalamus, leading to the 
activation of coordinated sympathetic/parasympathetic heat-sparing 
mechanisms, resulting in an elevation of core temperature (Miragem 
and Homem de Bittencourt, 2017). The rise in temperature of approxi-
mately 2–3 ◦C triggers the heat shock response (HSR) (Singh and Has-
day, 2013). 

Structural changes in the plasma membrane including viral budding 
during the establishment of fever plays a direct role in heat shock factor 
1 (HSF-1) activation (Anckar and Sistonen, 2011). The activation of 
HSF-1 regulates the transcription of HSPs, expression of cytokines, and 
early gene response (Chen et al., 2005), including the control of COX-2 
transcription-induced production of PDE2 during the priming/action 
phase of inflammation (Gilroy et al., 1999). The HSR can disassemble 
acute inflammation by blocking NF-kB and other downstream pro- 
inflammatory signals (Gilroy et al., 1999; Newsholme and de Bitten-
court Jr, 2014; Serhan, 2011). The production of HSP70 in response to 
HSF-1 activation is correlated with complex formation by NF-kB and its 
inhibitor (I-kB) to impede NF-kB translocation into the nucleus (Chen 
et al., 2005) (Fig. 3). The HSPs are anti-inflammatory chaperones that 
ameliorate a series of inflammatory conditions (de Bittencourt Jr et al., 
2007; Ianaro et al., 2003), including after activation of the NLRP3 
inflammasome. Persistent activation of NLRP3-dependent caspase-1- 
mediated cleavage of an RNA-binding protein can enhance both the 
expression and transcriptional activity of HSF-1 to promote a robust HSR 
(Newsholme and de Bittencourt Jr, 2014; Talwar et al., 2011; Wang 
et al., 2013). 

Fatality after SARS-CoV-2 infection is thought to be due to the virus- 
induced elevated pro-inflammatory cytokine release, often called 
“cytokine storm” (Huang et al., 2005; Tisoncik et al., 2012). Alterna-
tively, in those who present a robust HSR after infection, the anti- 
inflammatory activity of HSR may result in the inhibition/degradation 

of cytokines, preventing a cytokine storm (Tanaka et al., 2014). 
Although, several drugs targeting the anti-inflammatory and anti- 
apoptotic pathways in SARS-CoV-2 patients including chloroquine 
(Gao et al., 2020), hydroxychloroquine (Gautret et al., 2020), gluco-
corticoids (Wu et al., 2020b), remdesivir (Wang et al., 2020a), favipir-
avir (Cai et al., 2020), have been tested, but no significant benefit has 
been shown yet. 

Although the mechanisms involved in the multiple beneficial effects 
of hyperthermic treatment in chronic inflammatory diseases have not 
been fully elucidated, it has been hypothesized that elevating core body 
temperature in humans between 38 and 39 ◦C can exert anti- 
inflammatory effects due to nitric oxide (NO)-based improvement of 
endothelial function as well as chronic NO-elicited HSP70 expression 
(Krause et al., 2015). In fact, HSPs can inhibit both NLRP3 inflamma-
some activation and caspase-1 activity in mouse macrophages (Levin 
et al., 2008). Therefore, purposefully increasing or maintaining core 
body temperature at fever range (38–39 ◦C) levels could activate the 
anti-inflammatory activity of the HSR and provide and alternative 
treatment. 

4. Constitutive heat shock response and tolerance to CoV-2 

Constitutive heat shock response is an evolutionary conserved innate 
stress response system. Under normal physiological conditions, it exist in 
low levels but their concentration can increase in many folds in response 
to a plethora of stimuli including thermal and nonthermal stimuli such 
as ischemia, iron overload, oxidants, and infections (Jäättelä, 1993; 
Jäättelä and Wissing, 1992; Villar et al., 1994). Stress-induced/chronic 
disease-induced HSPs accumulation is considered a powerful cytopro-
tective (Bakthisaran et al., 2015; Zhang et al., 1999). The ambient 
temperature in sub-Saharan Africa could be a potential stimulus of HSR 

Fig. 3. Innate Immune signaling Pathways in SAR-CoV infection and Immune Evasion. Upon CoV infection, incoming double-stranded RNA(dsRNA) and genomic 
single-stranded RNA (ssRNA) are recognized by Toll-like receptor 3 (TLR3) and TLR7, respectively. The downstream signaling of these TLRs induces activation of 
nuclear factor-κB (NF-κB) to produce proinflammatory cytokines and phosphorylation of interferon regulatory factor 3 (IRF3) and IRF7 to drive type I interferon. NF- 
κB activation-induced COX-2 production, which in term induced fever and then triggers the response of heat shock factor 1 (HSF-1). The inhibitory of SARS-CoV-2- 
induced inflammation damage by heat shock protein (HSP70, 90) is via suppressing activation of NF-κB pathway in the cytosol NLRP3 inflammasome and sup-
pression of pro-inflammatory cytokines in the nucleus. 
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and might play a significant role against SARS-CoV-2. 
SARS-CoV pandemic in African countries is losing the perspective of 

