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What are the consequences of exerting effort? Many peo-
ple intuitively believe in ego depletion (Francis & Job, 
2018), the idea that exerting effortful control depletes 
one’s energy (Baumeister & Vohs, 2016). However, high-
powered preregistered studies (Garrison, Finley, & 
Schmeichel, 2019; Hagger et al., 2016), meta-analyses 
(Carter, Kofler, Forster, & McCullough, 2015), and theo-
retical reviews (Friese, Loschelder, Gieseler, Frankenbach, 
& Inzlicht, 2019; Inzlicht & Friese, 2019) suggest that 
laboratory depletion effects are small or potentially 
nonexistent and that previous work suffers from limita-
tions such as ineffective experimental manipulations 
and low statistical power. Here, in four preregistered 
studies, we developed a paradigm that addresses previ-
ous methodological limitations and provides insights 
into the effects of effort exertion.

Ego-Depletion Controversy

In the first tests of ego depletion (i.e., Baumeister, 
Bratslavsky, Muraven, & Tice, 1998), one group of par-
ticipants initially completed a difficult self-control task 
(depletion group; e.g., forced to eat radishes instead of 
chocolates), and another group completed an easier task 
(control group; e.g., allowed to eat chocolates). Both 
groups then completed a second, unrelated self-control 
task (e.g., worked on unsolvable puzzles), which served 
as the dependent variable (e.g., persistence duration on 
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Abstract
People feel tired or depleted after exerting mental effort. But even preregistered studies often fail to find effects of 
exerting effort on behavioral performance in the laboratory or elucidate the underlying psychology. We tested a new 
paradigm in four preregistered within-subjects studies (N = 686). An initial high-demand task reliably elicited very 
strong effort phenomenology compared with a low-demand task. Afterward, participants completed a Stroop task. We 
used drift-diffusion modeling to obtain the boundary (response caution) and drift-rate (information-processing speed) 
parameters. Bayesian analyses indicated that the high-demand manipulation reduced boundary but not drift rate. 
Increased effort sensations further predicted reduced boundary. However, our demand manipulation did not affect 
subsequent inhibition, as assessed with traditional Stroop behavioral measures and additional diffusion-model analyses 
for conflict tasks. Thus, effort exertion reduced response caution rather than inhibitory control, suggesting that after 
exerting effort, people disengage and become uninterested in exerting further effort.
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puzzles). The depletion group showed reduced self-
control on the second task compared with the control 
group, providing evidence for ego depletion—the idea 
that self-control runs out after use (Friese et al., 2019).

Subsequent studies found that depletion influenced 
diverse outcomes even when the depletion or outcome 
tasks did not entail self-control or inhibitory control 
(e.g., Moller, Deci, & Ryan, 2006; Schmeichel, 2007), 
suggesting that exerting effort and experiencing fatigue 
(rather than recruiting inhibitory control) led to deple-
tion effects. Critically, the first meta-analysis of 198 
published tests suggested that the effect (d = 0.62, 95% 
confidence interval, or CI = [0.57, 0.67]) was practically 
important and deserved further investigation (Hagger, 
Wood, Stiff, & Chatzisarantis, 2010).

Subsequent evidence, however, suggested otherwise. 
Researchers began reporting replication failures or much 
smaller effect sizes (e.g., Tuk, Zhang, & Sweldens, 2015). 
Meta-analyses that were conducted to correct for pub-
lication bias (i.e., when significant results are published 
more frequently than nonsignificant ones) suggest that 
depletion might be unreal (Carter et al., 2015; Friese & 
Frankenbach, 2019), although subsequent work has 
questioned the validity of existing bias-correction tech-
niques (Carter, Schönbrodt, Gervais, & Hilgard, 2019). 
These critiques were bolstered by further failures involv-
ing either large-scale preregistered replications or 
reanalyses of large data sets not originally gathered to 
investigate ego depletion (Etherton et al., 2018; Hagger 
et al., 2016).

Starting Anew: A Novel Approach

Although the field appears to have hit a dead end, it might 
be too soon to jettison ego depletion because researchers 
have relied mainly on one paradigm (i.e., between-subjects 
laboratory sequential tasks) and has yet to fully examine 
other approaches. For example, studies using archival data 
sets, field data, or experience sampling suggest that deple-
tion or carryover fatigue effects may be apparent in peo-
ple’s everyday lives (e.g., Dai, Milkman, Hofmann, & Staats, 
2015; Hirshleifer, Levi, Lourie, & Teoh, 2019). Although 
ecologically valid, these studies often cannot control for 
real-world confounds. Our goal was to create a laboratory 
paradigm to provide converging evidence to facilitate 
future research. We also tested the idea that laboratory 
depletion effects are akin to real-life fatigue effects in that 
people shift their priorities when tired, resulting in disen-
gagement from ongoing tasks (Inzlicht, Schmeichel, & 
Macrae, 2014).

Strong manipulation and within-
subjects design

Instead of using standard depletion paradigms, which often 
use demanding tasks that are thought to tap inhibitory 

control, we focused on designing a manipulation that 
robustly elicited states (e.g., effort, fatigue) typically associ-
ated with depletion (Friese et al., 2019). We used the symbol-
counting task, which draws on the shifting and updating 
aspects of executive function (Garavan, Ross, Li, & Stein, 
2000). Crucially, we modified the task so that it adapted 
trial-by-trial to each participant’s performance, which 
ensured that the task was highly demanding for each par-
ticipant. Second, we used a completely within-subjects 
design to reduce error variance and increase statistical 
power (Francis, Milyavskaya, Lin, & Inzlicht, 2018). To mini-
mize demand characteristics and learning effects, we had 
participants complete the low-demand and high-demand 
tasks on two separate days roughly 1 week apart.

