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A B S T R A C T   

Sterol Biosynthesis Inhibitors (SBIs) are a major class of fungicides used globally. Their wide-
spread application in agriculture raises concerns about potential harm and toxicity to non-target 
organisms, including humans. To address these concerns, a quantitative structure-toxicity rela-
tionship (QSTR) modeling approach has been developed to assess the acute toxicity of 45 different 
SBIs. The genetic algorithm (GA) was used to identify key molecular descriptors influencing 
toxicity. These descriptors were then used to build robust QSTR models using multiple linear 
regression (MLR), support vector regression (SVR), and artificial neural network (ANN) algo-
rithms. The Cross-validation, Y-randomization test, applicability domain methods, and external 
validation were carried out to evaluate the accuracy and validity of the generated models. The 
MLR model exhibited satisfactory predictive performance, with an R2 of 0.72. The SVR and ANN 
models obtained R2 values of 0.7 and 0.8, respectively. ANN model demonstrated superior per-
formance compared to other models, achieving R2

cv and R2
test values of 0.74 and 0.7, respectively. 

The models passed both internal and external validation, indicating their robustness. These 
models offer a valuable tool for risk assessment, enabling the evaluation of potential hazards 
associated with future applications of SBIs.   

1. Introduction 

SBI fungicides have gained prominence and continue to serve as an important class of fungicides on a global scale [1,2], with total 
sales surpassing billions of dollars worldwide. SBI fungicides are categorized into four groups (G1-G4) depending on their target site of 
action within the ergosterol biosynthesis pathway, as delineated by the Fungicide Resistance Action Committee (FRAC) classification. 
Each group may consist of various chemical classes [3]. Demethylation inhibitors (DMIs) or group G1, are undeniably the main 
category of SBI fungicides [1–3]. These fungicides have a specific target, namely the Cyp51 enzyme, which effectively impedes the 
biosynthesis of ergosterol in fungi [4]. With a significant 29.2 % share in fungicide sales, DMIs encompass various chemical classi-
fications such as Triazoles, imidazoles, piperazines, pyrimidines, and pyridines [5]. In addition to DMIs, SBI fungicides consist of other 
groups known as G2 (Amines), G3 (Keto-reductase inhibitors), and G4 (Squalene-epoxidase inhibitors). Similar to the DMIs, these 
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groups belong to distinct chemical classes [2,3]. Despite their extensive utilization, numerous studies have revealed the dangers 
associated with the exposure to SBI fungicides. The exposure to Myclobutanil, Triadimefon [6], and Triazoles [7] has been found to 
result in reproductive toxicity. Furthermore, the exposure to Triazoles has been linked to hepatotoxic effects [8]. On the other hand, 
Propiconazole has been observed to exhibit embryotoxicity in mice [9] and also induces liver toxicity [10]. Studies have demonstrated 
that penconazole can lead to testicular dysfunction and impairment [11], as well as hepatotoxicity [12] in rats. 

In the field of toxicological research, the primary approach for categorizing the possible risk associated with pesticides is by 
assessing their acute oral LD50 value [13]. This approach classifies pesticides into five distinct categories. More recently, the acute 
toxicity hazard classifications outlined in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) have 
come into use [13]. 

Quantitative structure-activity relationship (QSAR) techniques including CoMFA [14], principal components analysis (PCA) [15], 
and genetic algorithms (GA) [16,17] might offer a valuable instrument to anticipate the biological characteristics of chemical com-
pounds. Early QSAR methods primarily employed linear regression for model building [18]. However, recent developments have seen 
the integration of machine learning algorithms (ML), including Support Vector Machines (SVM) [19], Artificial Neural Networks 
(ANNs) [20], and Partial Least Squares (PLS) [21], to explore non-linearity in chemical structure-activity relationships. These algo-
rithms handle big data, enabling researchers to delve deeper into the intricate connections between chemical properties and biological 
effects [22]. 

In this work, we have employed the genetic algorithm combined with Multiple Linear Regression (GA-MLR), Support Vector 
Regression (SVR), and Multi-layer perceptron artificial neural network (MLP-ANN) approaches to propose validated QSTR models to 
assess the acute toxicity of 45 different SBIs. These models hold potential for the development of future sterol inhibitor fungicides to 
minimize the risk of toxicity to non-target organisms, especially humans. To our knowledge, this study is the first QSTR analysis 
specifically focusing on the acute toxicity of SBI fungicides. 