Chad Wells and colleagues (Wells et al., 2020) who have estimated a 
total death toll of approximately 300,000 for the Democratic Republic of 
Congo alone. However, their prediction has been proven wrong because 
little is known about the dynamics of SARS-CoV-2 in African countries, 
including its infectiousness and the proportion of infected people who 
develop symptoms and the response of their innate immune cells. We are 
aware of the lack of test capacity in Africa and the quality of the 
collected data, however as the scientific evidence behind the low mor-
tality rate of SARS-CoV-2 is lacking, we speculate that the high ambient 
temperature in sub-Saharan African countries could potentially stimu-
late the HSR and their anti-inflammatory effects to dissolve the 
inflammation caused by SARS-CoV-2 infection. Additionally, cases of 
COVID-19 outbreaks present a pattern of clustering in relatively cool 
and dry environments, just like the previous SARS-CoV-1 (Araujo and 
Naimi, 2020). According to COVID-19 weather models, warm and cold 
climates favors the spread of the virus, whereas arid and tropical cli-
mates are less favorable (Ma et al., 2020; Sajadi et al., 2020). However, 
this model is still uncertain across sub-Saharan Africa and South East 
Asia (Araujo and Naimi, 2020). Climate could help constrain SARS-CoV- 
2 (Araujo and Naimi, 2020; Bannister-Tyrrell et al., 2020; O’Reilly et al., 
2020). The restoration of immunoinflammatory balance through hy-
perthermic treatment has been suggested (Cohen, 2020), and could be a 
promising treatment option in handling chronic auto-immune disease 
without the involvement of immunosuppressive approaches (Tukaj and 
Kaminski, 2019). Hyperthermia-induced heat stress has been shown to 
mitigate viral infections by a direct inhibition of pathogens, stimulation 
of both the innate and adaptive transcriptional genes of the immune 
system and the activation of regulatory processes that dissemble 
inflammation, and the prevention of cytokine storms that otherwise 
could cause excessive tissue damage (Evans et al., 2015). Heat inter-
vention is one of the oldest forms of microbial control and today remains 
one of the most common methods for controlling and eradicating 
pathogens. Control temperatures at 60 ◦C for 30 min or 65 ◦C for 15 min 
or 80 ◦C for 1 min have been shown to reduced coronavirus infectious by 
at least 4 fold (Cohen, 2020). However, the therapeutic temperature, 
humidity, and time required to dissemble SAR-CoV-2 in vivo are yet to 
be determined. 

Epidemiological evidence has suggested that frequent sauna bathing 
can reduce the risk of pneumonia (Kunutsor et al., 2017a), and decrease 
the incidence of respiratory viral infections (Ernst et al., 1990; Kunutsor 
et al., 2017b). Additionally, inhaling warmed and humidified air above 
43 ◦C for 30 min can reduce viral shedding and relieve symptoms of the 
common cold (Tyrrell et al., 1989). The inhalation of hot air is signifi-
cant for the immune system’s first line of defense by direct inhibition or 
deactivation of virions in the ethmoidal sinus where they first lodge 
(Conti et al., 1999). Whole body heat application has also been proven to 
support the immune system’s second line of defense dependent on the 
HSR pathway by mimicking the effects of fever (Schieber and Ayres, 
2016). Higher temperatures at fever range can activate immune cells, 
promote cell membrane fluidity, and increase cell differentiation and 
activation of viral antigens, leading to rapid response to viral threats. 
The direct application of heat to the upper airways, at the first signs of 
infection, may further serve to inhibit or deactivate virions. In vitro 
exposure of cells to 45 ◦C for 20 min stimulates immune cells to release 
adequate HSPs and suppresses rhinovirus multiplication by more than 
90% (Conti et al., 1999). The inhalation of steam with added essential 
oils such as Eucalyptus, peppermint, and lavender with anti-viral 
decongestant, may further assist in facilitating muco-ciliary clearance 
and reducing viral load as well as providing physical and psychological 
relief. This hypothesis necessitates re-evaluation and caution at the time 
while treating SARS-CoV-2 patients. 

Currently no clinical study has been planned or designed using heat 
in the treatment of COVID-19, but heat has a long traditional use in this 
setting. Heat-based clinical protocols are needed to design future studies 

and inform clinical practice in order to minimize the risk of cross- 
infection during treatment as well as minimize the risks of treatment 
such as burns, cramps, dizziness and fainting, heat exhaustion, and heat 
stroke. 