Drift-diffusion modeling

After the demand manipulation, participants completed 
the Stroop task, which is often used to assess inhibition 
abilities (Miyake & Friedman, 2012). Importantly, in 
addition to performing traditional behavioral analyses 
on reaction time and accuracy, our primary interest was 
to transform these observed measures into latent vari-
ables assumed to underlie performance. We fitted drift-
diffusion models, which assume people make speeded 
decisions by gradually accumulating information until an 
evidence boundary is reached (Fig. 1; Ratcliff & McKoon, 
2008). This model not only resolved the speed/accuracy 
trade-off in reaction time tasks (Ratcliff & McKoon, 2008) 
but also allowed us to examine whether fatigue effects 
affect information-processing speed (drift-rate parameter) 
and response caution or impulsivity (boundary parameter; 
see Fig. 1 for an explanation). Specifically, we fitted the 
EZ-diffusion model (Wagenmakers, Van der Maas, & 
Grasman, 2007), which, despite being simpler, often 
outperforms the full diffusion model and better detects 
experimental effects (Dutilh et al., 2019; van Ravenzwaaij, 
Donkin, & Vandekerckhove, 2017). Given the success 
of this modeling approach in explaining individual dif-
ferences and how experimental manipulations influ-
ence psychological processes (Evans & Wagenmakers, 
2019), these latent variables can provide insights into 
the psychology underlying depletion.

Hypotheses

Studies 1 and 2 were conducted in the laboratory. Studies 
3 and 4 were conducted online. We varied the duration of 
the high-demand task across studies. In Study 1, we pre-
registered only traditional analyses on the Stroop task but 
ran exploratory diffusion-model analyses. Studies 2, 3, and 
4 were preregistered, confirmatory experiments that tested 
two primary hypotheses: The high-demand experimental 
manipulation would reduce boundary and drift rate more 
than the low-demand manipulation would. These predic-
tions reflect our prediction that exerting effort should 
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reduce subsequent overall task engagement rather than 
specifically inhibitory control.

Method

Participants

Study 1 was designed to primarily evaluate the effec-
tiveness of our within-subjects demand manipulation 
and its effects on traditional Stroop behavioral measures 
(i.e., accuracy and reaction time). Two hundred fifty-
three undergraduates participated (178 women, 71 men, 
4 other; mean age = 18.80 years, SD = 2.66; range = 
17–46 years; the preregistration is at https://osf.io/
hhn3s/). We also ran exploratory diffusion-model analy-
ses, which we planned to confirm and replicate in Stud-
ies 2 to 4, in which we assumed a relatively small effect 
size (d = 0.26). This effect size reflected our beliefs at 
the time about preregistration, our skepticism around 
depletion research, and the likelihood that previous 
studies might have overestimated effect sizes. We con-
ducted sensitivity analyses using the Power Analysis for 
General ANOVA Designs program for the R Shiny app 
(Westfall, 2016), which suggested that roughly 130 par-
ticipants would provide at least 80% statistical power 

to detect the hypothesized effect. We tried our best to 
recruit about 130 participants for each study, but 
because we recruited participants in batches and had 
to exclude data (see the Exclusion Criteria section), our 
final sample sizes were not exactly 130: Study 2 (N = 
132 undergraduates; 98 women, 32 men, 2 other; mean 
age = 18.80 years, SD = 1.78; range = 17–29 years; the 
preregistration is at https://osf.io/xp7hn/), Study 3  
(N = 180 Amazon Mechanical Turk, or MTurk, workers; 
94 women, 83 men, 3 other; mean age = 34.90 years, 
SD = 9.93; range = 20–70 years; the preregistration is at 
https://osf.io/6p8t4/), Study 4 (N = 121 MTurk workers; 
63 women, 57 men, 1 other; mean age = 39.50 years, 
SD = 11.20; range = 20–66 years; the preregistration is 
at https://osf.io/6sncm/). All participants provided 
informed consent in accordance with policies of the 
University of Toronto’s Institutional Review Board.

Within-subjects design

To reduce error variance and increase statistical power, 
we used within-subjects designs in all four studies. To 
minimize demand characteristics and learning effects, 
we had each participant complete the low-demand and 
high-demand tasks on two separate days. In Studies 1 
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Fig. 1.  Schematic illustrating the drift-diffusion model, which decomposes the joint distributions of reaction time and accuracy into latent 
variables including drift rate, decision boundary, nondecision time, and starting point (Ratcliff & McKoon, 2008). Panel (a) shows three simu-
lated decisions with different diffusion processes or paths. Each path depicts how one decision process evolved over time. The solid black 
and dashed lines depict decision processes reaching the correct boundary (i.e., correct responses made) at different rates; higher drift rates 
terminate sooner at the boundary (i.e., yielding faster reaction times). The light-gray arrows show the direct paths to the correct boundary for 
these two processes. The dotted line depicts a process that terminated relatively quickly at the error boundary (i.e., resulted in a fast error 
response). Panel (b) shows what would happen if the boundaries were reduced for the same three decisions. Decision processes would 
terminate at the boundaries sooner, although drift rates would remain unchanged, reflecting less evidence accumulation and resulting in 
noisier or more error responses and faster reaction times. The decision process depicted by the dashed line terminated prematurely at the 
error boundary. Boundary widths reflect either individual differences in response caution or experimental manipulations (e.g., emphasizing 
speedy responses reduces boundaries, whereas emphasizing accuracy increases them).
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and 2, undergraduate participants completed the two 
tasks in two different weeks. Both sessions occurred 
on the same day of each week at the same time of the 
day. Each participant was pseudorandomly assigned to 
complete either the low-demand or high-demand task 
on the first day on the basis of his or her allocated 
participant number. Participants in Studies 1 and 2 
received course credits for completing the study. In 
Studies 3 and 4, MTurk workers also completed the two 
tasks in two different weeks. However, because partici-
pants recruited via this online platform usually com-
plete tasks at their convenience, they completed the 
second task 7 to 12 days after they completed the first 
task. They also did not have to complete the two tasks 
at the same time of the day. Each was randomly assigned 
to complete either the low-demand or high-demand 
task on the first day. Participants in Studies 3 and 4 
received $2.90 and $3.60, respectively, for completing 
the study.