2. Materials and methods 

2.1. Data set 

According to the FRAC classification [3], approximately 50 compounds have been classified as SBIs which are widely used globally 
in agriculture. The dataset employed in this study included 45 molecules of SBIs fungicides with information on acute oral LD50 in rats. 
These data were collected from the World Health Organization database [13], PubChem [23], and the National Library of Medicine 
(NLM) [24]. The structure of the compounds was modeled using the MM + force field in HyperChem [25], followed by a geometry 
optimization using the AM1 semi-empirical method, achieving a root mean square gradient of 0.01 kcal mol⁻1. The chemical structures 
of the studied compounds are illustrated in Table S1. 

2.2. Descriptors generation 

A broad set of 0D-3D molecular descriptors, selected from 1497 calculated using E-Dragon 3.0 software [26], were used to capture 
structural features for the modeling [26]. A total of 492 descriptors were selected for QSTR modeling after removing those with low 
variance (standard deviation < 0.001), missing values, and high correlations (R > 0.9). The E-Dragon 3.0 provides comprehensive 
information on these descriptors, including their definitions, calculation procedures, and related references [26]. 

2.3. Genetic algorithm (GA) 

To identify the primary descriptors influencing the toxicity of SBI compounds, the Genetic Algorithm (GA) method was employed. 
This method, modeled after Darwin’s natural selection and evolution principles, has proven effective in variable selection [27]. The 
optimal models identified five descriptors, and the GA was implemented using MATLAB software (R2022a) [28]. 

2.4. Dataset splitting using K-means classification 

After descriptor selection with the GA, the dataset was split into training and test sets using k-means classification. The dataset was 
split 80/20 into training and test sets. The test set included 9 randomly selected compounds from each k-means cluster, with the 
remaining 36 compounds forming the training set [29]. 

2.5. Multiple linear regression (MLR) model 

A Multiple Linear Regression (MLR) analysis was conducted to explore the relationship between physicochemical characteristics 
and the acute toxicity of SBIs. The LD50 values for the 45 compounds were converted to pLD50 values (pLD50 = –logLD50) and served as 
the dependent variable. The five molecular descriptors selected previously were used as independent variables. The coefficients for the 
regression model were calculated using MLR and the least-squares curve fitting method, yielding the following regression equation 
[30]: 
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Y= a0 +
∑n

i=1
aiXi (1)  

In equation (1), Y signifies acute toxicity or pLD50, Xi represents the molecular descriptors, n denotes the number of descriptors, a0 is 
the constant of the equation, and ai are the coefficients associated with each descriptor [30]. 

2.6. ML-based QSTR models 

In addition to GA-MLR, our QSTR modeling incorporated a range of ML techniques, encompassing Support Vector Regression (SVR) 
and Artificial Neural Networks (ANN). 

2.6.1. Support vector regression (SVR) model 
Support Vector Regression (SVR) is a form of Support Vector Machine (SVM) algorithms that has been recognized as a potent tool in 

ML-based QSAR researches [31]. The current investigation utilized Bayesian optimization on the hyperparameters: kernel function, 
box constraint level, and kernel scale. The molecular descriptors employed in the GA-MLR model were also utilized in the ML-based 
models. Model accuracy was assessed using two key metrics: the coefficient of determination (R2) and the mean squared error (MSE). 
The SVR was carried out using the regression learner tool on MATLAB software (R2022a) [28]. 

2.6.2. Multi-layer perceptron artificial neural network model (MLP-ANN) 
ANNs, as an ML technique, may offer a viable method for investigating complex problems. This particular technique finds its origins 

in the behavior of biological nervous systems [32]. Among the most frequently employed algorithms for ANNs is the multilayer 
perceptron (MLP-ANN) [33]. This network might have a single hidden layer or multiple hidden layers, and the number of neurons 
within each hidden layer is determined by the complexity of the input and output data. This study used MLP-ANN to assess the 
effectiveness of the molecular descriptors identified by the GA-MLR model. The Levenberg-Marquardt backpropagation algorithm was 
used for biases and weights optimization due to its fast convergence ability [32,33]. Mean square error (MSE) was used as a Loss 
Function, mu value was set to be 0.0001 upon completion of the training, maximum number of Epochs and validation checks were 
1000 and 6, respectively. Prediction accuracy was estimated by the R2, and MSE for both train and test sets. The ANN analysis was 

Fig. 1. A flow diagram illustrating the QSTR process used in this study.  
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achieved using MATLAB software (R2022a) [28]. 