Interestingly, bats present an unequaled HSP-based anti-inflamma-
tory HSR and do not show degenerative diseases nor cytokine storms 
(Ahn et al., 2019). Bat immune cells continue to suppress NLRP3 
inflammasome activation in response to viral/bacterial and sterile 
stimuli (Ahn et al., 2019). The same occurs for different viruses, 
including MERS coronavirus, without influencing their ability to defeat 
viruses (Ahn et al., 2019). Constant inflammatory responses have been 
shown to correlate with HSP70-induced anti-viral interferon gamma 
(IFN-γ) production (Jacquemin et al., 2017) via IFNs regulate HSP 
expression, which further enhance the transcription rate of the heat 
shock gene and increasing the stability of mRNA coding for HSPs (Zhao 
et al., 2002). In bat, IFN-α can also enhance cyPG-induced HSP70 syn-
thesis in virus infected cells (Pica et al., 1996), and IFN-γ-induced syn-
thesis and release of HSP70 towards the extracellular exosomes 
pathway, which influence unaffected dendritic cells (Bausero et al., 
2005). The HSR in the bats shows a constant rapid proteostasis response 
upon virus-induced ER stress, rapid resolution of inflammation to pre-
vent tissue damage. Despite species differences, comparative physiology 
and similarity between bats’ and human antiviral and anti-inflammatory 
protective pathways involving HSR can direct some clues on how to 
avoid or treat cytokines storm in COVID-19 patients. 

5. Innate immune response to the mRNA or vector based Corona 
immunizations 

The effort to protect the global population using the current vaccines 
may provide a possible path out of the pandemic and vaccines have been 
approved around the world. The goal of these vaccines is to induced and 
train the immune system to recognize a piece of SARS-CoV-2 antigen, 
targeting the spike protein, which the coronavirus uses in masking 
human cells. The approved vaccines developed by Pfizer/BioNTech and 
Moderna use mRNA and lipid nanoparticle (LNP) delivery technology, 
while the approved formulations by AstraZeneca, Johnson and Johnson 
and Gam-COVID-vac (Sputnik V) contain DNA within non-replicating 
recombinant adenovirus (AdV) vector systems (Baden et al., 2021; 
Logunov et al., 2021; Polack et al., 2020; Voysey et al., 2021). Both 
vaccines from Pfizer/BioNTech (BNT162b2) and Moderna (mRNA- 
1273) are mRNA vaccines, reporting a success of 90–95% efficacy 
against COVID-19 (Baden et al., 2021; Polack et al., 2020), while the 
AdV vaccines (ChAdOx1 nCoV-19) and Gam-COVID-vac (Sputnik V) 
have an average efficacy of 70% and 91% protection against COVID-19 
(Logunov et al., 2021; Voysey et al., 2021). Little is only known about 
the vaccines mobilizing the immune response, the durability of protec-
tion, and how to further optimize against new variants. However, the 
vaccines have been reported to neutralize antibody and virus T cell after 
2 to 4 weeks of injection (Sahin et al., 2020; Widge et al., 2021), and 
trigger the innate and adaptive response to stimulate adaptive immunity 
without inducing systemic inflammation that may cause severe side 
effects. The mRNA vaccines function as both immunogen (encoding the 
viral protein) and adjuvant (capable of activating the Th or Th2 
response). Upon entry of the single-stranded RNA (ssRNA) or double- 
stranded RNA (dsRNA), these are recognized by various endosomal 
and cytosolic innate immune sensors. Endosomal Toll-like receptors 
(TLR3 and TLR7) are the main TLRs that binds dsRNA and stimulates the 
expression of inflammatory chemokines while components of the 
inflammasome such as MDA5, RIG-I, NOD2, and PKR bind to ssRNA and 
dsRNA in the cytosol leading to cellular activation and production of 
type I interferon and multiple inflammatory mediators (Pardi et al., 
2018). 