Procedure and sequential-task paradigm

Task 1: experimental manipulation.  The low-demand 
task required participants to watch a 5-min wildlife video. 
The high-demand task required participants to complete 
a titrated symbol-counting task (study materials and code 
are available at https://osf.io/45gyk/; see Garavan et al., 
2000); the high-demand task lasted approximately 20, 15, 
5, and 10 min in Studies 1, 2, 3, and 4, respectively. We 
did not match the durations of the low-demand and high-
demand tasks in Studies 1, 2, and 4 because we wanted 
to avoid inducing boredom with long but easy control 
tasks, which might lead to levels of subjective fatigue com-
parable with those from exerting cognitive effort on a 
demanding task (Milyavskaya, Inzlicht, Johnson, & Larson, 
2019) and potentially undermine the demand manipulation. 
Further, previous work using unbalanced designs such as 
ours have reported stronger effects (Sjåstad & Baumeister, 
2018).

The symbol-counting task is a cognitive task that 
parametrically manipulates executive demands (Garavan 
et al., 2000). On each trial, participants had to count 
the number of small black squares that had been pre-
sented. Thus, the task heavily taxes the shifting and 
updating (but not inhibition) aspects of executive func-
tion (Miyake & Friedman, 2012). To further increase the 
difficulty of the task, we calibrated the task for each 
individual such that difficulty was adjusted trial by trial 
according to the participant’s performance on the previ-
ous trial. On each trial, multiple small and big squares 
were presented sequentially (between 11 and 17 squares 
per trial), and each square was preceded by a fixation 
cross (Fig. 2). The first trial began with 12 squares and 
a switch frequency of 5 (i.e., the squares within a trial 

switched 5 times, from small to big square or big to 
small square). At the end of each trial, participants indi-
cated how many small and how many big squares were 
presented. That is, participants had to keep a running 
tally of two lists. If participants responded correctly, the 
total number of squares in the next trial increased by 
one, the switch could also increase, and the square 
display duration decreased by 20 ms (see Table S1 in 
the Supplemental Material available online for details 
on how the switch frequency was determined on each 
trial and other task details). If participants responded 
incorrectly, the number of squares on the next trial 
decreased by one, the square display duration increased 
by 20 ms, and the switch frequency decreased. These 
calibration procedures helped to ensure that even with-
out drawing on inhibition processes, the task was 
demanding and tiring for all participants regardless of 
individual differences in executive-function abilities.

Measures of phenomenology.  After completing the low-
demand and high-demand tasks, participants answered 
five questions (presented in random order) about the 
task and their current mental state using a sliding Likert 
scale: (a) mental demand: “How mentally demanding 
was the [task/video task]?” (from very low demand to very 
demanding); (b) effort: “How hard did you have [to 
work/to work to watch the video]?” (from very little to 
very hard); (c) frustration: “How insecure, discouraged, 
irritated, stressed, and annoyed [were you/were you 
when watching the video]?” (from very little to very high); 
(d) boredom: “How boring was the [task/video task]?” 
(from not boring to very boring); (e) fatigue: “I’m men-
tally fatigued now” (from strongly disagree to strongly 
agree). Each scale ranged from 1 to 7, but participants did 
not see the scale ranges and saw only the two text 
anchors below the scale.

Task 2: outcome measure.  After completing the exper-
imental manipulation and manipulation checks, partici-
pants completed a Stroop task with 120 congruent and 60 
incongruent trials. On each trial, a word (“red,” “blue,” or 
“yellow”) was presented in either the color red, blue, or 
yellow, and participants had to indicate the font color of 
the word by pressing a key (V = red, B = blue, N = yellow). 
The same mapping was used for all participants and was 
displayed at the bottom of the screen throughout the 
task. On congruent trials, the word and color matched 
(e.g., the word “red” shown in red font); on incongruent 
trials, the word and color did not match (e.g., the word 
“red” shown in blue font). Congruent and incongruent 
trials were interleaved randomly, and the stimulus on 
each trial remained on screen until the participant 
responded or until 2,000 ms had elapsed. If participants 
failed to respond on three consecutive trials, they were 

https://osf.io/45gyk/
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reminded to respond faster and more accurately. Partici-
pants practiced 12 trials before completing 180 experi-
mental trials.