2.7. Validation of the QSTR models 

2.7.1. Cross validation 
In our investigation, we explored the examination of the reliability of statistical models through the utilization of cross-validation, a 

technique that is commonly employed [34,35]. The assessment of the predictive capacity of the models was investigated through 
Leave-many-out cross-validation (LMO-CV) technique. The LMO-CV employs leave-m-out cross-validation, where m = 20 % of the 
compounds are used as the validation set, with the remaining 80 % used for training. A model is considered reliable if it gets an R2

cv over 
0.5, showing it can make accurate predictions on new data [34,35]. 

2.7.2. Y-randomization test 
Y-randomization helps distinguish real relationships from random chance in an MLR model [36]. The test assesses the significance 

of an MLR model by scrambling the toxicity activity data (dependent variable) while keeping the molecular descriptors (independent 
variables) unchanged. A QSTR model is considered valid if it’s R2 and Q2 values are significantly higher than the average of those 
obtained from randomized models, suggesting that the relationships found are not due to random chance [36]. 

2.7.3. Applicability domain (AD) 
The OECD principles emphasize the importance of defining a domain of applicability for QSAR models [37]. The evaluation of the 

domain of applicability aids in determining whether the developed model is suitable for a particular set of molecules. The domain of 
applicability is characterized as a hypothetical region within the descriptor chemical space and the predicted activity [38]. Within this 
space, the QSAR model accurately predicts the biological activity of molecules, whereas molecules with inaccurately predicted ac-
tivities fall outside this space and are considered outliers [38]. 

2.7.4. External validation 
To assess the performance of the generated models, a test set consisting of 9 compounds (20 % of the dataset) was created using the 

previously described k-means classification method. These compounds were not used during model training. The predictive perfor-
mance of the model for toxicity was assessed using two metrics: R2

test and MSEtest. An R2
test value exceeding 0.5 is considered an 

acceptable level of predictive performance [39]. The overall process of QSTR modeling is presented schematically in Fig. 1. 

3. Results and discussion 

3.1. GA-MLR model 

GA-MLR approach procedure was carried out to define the main molecular descriptors that affected the acute toxicity of 45 SBIs. 
The logarithmic values of pLD50 (–log LD50) were considered the dependent variable, while molecular structure descriptors were 
independent variables. Out of 1497 molecular descriptors calculated for each molecule, 492 molecular descriptors were selected and 
used with pLD50 values as input for model development. GA-MLR procedures were performed to develop a 5-variable model based on 
all types of molecular descriptors (i.e., 0D, 1D, 2D, 3D descriptors). Five molecular descriptors R3uþ, ATS6e, Mor31u, RDF050m, and 
BELv4 (Table 1) [26] were chosen to develop the QSAR models as shown in equation (2): 

pLD50 = –9.04+35.48×(R3u+)+0.01228×(ATS6e) –1.21×(Mor31u) –0.0429×(RDF050m)+2.415 × (BELv4) (2)  

n=36,R2
train = 0.72,R2

adj. = 0.67,MSEtrain = 0.04,P < 0.001,VIF values 1.38 to 4.55,R2
test= 0.66,MSEtest = 0.062,R2

cv = 0.66.

The optimistic statistical quality of the GA-MLR model R2
train (0.72), MSEtrain (0.04), cross-validated R2

cv (0.66), revealed a good 
predictive performance on the toxicity of the studied SBIs with maximum of 0.375 log unit deference for Spiroxamine (experimental 
pLD50 of − 2.66 vs. predicted value of − 3.04) (Fig. 2A and Table 2).: The statistical metrics of the external validation R2

test and MSEtest 
demonstrated a good external performance of the model. The modest variance inflation factor (VIF) values demonstrated by the five 
descriptors in the MLR model, specifically 2.64, 4.55, 2.81, 1.38, and 2.28 for R3u+, ATS6e, Mor31u, RDF050m, and BELv4, 
respectively, signify the absence of multicollinearity among these descriptors. Fig. 2A demonstrated that the distribution of observed 
and predicted pLD50 values are significantly correlated because of the low value of MSE for both train and test sets. Eq. (2) revealed a 

Table 1 
The five selected descriptors by the GA and their meanings.  