The lymph node nanoparticle (LNP) carrier helps to protect the 
mRNA for safe-target delivery to lymphatics, where it promotes protein 
translation to occur (Pardi et al., 2018). Once in the LN, the LNP is 
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engulfed by dendritic cells (DCs), which subsequently produce and 
present the antigen to T cells for activation of the adaptive immune 
response. The AdV vaccines also contain inherent adjuvant properties, 
although these reside with the virus particle that encases the DNA 
encoding the immunogen. After the injection of AdV, dendritic cells and 
macrophages stimulate innate immune to engage multiple pattern- 
recognition receptors including, TLR9-induced type I interferon secre-
tion in the infected lungs (Sayedahmed et al., 2020). Although, mRNA 
vaccines do not bind TLR9, both vaccines are involved in the production 
of type I interferon. Dendritic cells and other cells that are involved in 
the production of type I interferon take up the vaccine-derived nucleic 
acids encoding S protein, which can thereafter stimulate both antigenic 
and inflammatory signals to activate T cells in lymph nodes mobilizing 
the adaptive immunity against SARS-CoV-2. The mRNA and AdV vac-
cines promote intracellular production of S protein and innate immune 
responses, which prime both CD8+ and CD4+ T cells to differentiate 
into effector and memory subsets. Vaccine-driven production of type I 
interferon promotes differentiation of CD4+ and CD8+ effector T cells 
producing inflammatory and cytotoxic mediators, and CD4+ T follicular 
helper (TFH) cells, which promote B cell differentiation into antibody 
secreting plasma cells. This secondary inflammatory response may 
provide a short-term change to the innate cells like macrophages 
through a phenomenon called ‘trained immunity’ (Yao et al., 2018), and 
the activation of memory T cells and B cells from the initial injection that 
activate type I interferon, amplifies T cell memory and promote B cell 
differentiation and survival, thus suggesting that vaccine-associated 
inflammation can booster and promote the generation of long-term 
immunological memory. 

6. Conclusions 

This review was written at the time; global SARS-CoV-2 infections 
rate have exceeded 164 million with over 3 million deaths, increasingly 
spreading worldwide. The old and new information in this review pro-
vides hope and solutions for the treatment of COVID-19. Based on the 
current understanding, SARS-CoV-2 is primarily spread through contact 
and respiratory droplets. Under some circumstances airborne trans-
mission may occur both indoor and out indoor crowded poorly venti-
lated settings elsewhere. 

It could be hypothesized that TLRs have both harmful and beneficial 
effects in COVID-19 infection. According to the old data from SARS-CoV 
and MERS, could help in better understanding of the exact role of 
component of innate and adaptive immunity in COVID-19 infection. 
Only the TLR7/8 recognizes ssRNA of COVID-19, while TLR3, TLR4, and 
TLR6 could be involved in COVID-19 infection. The use of both antag-
onists and agonists, should be investigated to determine the therapeutic 
and harmful effects of TLR in SARS-CoV-2 infection. The stage of 
infection is also important in determining the type of TLRs involvement. 
In addition, the attenuation of excessive activation of inflammasomes 
and NET formation could also be a therapeutic target. Finally, bioin-
formatics studies could help in understanding of interactions of TLRs 
with proteins and RNA of COVID-19. 

Recent research has demonstrated that, during certain pathogen 
including SARS-CoV-2 infections, NLRP3 is capable of detecting specific 
ligands, activate caspase-1, and induce the release of various pro- 
inflammatory cytokines with vital roles against viral infection 
(Komune et al., 2011). Some years back, efforts have been put into the 
investigation of the relationship between virus and NLRP3 inflamma-
some. Viral RNA, viroporin, and infectious viral particles activate the 
NLRP3 inflammasome (Chen and Ichinohe, 2015). Most RNA viral 
infection activates or inhibits NLRP3 inflammasome by regulating ion 
channels and ROS model. The K+ efflux plays a major role in NLRP3 
activation, although, Ca2+ channel and ROS model remain 
controversial. 

Presently bat research has gained attraction. In addition to flight, 
various biological traits make bats unique among mammals. Bodies of 

research such as those of the Bat1K consortium147, and technologies 
that use single-cell RNA sequencing, allow unbiased and deeper char-
acterization of bats immune cell populations and their specific functions 
and pathways. Bat host defense immune tolerate and balance virus 
inflammation confers exceptional health. The key regulators and ma-
chinery used by bat in maintaining this homeostatic balance is a valu-
able lesson for controlling and combating viruses’ numerous 
inflammatory diseases in humans. 

We suggest that HSR, is an essential pathway for inflammation res-
olution. Finally, we propose that the use of HSR activators should be 
investigated, since they could potentially alleviate the COVID-19 com-
plications. Although, constant inflammatory responses have been shown 
to correlate with HSP70-induced anti-viral interferon gamma (IFN-γ) 
production (Jacquemin et al., 2017) via IFNs regulate HSP expression, 
which further enhance the transcription rate of the heat shock gene and 
increasing the stability of mRNA coding for HSPs (Zhao et al., 2002). 

The presently recommended newly developed vaccines against 
SARS-CoV-2 has proven successful, but it administration has been 
associated with autoimmune manifestations in some groups of predis-
posed individuals. It has been demonstrated that these vaccines do not 
pose prominent danger than natural infections themselves, also both 
patients and clinicians are concerned about the potential risk for relapse 
or worsening of autoimmune diseases mainly because of insufficient 
data. To avoid the associated vaccination risk should not lead to vaccine 
refusal furthermore, trials would clarify the underlying immunological 
mechanisms of the newly implemented vaccines/adjuvants in these 
population. 
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