Exclusion criteria

We preregistered the same four exclusion criteria1 for 
all four studies to exclude low-quality data (e.g., see the 
Exclusion Criteria section at https://osf.io/6sncm/). First, 
we excluded participants whose overall accuracy on the 
high-demand task (titrated symbol-counter task) was 
less than 20% (3, 9, 25, and 28 participants were 
excluded in Studies 1, 2, 3, and 4, respectively). Second, 
for the dependent variable (Stroop task), we excluded 
trials on which reaction time was faster than 250 ms 
(0.52%, 0.26%, 1.66%, and 0.93% trials were excluded 
in Studies 1, 2, 3, and 4, respectively). Third, we used 
a robust outlier-detection approach (median absolute 
deviation) rather than the commonly used but problem-
atic ±3-SD approach to exclude trials with outlier reac-
tion times (Leys, Delacre, Mora, Lakens, & Ley, 2019). 
For each participant and within each experimental con-
dition, we excluded trials on which the reaction time 

was ±3 times the median absolute deviation (5.44%, 
5.06%, 5.29%, and 4.68% of trials were excluded in Stud-
ies 1, 2, 3, and 4, respectively). Fourth, we used the 
same robust approach and criterion to exclude partici-
pants who made too many errors on congruent Stroop 
trials (12, 3, 24, and 16 participants were excluded in 
Studies 1, 2, 3, and 4, respectively). Note that these four 
criteria did not pertain to our dependent variables 
because the goal was to exclude extremely low-quality 
data (e.g., disengaged or inattentive participants who 
showed little signs of trying) rather than to exclude 
outliers on the basis of the outcome variables. Rerun-
ning our main analyses with outliers included did not 
change our main conclusions (Table S6 in the Supple-
mental Material).

Diffusion-model fitting

We fitted the EZ-diffusion model (Wagenmakers et al., 
2007) to each participant’s Stroop data, which trans-
formed the observed reaction time and accuracy vari-
ables into the latent variables of drift rate, boundary, and 
nondecision time (for code, see Lin, 2019). This model 

$17.14 in 10 days

        (11 to 17 Squares per Trial)

Question: How Many Small and Big Squares?

Tim
e

1 Small, 0 Big

+ If Correct, Next Trial
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Fig. 2.  Example trial from the titrated symbol-counter task used in the high-demand manipu-
lation (adapted from the study by Garavan, Ross, Li, & Stein, 2000). This calibrated task 
heavily taxes the shifting and updating aspects of executive function. On each trial, multiple 
small and big squares were presented sequentially, and participants reported the number of 
small and big squares presented at the end of the trial. If participants responded correctly, 
the total number of squares in the next trial increased, the switch frequency increased, 
and the square display duration decreased. If participants responded incorrectly, the total 
number of squares on the next trial decreased, the switch frequency decreased, and the 
square display duration increased.

https://osf.io/6sncm/
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does not compute the starting-point bias because it 
assumes that the starting point is equidistant from the 
two boundaries. Furthermore, the boundary parameter 
is generally assumed to be determined before stimulus 
onset and therefore should not vary as a function of 
Stroop stimulus congruency. However, using the EZ-
diffusion model in our case prevented us from forcing 
the boundary to be the same for all stimuli. We there-
fore obtained separate boundary-parameter estimates 
for congruent and incongruent Stroop stimuli, assuming 
that participants rapidly adjusted their boundaries 
immediately after stimulus onset.

Despite these assumptions and the fact that the EZ-
diffusion model is simpler than the full model, several 
studies have shown that the former often outperforms 
the latter (Dutilh et  al., 2019; van Ravenzwaaij et  al., 
2017). To verify the EZ-diffusion model results, we ran 
exploratory but preregistered analyses (osf.io/7qcxa) to 
fit more appropriate models (i.e., diffusion model for 
conflict tasks; Evans & Servant, 2019), which led to 
conclusions similar to those obtained via EZ-diffusion 
modeling (see Figs. S2 and S3 in the Supplemental 
Material).

Preregistered hypotheses and analyses

Phenomenology.  We expected participants to report 
higher mental demand, effort exerted, frustration, bore-
dom, and fatigue in the high-demand than in the low-
demand condition.

Primary hypotheses.  We expected the high-demand 
condition to have a smaller boundary than the low-demand 
condition after controlling for Stroop congruency (trial 
type: congruent vs. incongruent), which would reflect less 
cautious or more impulsive responding after completing 
the high-demand task. We also expected the high-demand 
condition to have lower drift rate than the low-demand 
condition after controlling for Stroop congruency, which 
would reflect a slower information-processing rate. These 
analyses reflected our belief at the time that our demand 
manipulation should reduce overall task motivation and 
engagement rather than specifically reduce self-control or 
inhibition abilities. Note that we preregistered these two 
hypotheses only for Studies 2 to 4 but not Study 1, for 
which we preregistered only traditional Stroop behavioral 
effects. Finally, another plausible outcome2 we did not 
preregister (and failed to observe in our data) is that effort 
exertion reduces drift rate and that participants might com-
pensate by increasing boundary separation to ensure they 
maintain acceptable accuracies on the task.

Secondary hypotheses.  We also tested additional hypothe-
ses to indirectly examine the effects of high and low demand, 
but the primary effects described above did not hinge on 

these secondary effects. On the basis of the results from 
Study 1, we expected that (a) participants who reported 
feeling more fatigued, frustrated, or bored3 after complet-
ing the first task would have lower drift rate or boundary 
on the Stroop task and (b) incongruent Stroop trials would 
be associated with lower drift rate and boundary4 than con-
gruent Stroop trials.

Exploratory analyses

We investigated the effects of our manipulations on 
traditional Stroop behavioral outcomes (reported in the 
Results section). Note that we preregistered these 
behavioral effects in Study 1 but not Studies 2 to 4. In 
addition, we verified the results of the EZ-diffusion 
model by running exploratory preregistered analyses 
(osf.io/7qcxa) that involved fitting more complicated 
diffusion models (Evans & Servant, 2019; Ulrich, 
Schröter, Leuthold, & Birngruber, 2015). Finally, because 
Stroop performance might be influenced by practice or 
learning effects (because of our within-subjects design), 
we also tested for session-order effects.