Descriptors Chemical meanings Descriptor group 

R3uþ R maximal autocorrelation of lag 3/unweighted GETAWAY descriptors 
ATS6e Broto-Moreau autocorrelation of lag 6 weighted by Sanderson electronegativity 2D autocorrelations 
Mor31u 3D-MoRSE - signal 31/unweighted 3D-MoRSE descriptors 
RDF050m Radial Distribution Function - 050/weighted by mass RDF descriptors 
BELv4 lowest eigenvalue n. 4 of Burden matrix/weighted by Van der Waals volumes BCUT descriptors  
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significant linear correlation between the toxicity of SBI compounds and the five descriptors identified through GA-MLR. 
The GETAWAY descriptor R3u þ [26] with index (+35.48) was the most contributor to the toxicity, followed by BELv4 BCUT 

descriptors. The 3D-MoRSE descriptors Mor31u [40] and RDF descriptor RDF050m [41] affected the toxicity of the compounds in 
contrast manner with indexes of − 1.21 and − 0.0429, respectively. The descriptors most frequently chosen by Genetic Algorithm are 
from the category of 3D molecular descriptors [26], showcasing the superior efficacy of these descriptors in predicting the toxicity of 
SBIs. Recent QSAR studies have shown that 3D descriptors consistently outperform 2D and quantum-chemical descriptors in terms of 
predictive accuracy [41,42]. 

3.2. Y-Randomization test for GA-MLR model 

The robustness of the GA-MLR model was evaluated by randomly shuffling the pLD50 variable and rebuilding the QSTR models with 
the same five molecular descriptors. This procedure was repeated 100 times. The resulting models consistently showed lower R2 and 
R2

CV values compared to the original GA-MLR model (Fig. 3), indicating that the predictive power of the original model is not solely due 
to random chance. This finding suggests that the estimated pLD50 values, based on the five descriptors outlined in Eq. (2), are not 
simply due to chance (Fig. 3). 

3.3. Applicability domain (AD) analysis of MLR model 

The Williams plot for the GA-MLR model is presented in Fig. 4. The AD is defined within a squared region encompassing ±2 
standard deviations and a leverage threshold h* of 0.46. Any compound that demonstrates standardized residuals in prediction above 
or below 2, or a leverage value above the threshold value (hi > 0.46) based on Fig. 4, is classified as an outlier of the AD [43]. As 
depicted in Fig. 4, the compounds 2 (Fluquinoconazole) and 8 (Prochloraz) from the test and compound 36 (Penconazole) from the 
train set can be regarded as outliers. Fluquinoconazole exhibits a high leverage value (hi > 0.46), indicating its distance from other 
compounds in the test set and its location outside the AD space. Despite exceeding the residual threshold, Penconazole and Prochloraz 
remain within the AD due to their leverage values, making their predictions acceptable (Fig. 4). It can be inferred that the developed 
MLR model exhibits a wide range of applicability and can accurately predict the acute toxicity of the SBIs within the relevant 
applicability thresholds. 

3.4. ML-based QSTR models 

In an attempt to enhance the correlation between the predicted toxicities derived from the initial GA-MLR model and the chosen 
molecular descriptors, another QSTR models were constructed employing SVR, and MLP-ANN. The ML-based QSTR model was built 
using the five descriptors identified by the GA-MLR model. The optimal hyperparameters for the SVR model, determined by Bayesian 
optimization, included a Gaussian kernel function, a box constraint level of 197.52, and a kernel scale of 30.55. The MSEtrain of SVR 
model was 0.043, while the R2

train and R2
cv were 0.70 and 0.62, respectively. The external validation revealed R2

test and MSEtest values of 
0.63 and 0.066, respectively (Fig. 2B and Table 3). 

In the ANN model, the neuron number in the input and output layers was 5 and 1, respectively. The Tansig transfer function was 
applied to compute the output of each layer based on its net input [32]. The experiment involved varying the number of neurons in the 
hidden layer, ranging from 1 to 30. It was found that the network had an architecture of 5/5/1 with 5 neurons in the hidden layer 

Fig. 2. Experimental vs predicted pLD50 values and residual plots. (A) GA-MLR, (B) SVM, and (C) ANN.  
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having the best performance based on the MSE value. The Levenberg-Marquardt backpropagation algorithm was used to train the 
network. Mu value was 0.0001 at the end of the 17 epochs. The high R2

train value (0.8) and the low MSEtrain (0.03) indicated an excellent 
agreement between predicted and experimental pLD50 values (Fig. 2C–Tables 2 and 3). The R2

cv value exhibited an increase of 0.74 in 
comparison to the other models. The R2

test and MSEtest were 0.7 and 0.055 respectively. Table 3 presents the statistical parameters of the 
generated models. 