Statistical analyses

Continuous predictors were mean-centered on partici-
pant, and categorical predictors were recoded before 
model fitting: condition (low demand = −0.5; high 
demand = 0.5) and Stroop congruency (congruent = 
−0.5; incongruent = 0.5). We fitted Bayesian multilevel 
models using the R package brms (Bürkner, 2017). We 
first fitted two-level varying-intercept multilevel models 
separately for each study in which data/units clustered 
within participants:

y Xi i i i= + +[ ]β β0 participant R syntax 1 participant[ ] ; : ( | ).

To meta-analyze the four studies to obtain an overall 
effect, we fitted three-level varying-intercept multilevel 
models in which data were clustered within partici-
pants, who were in turn clustered within studies:

yi i i iX= + +[ ][ ]β β0 study participant R syntax

1 study partic

[ ] ; :

( | / iipant).

For the condition effect (high demand vs. low 
demand) in each model, we used an informed Gaussian 
prior of d equal to 0.28 (SD = 0.14), which was based 
on a Bayesian reanalysis of a depletion study (Wagenmakers 
& Gronau, 2017). The priors were rescaled to the raw 
scale of each outcome measure so that the prior mean 
reflected the expected difference between the low-
demand and high-demand conditions, and the standard 
deviation of the prior distribution was half the prior 





https://osf.io/7qcxa
https://osf.io/7qcxa
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mean (Dienes, 2014). For example, for the effects of 
condition on self-reported demand and boundary, the 
priors were N(0.36, 0.18) and N(−0.0088, 0.0044), 
respectively (see Fig. S1 in the Supplemental Material 
for visualizations of the prior and posterior distribu-
tions). For other effects that did not directly test the 
effect of our demand manipulation, we used the stan-
dard normal prior, N(0, 1).

Because the prior influences the posterior, we per-
formed prior-sensitivity analyses by refitting the models 
using normal priors with the same standard deviations 
as the informed priors but centered around 0 for the 
effect of interest; effects not directly testing our demand 
manipulation had the prior N(0, 1). These priors 
reflected the belief that our experimental effects would 
be relatively tightly centered around 0: For example, 
the priors for the effects of condition on self-reported 
mental demand and boundary were N(0, 0.18) and  
N(0, 0.0044), respectively (compare these with the informed 
priors above). Results from the sensitivity analyses were 
consistent with our main or original conclusions, suggest-
ing that our findings were robust to prior choice (see Table 
S2 in the Supplemental Material for complete results from 
models fitted using these priors).

For each model, we ran 20 Markov chain Monte 
Carlo chains with 2,000 samples and discarded the first 
1,000 samples (as burn-in). For each effect, we report 
the mean of the posterior samples and the 95% highest-
posterior-density (HPD) interval, which is the narrowest 
interval containing the specified probability mass. We 
used bridge sampling to compute Bayes factors (BFs), 
which reflect the amount of evidence favoring one 
model over a reduced model that does not contain the 
effect or hypothesis of interest. To ensure the stability 
of the results, we report BFs that were the mean of five 

BF computations. BFs equal to 1 indicate equal evi-
dence for the null and experimental hypotheses. BFs 
greater than 1 indicate evidence in favor of the experi-
mental hypothesis: from 1 to 3 indicate anecdotal evi-
dence, from 3 to 10 indicate moderate evidence, from 
10 to 30 indicate strong evidence, and greater than 30 
indicate very strong or decisive evidence (Lee & Wagen-
makers, 2013; but for problems with BFs, see Gelman 
& Shalizi, 2013). Conversely, BFs less than 1 indicate 
evidence in favor of the null hypothesis. Smaller values 
indicate stronger evidence for the null hypothesis: BFs 
from 0.33 to 1 indicate anecdotal evidence, from 0.10 
to 0.33 indicates moderate evidence, from 0.03 to 0.10 
indicates strong evidence, and less than 0.03 indicate 
very strong or decisive evidence. All data, materials, 
and code for the main analyses can be found at https://
osf.io/45gyk/.

Preregistered-Analysis Results

Phenomenology

Demand.  We found strong and consistent effects of con-
dition on self-reported mental demand. In all studies (Fig. 
3), mental demand was much higher in the high-demand 
than in the low-demand conditions (Study 1: b = 1.96, 
95% HPD = [1.75, 2.17], d = 1.46; Study 2: b = 1.73, 95% 
HPD = [1.45, 2.01], d = 1.21; Study 3: b = 2.23, 95% HPD = 
[1.96, 2.48], d = 1.56; Study 4: b = 2.06, 95% HPD = [1.73, 
2.39], d = 1.37; see Table 1 for more information). These 
findings suggest that our paradigm was highly effective for 
eliciting effort-related phenomenology. To meta-analyze 
the effects across studies, we fitted a three-level multilevel 
model (data/units clustered within participants, who were 
clustered within studies). The meta-analytic effect was 

Mental Demand Effort Frustration Boredom Fatigue

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
0.0

0.3

0.6

Rating

De
ns

ity

Low-Demand Condition High-Demand Condition

d = 2.83
BF > 500

d = 2.75
BF > 500

d = 2.10
BF > 500

d = 0.91
BF > 500

d = 2.49
BF > 500

Fig. 3.  Phenomenology collapsed across studies: kernel-density estimates as a function of condition (high demand vs. low demand), 
separately for each of the self-reported ratings of mental demand, effort, frustration, boredom, and fatigue. The area beneath each density 
curve sums to 1. See Table 1 for detailed statistics. BF = Bayes factor.

https://osf.io/45gyk/
https://osf.io/45gyk/
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equally strong, b = 2.83, 95% HPD = [2.70, 2.96], BF > 
500, d = 2.17, 95% HPD = [2.02, 2.33] (see Fig. 3). Self-
reported demand was much higher in the high-demand 
condition (M = 5.61, SD = 1.23) than in the low-demand 
condition (M = 2.41, SD = 1.36).

Effort.  Self-reported effort was also much higher in the 
high-demand than in the low-demand condition in all 
studies (Study 1: b = 1.90, 95% HPD = [1.69, 2.11], d = 
1.42; Study 2: b = 1.58, 95% HPD = [1.31, 1.86], d = 1.11; 
Study 3: b = 2.37, 95% HPD = [2.11, 2.63], d = 1.72; Study 
4: b = 1.99, 95% HPD = [1.66, 2.31], d = 1.29). Results from 
the three-level multilevel-model meta-analysis suggest 
that overall, participants reported exerting much more 
effort in the high-demand condition (M = 5.44, SD = 1.22) 
than in the low-demand condition (M = 2.33, SD = 1.42; 
b = 2.75, 95% HPD = [2.61, 2.88], BF > 500, d = 2.09, 95% 
HPD = [1.94, 2.24]).

Frustration.  Similarly, participants reported feeling more 
frustrated in the high-demand condition than in the low-
demand condition in all studies (Study 1: b = 2.13, 95% 
HPD = [1.91, 2.36], d = 1.60; Study 2: b = 1.31, 95% HPD = 
[1.02, 1.59], d = 0.88; Study 3: b = 1.50, 95% HPD = [1.23, 
1.77], d = 0.97; Study 4: b = 1.48, 95% HPD = [1.15, 1.78], 
d = 0.96). Results from the three-level multilevel-model 
meta-analysis were similar (low-demand condition: M = 
2.19, SD = 1.41; high-demand condition: M = 4.49, SD = 
1.70; b = 2.10, 95% HPD = [1.95, 2.24], BF > 500, d = 1.50, 
95% HPD [1.36, 1.64]).

Boredom.  Self-reported boredom was higher in the high-
demand condition than in the low-demand condition in all 
studies (Study 1: b = 1.13, 95% HPD = [0.89, 1.38], d = 0.72; 

Study 2: b = 0.69, 95% HPD = [0.38, 1.00], d = 0.43; Study 
3: b = 0.60, 95% HPD = [0.31, 0.89], d = 0.35; Study 4: b = 
0.74, 95% HPD = [0.40, 1.08], d = 0.41). Results from the 
three-level multilevel-model meta-analysis suggest that the 
effect was consistent across studies but smaller than the 
effects on demand, effort, and frustration (low-demand 
condition: M = 3.53, SD = 1.83; high-demand condition:  
M = 4.48, SD = 1.87; b = 0.91, 95% HPD = [0.75, 1.08],  
BF > 500, d = 0.55, 95% HPD = [0.45, 0.66]).

Fatigue.  Finally, participants reported higher fatigue in the 
high-demand condition than in the low-demand condi-
tion in all studies (Study 1: b = 2.05, 95% HPD = [1.84, 
2.25], d = 1.65; Study 2: b = 1.41, 95% HPD = [1.13, 1.69], 
d = 0.97; Study 3: b = 1.92, 95% HPD = [1.65, 2.19], d = 
1.25; Study 4: b = 1.98, 95% HPD = [1.64, 2.31], d = 1.27). 
Results from the three-level multilevel-model meta-analysis 
were similar (low-demand condition: M = 2.11, SD = 1.30; 
high-demand condition: M = 4.87, SD = 1.58; b = 2.49, 
95% HPD = [2.35, 2.63], BF > 500, d = 1.86, 95% HPD = 
[1.70, 2.02], which suggests that our high-demand task 
was effective in eliciting fatigue.

Latent parameter: boundary

We report the effect of condition on the boundary 
parameter after controlling for Stroop congruency, 
which had strong effects on the boundary parameter 
in all studies (Fig. 4, Table 1). The boundary parameter 
was smaller in the high-demand than in the low-demand 
condition in all four studies (Study 1: b = −0.004, 95% 
HPD = [−0.006, −0.002], d = −0.22; Study 2: b = −0.002, 
95% HPD = [−0.005, 0.001], d = −0.08; Study 3: b = 
−0.005, 95% HPD = [−0.008, −0.003], d = −0.32; Study 4:  

BF = 29.10

−0.02 −0.01 0.00 0.01

0

100

200

300

400

Estimate

Effect of Condition on Boundary
De

ns
ity

BF = 0.06

−0.06 −0.03 0.00 0.03

0

100

200

300

400

Estimate

Effect of Condition on Drift Rate

Posterior Distribution
Prior Distribution

Fig. 4.  Bayesian posterior- and prior-density distributions for the effect of condition (low demand vs. high demand) on the boundary 
(left) and drift-rate (right) parameters obtained from meta-analytic Bayesian multilevel models. Prior distributions reflect expectations 
about the effect sizes before empirical data are collected: Informed priors reflecting Cohen’s d of −0.28 (SD = 0.14) were created by 
rescaling the expected effect size to the raw scale of each parameter. Posterior distributions reflect revised or updated beliefs and 
effect sizes after empirical data are taken into consideration. See Table 1 for detailed statistics. BF = Bayes factor.
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b = −0.006, 95% HPD = [−0.01, 0.00], d = −0.13), but 
only Studies 1 and 3 had effects whose 95% HPD did 
not include 0. Moreover, results from the three-level 
multilevel-model meta-analysis provided strong evi-
dence for our preregistered hypothesis that completing 
a high-demand as opposed to low-demand task would 
lead to reduced boundary, b = −0.004, 95% HPD = 
[−0.005, −0.002], BF = 29.10, d = −0.15, 95% HPD = 
[−0.22, −0.07]; this effect was similar when we used a 
prior centered around 0 (but retaining the scale of the 
informed prior), b = −0.003, 95% HPD = [−0.005, −0.001], 
BF = 88.33, d = −0.13, 95% HPD = [−0.20, −0.06]. 
Together, our results provide strong and decisive evi-
dence in favor of the hypothesis that exerting mental 
effort decreases subsequent boundary separation. 
Nonetheless, even if reliable, the meta-analytic effect 
size was small (b = −0.004, d = −0.13) and slightly less 
than half the expected effect size (prior b = −0.0088, 
prior d = −0.28; see Fig. 4).