3.5. Comparison the generated model 

Analysis of the statistical metrics obtained from the QSTR models revealed that the ANN model achieved the highest level of 
accuracy compared to the other models (as shown in Table 3). The higher the R2, and lower MSE values for both train and test sets, the 
better accuracy of the model. As shown in Table 3, the MLP-ANN model displayed better statistical parameters than the other models, 
thus highlighting the superiority of the MLP-ANN model over the GA-MLR and SVR model. External validation further confirmed the 
superiority of the ANN model, as it achieved higher R2

test and lower MSEtest values. However, predictive performance of the MLR model 
was slightly better than SVR model (Table 3), with revealed the strong linear correlation between the toxicity and the molecular 

Table 2 
The pLD50 values predicted by QSTR models, compared to experimental values.  

No. SBI compound pLD50, (obs.) MLR SVR ANN 

pLD50 Res. pLD50 Res. pLD50 Res. 

Train test 

1 Azaconazole − 2.489 − 2.488 − 0.001 − 2.489 0.001 − 2.254 − 0.235 
2 Bromuconazole − 2.562 − 2.927 0.365 − 2.902 0.340 − 2.759 0.197 
3 Cyproconazole − 3.009 − 3.098 0.089 − 3.072 0.063 − 2.997 − 0.011 
4 Difenoconazole − 3.162 − 2.906 − 0.256 − 2.947 − 0.215 − 3.144 − 0.02 
5 Dodemorph − 3.422 − 3.25 − 0.173 − 3.402 − 0.021 − 3.403 − 0.02 
6 Etaconazole − 3.128 − 3.272 0.144 − 3.207 0.079 − 3.229 0.101 
7 Fenarimol − 3.398 − 3.489 0.091 − 3.483 0.085 − 3.339 − 0.06 
8 Fenbuconazole − 3.301 − 3.123 − 0.178 − 3.077 − 0.224 − 3.103 − 0.2 
9 Fenhexamid − 3.74 − 3.781 0.041 − 3.74 − 0.001 − 3.323 − 0.417 
10 Fenpropimorph − 3.477 − 3.598 0.121 − 3.513 0.035 − 3.259 − 0.218 
11 Flusilazole − 2.829 − 2.879 0.050 − 2.86 0.032 − 2.99 0.161 
12 Flutriafol − 3.057 − 2.952 − 0.105 − 2.952 − 0.105 − 2.957 − 0.1 
13 Imazalil − 2.356 − 2.519 0.163 − 2.487 0.131 − 2.633 0.277 
14 Imibenconazole − 3.447 − 3.594 0.147 − 3.448 0.001 − 3.568 0.121 
15 Ipconazole − 2.948 − 2.931 − 0.018 − 2.948 0.000 − 2.894 − 0.054 
16 Mefentrifluconazole − 3.301 − 3.302 0.001 − 3.326 0.025 − 3.327 0.026 
17 Metconazole − 2.775 − 2.934 0.160 − 2.905 0.130 − 2.959 0.185 
18 Myclobutanil − 3.204 − 3.328 0.124 − 3.283 0.079 − 3.239 0.034 
19 Nuarimol − 3.311 − 3.486 0.175 − 3.485 0.174 − 3.354 0.043 
20 Piperalin − 3.398 − 3.283 − 0.115 − 3.202 − 0.196 − 3.403 0.005 
21 Propiconazole − 3.181 − 3.009 − 0.172 − 2.975 − 0.205 − 2.885 − 0.296 
22 Pyributicarb − 3.724 − 3.757 0.033 − 3.725 0.001 − 3.788 0.064 
23 Pyrifenox − 3.464 − 3.39 − 0.074 − 3.35 − 0.115 − 3.373 − 0.091 
24 Simeconazole − 2.786 − 2.691 − 0.095 − 2.701 − 0.086 − 2.734 − 0.052 
25 Spiroxamine − 2.663 − 3.038 0.375 − 3.031 0.369 − 2.934 0.272 
26 Tebuconazole − 3.525 − 3.495 − 0.030 − 3.418 − 0.108 − 3.553 0.027 
27 Terbinafine − 3.332 − 3.457 0.125 − 3.332 0.000 − 3.433 0.1 
28 Tetraconazole − 3.013 − 2.99 − 0.023 − 2.992 − 0.022 − 2.765 − 0.25 
29 Triadimefon − 2.56 − 2.917 0.357 − 2.871 0.311 − 2.84 0.28 
30 Triadimenol − 3.58 − 3.255 − 0.325 − 3.162 − 0.417 − 3.401 − 0.18 
31 Tridemorph − 2.813 − 2.96 0.147 − 3.009 0.196 − 2.792 − 0.021 
32 Triflumizole − 3.024 − 3.208 0.184 − 3.22 0.196 − 3.252 0.228 
33 Triforine − 3.778 − 3.633 − 0.145 − 3.674 − 0.104 − 3.766 − 0.012 
34 Bitertanol − 3.699 − 3.301 − 0.398 − 3.23 − 0.469 − 3.662 − 0.037 
35 Epoxiconazole − 3.5 − 3.136 − 0.363 − 3.072 − 0.428 − 3.15 − 0.35 
36 Penconazole − 3.327 − 2.907 − 0.420 − 2.864 − 0.463 − 3.235 − 0.092 