Exploratory analyses including session order and the 
session-order-by-condition interaction in the models 
showed that practice or learning effects were strong and 
consistent with previous work (e.g., Dutilh, Krypotos, & 
Wagenmakers, 2011). Boundary separation was smaller 
in the second than first session in all studies (BFs > 500), 
but order did not interact with condition, and the effect 
of our demand manipulation remained small but highly 
robust, b = −0.003, 95% HPD = [−0.005, −0.002], BF = 
117.67, d = −0.14, 95% HPD = [−0.21, −0.07] (see Fig. S6 
and Table S3 in the Supplemental Material).

Latent parameter: drift rate

We also report the effect of condition on drift rate after 
controlling for Stroop congruency, which had strong 
effects on the drift-rate parameter in all studies (Fig. 4, 
Table 1). The effects of condition on drift rate were incon-
sistent across studies (Study 1: b = −0.007, 95% HPD = 
[−0.01, −0.001], d = −0.14; Study 2: b = −0.01, 95% HPD = 
[−0.02, −0.002], d = −0.20; Study 3: b = 0.001, 95% 
HPD = [−0.006, 0.009], d = 0.03; Study 4: b = −0.003, 
95% HPD = [−0.01, 0.007], d = −0.05). Further, results 
from the three-level multilevel-model meta-analysis 
suggest—contrary to our preregistered hypothesis—that 
completing a high-demand as opposed to a low-demand 
task did not lead to reduced drift rate, b = −0.003, 95% 
HPD = [−0.007, 0.001], BF = 0.06, d = −0.05, 95% HPD = 
[−0.13, 0.02] (Fig. 4).

Exploratory analyses including session order and the 
session-order-by-condition in the models showed that 
practice or learning effects were strong; these effects 
were consistent with previous findings (e.g., Dutilh 
et al., 2011). Drift rate was higher in the second than 
in the first session in all studies (BFs > 500), reflecting 

improved task performance. Order did not interact with 
condition, and drift rate did not differ between the 
high-demand and low-demand conditions (see Fig. S6 
and Table S3).

Finally, to verify the results of the EZ-diffusion 
model, we ran exploratory analyses that fitted the dif-
fusion model for conflict tasks, which is specifically 
designed for cognitive control tasks such as the Stroop. 
It models information integration during conflict tasks 
as a function of controlled and automatic processes; 
the automatic process varies over time according to a 
gamma function (Ulrich et al., 2015). Consistent with 
the results of the EZ-diffusion model, these analyses 
showed that effort exertion reduced boundary separation 
but had no effect on information integration via controlled 
(drift-rate parameter) or automatic (ζ parameter) pro-
cesses. These results bolster our interpretation that exert-
ing effort or being depleted does not selectively impair 
one’s ability to inhibit automatic processes (see Figs. S2–S5 
in the Supplemental Material for details and additional 
results from the regular analytic diffusion model).

Phenomenology and latent-parameter 
relations

Boundary–fatigue relation.  Increased self-reported 
fatigue was associated with smaller boundaries in three 
studies (Study 1: b = −0.001, 95% HPD = [−0.002, 0.00],  
d = −0.09; Study 3: b = −0.002, 95% HPD = [−0.003, 
−0.001], d = −0.14; Study 4: b = −0.002, 95% HPD = 
[−0.004, 0.00], d = −0.04) but not in Study 2 (b = 0.00, 95% 
HPD = [−0.001, 0.001], d = 0.01). Further, results from the 
three-level multilevel-model meta-analysis provided weak 
evidence for the prediction that increased fatigue was asso-
ciated with reduced boundary, b = −0.001, 95% HPD = 
[−0.002, 0.00], BF = 1.88, d = −0.05, 95% HPD = [−0.08, 
−0.02].

Boundary–frustration relation.  Increased self-reported 
frustration was associated with smaller boundaries in 
three studies, although only Study 3’s 95% HPD intervals 
did not include 0 (Study 1: b = −0.001, 95% HPD = [−0.002, 
0.00], d = −0.08; Study 2: b = 0.00, 95% HPD = [−0.001, 
0.002], d = 0.02; Study 3: b = −0.002, 95% HPD = [−0.003, 
−0.001], d = −0.12; Study 4: b = −0.002, 95% HPD = [−0.005, 
0.001], d = −0.04). Overall, the three-level multilevel-model 
meta-analysis indicated that frustration was not associated 
with reduced boundary, b = −0.001, 95% HPD = [−0.002, 
0.00], BF = 0.25, d = −0.04, 95% HPD = [−0.08, −0.009].

Boundary–boredom relation.  Self-reported boredom 
was not associated with the boundary parameter in any 
of the four studies. All 95% HPD intervals included 0 
(Table 1).
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Drift rate–fatigue relation.  Self-reported fatigue was 
not associated with the drift-rate parameter in any of the 
four studies. All 95% HPD intervals included 0 (Table 1).

Drift rate–frustration relation.  Self-reported frustra-
tion was not associated with the drift-rate parameter in 
any of the four studies. All 95% HPD intervals included 0 
(see Table 1).