Test set 

1 Diniconazole − 2.676 − 2.781 0.105 − 2.797 0.121 − 3.192 0.516 
2 Fluquinoconazole − 2.049 − 1.98 − 0.069 − 2.147 0.097 − 1.943 − 0.11 
3 Pefurazoate − 2.992 − 2.766 − 0.225 − 2.753 − 0.24 − 2.941 − 0.051 
4 Aldimorph − 3.544 − 3.326 − 0.218 − 3.312 − 0.23 − 3.362 − 0.182 
5 Fenpropidin − 3.168 − 3.393 0.225 − 3.283 0.115 − 3.263 0.095 
6 Hexaconazole − 3.34 − 3.189 − 0.152 − 3.158 − 0.182 − 3.134 − 0.207 
7 Oxpoconazole − 2.756 − 3.08 0.324 − 3.076 0.32 − 3.041 0.285 
8 Prochloraz − 3.204 − 2.689 − 0.515 − 2.651 − 0.553 − 2.991 − 0.21 
9 Triticonazole − 3.301 − 3.364 0.063 − 3.277 − 0.024 − 3.329 0.028  
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descriptors of the compounds. A comparison of the predicted values for the studied compounds and their residuals for the three models 
can be found in Table 2 and Fig. 2. It is evident from Fig. 2 that in all models, the residuals were randomly distributed on both sides of 
zero, and neither model exhibited any proportional or systematic error. This indicates the high level of accuracy of generated models in 
predicting the toxicity of the studied compound. Several studied demonstrated the useful of ML techniques like SVM [44,45], and ANN 
[46] in QSAR studies. Support vector regression is widely employed for drug design [47], and toxicity prediction [48]. Herein, SVR 
model demonstrated good performance in toxicity prediction of the studied compounds but less than the ANN model. 

No single algorithm reigns supreme in QSAR model development [49]. ANNs are widely used in QSAR studies and showed high 
level of accuracy in toxicity prediction [46,50]. The MLP-ANN model achieved the highest predictive performance among the QSTR 

Fig. 3. Y-Randomization test findings for the GA-MLR model.  

Fig. 4. Williams plots of the GA-MLR model. The training set is marked with black circles, the test set with red circles, and the sky blue area 
delineates the domain of applicability for the model. 
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models evaluated in this study, as confirmed by statistical analysis. 
SBIs are extensively used in the field of medicine and agriculture for combating fungal pathogens [1,51] The inhibition of 

Ergosterol biosynthesis has promptly resulted in the emergence of drug resistance, thus compelling researchers and companies to 
explore new low-risk compounds and formulas falling into this category of antifungal agents [51,52]. The potential environmental and 
medicinal toxicities are essential factors in designing novel effective and low-risk SBI agents. Within the scope of this study, we have 
introduced individual QSTR models that have demonstrated a high ability in predicting the adverse effects associated with this 
particular type of chemical, thereby aiding researchers in the future development of safe compounds. 

4. Conclusions 

The present study affirms the potential of suggested models for acute toxicity prediction based on the R2, R2
cv, and MSE metrics. The 

current research presents four models aimed at predicting the potential toxicity of a significant group of compounds in the fields of 
agrochemicals and medicine. The generated models exhibited a good performance in predicting the acute toxicity of SBI fungicides. 
The results indicate that the MLP-ANN model outperformed the other models. The models demonstrated that the following five de-
scriptors had a strong impact on the toxicity of SBIs: R3u+, ATS6e, Mor31u, RDF050m, Mor15u, and BELv4. In terms of risk 
assessment, these models can serve as a checkpoint to evaluate the potential hazards of proposed SBIs in the future. 
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