Drift rate–boredom relation.  Self-reported boredom 
was associated with reduced drift rate in Studies 1 and 2 
(Study 1: b = −0.004, 95% HPD = [−0.006, −0.001], d = 
−0.10; Study 2: b = −0.003, 95% HPD = [−0.007, −0.001],  
d = −0.08; Study 3: b = −0.001, 95% HPD = [−0.005, 0.002], 
d = −0.03; Study 4: b = −0.005, 95% HPD = [−0.01, 0.00], 
d = −0.09). However, overall, the three-level multilevel-
model results failed to provide evidence for the prediction 
that increased boredom was associated with reduced drift 
rate, b = −0.003, 95% HPD = [−0.004, −0.001], BF = 0.67,  
d = −0.06, 95% HPD = [−0.11, −0.02].

Exploratory analyses found that session order did 
not interact with fatigue, frustration, or boredom (see 
Tables S4 and S5 in the Supplemental Material).

Exploratory-Analysis Results

Other (nonpreregistered) analyses might provide fur-
ther insights into the psychology of effort exertion and 
ego depletion (see Table 2). Note that because we did 
not preregister the analyses below, we used normal 
priors centered around 0 instead of informed priors.

Phenomenology and latent-parameter 
relations

Boundary–demand relation.  Results from the indi-
vidual studies showed that self-reported demand was not 
consistently associated with changes in boundary (Study 
1: b = −0.001, 95% HPD = [−0.002, 0.00], d = −0.05; Study 
2: b = 0, 95% HPD = [−0.001, 0.00], d = −0.03; Study 3:  
b = −0.001, 95% HPD = [−0.002, 0.00], d = −0.10; Study 4: 
b = −0.001, 95% HPD = [−0.003, 0.001], d = −0.03). Criti-
cally, the three-level multilevel-model meta-analysis pro-
vided strong evidence for a negative relationship between 
demand and boundary, b = −0.001, 95% HPD = [−0.002, 
−0.001], BF = 17.21, d = −0.05, 95% HPD = [−0.08, −0.02], 
although the effect was very small.

Boundary–effort relation.  As with the results for the 
boundary–demand relation, results from the individual 
studies for the boundary–effort relation were mixed (Study 
1: b = 0, 95% HPD = [−0.001, 0.00], d = −0.04; Study 2:  
b = 0, 95% HPD = [−0.002, 0.00], d = −0.03; Study 3: b = 
−0.001, 95% HPD = [−0.002, −0.00], d = −0.10; Study 4:  

b = −0.001, 95% HPD = [−0.004, 0.00], d = −0.03). How-
ever, the three-level multilevel-model meta-analysis also 
provided evidence for a negative relationship between 
self-reported effort and boundary, b = −0.001, 95% HPD = 
[−0.002, 0.00], BF = 16.04, d = −0.05, 95% HPD = [−0.08, 
−0.02], although the effect was also very small.

These two results above suggest that increased feel-
ings of mental demand and effort led to less cautious 
responding on the Stroop task, although we note that 
these two ratings correlated strongly in all four studies 
(rs > .77). Because we consider these analyses explor-
atory, we caution against overinterpreting these effects 
and have presented them because we believe that they 
could provide insights into the effects of different sub-
jective mental states.

Drift rate–demand relation.  Self-reported demand was 
not associated with drift rate in any of the studies. All 95% 
HPD intervals included 0 (Table 2).

Drift rate–effort relation.  Self-reported effort was also 
not associated with drift rate in any of the studies. All 95% 
HPD intervals included 0 (Table 2).

Latent parameter: boundary 
(condition–congruency interaction)

We fitted a model in which the boundary parameter 
was predicted by condition, Stroop congruency, and 
their interaction. Here, we focused on the interaction 
term because it indicates whether the effect of condi-
tion on the boundary parameter varied as a function of 
Stroop congruency. In all four studies, the 95% HPD 
intervals of the interaction term included 0 (see Table 
2). Results from the three-level multilevel model were 
similar, b = 0, 95% HPD = [−0.003, 0.004], BF = 0.43,  
d = 0.03, 95% HPD = [−0.11, 0.17]. These findings sug-
gest that the effect of condition on the boundary param-
eter did not vary as a function of Stroop congruency.

Latent parameter: drift rate 
(condition–congruency interaction)

We also fitted a model in which the drift-rate parameter 
was predicted by condition, Stroop congruency, and 
their interaction. In all studies, the interaction effect 
was close to 0 (Table 2), which suggests that the effect 
of condition on the drift-rate parameter did not vary as 
a function of Stroop congruency.

Behavioral effects: Stroop accuracy

We modeled Stroop accuracy (proportion correct) as a 
function of condition, congruency, and their interaction. 
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The congruency effect was robust and consistent across 
studies (Table 2), and the results from the three-level 
multilevel model indicated that accuracy was lower on 
incongruent trials (M = .90, SD = .11) than congruent 
trials (M = .98, SD = .03), b = −0.08, 95% HPD = [−0.08, 
−0.07], BF > 500, d = −1.16, 95% HPD [−1.24, −1.08]. 
The condition effect (high vs. low demand) was nega-
tive in all studies, but all 95% HPD intervals included 
0; however, results from the three-level multilevel-
model meta-analysis suggest some evidence for reduced 
overall accuracy in the high-demand condition, although 
the effect was small, b = −0.005, 95% HPD = [−0.01, 
0.00], BF = 1.21, d = −0.08, 95% HPD = [−0.15, −0.01] 
(low-demand condition: M = .941, SD = .09; high-
demand condition: M = .935, SD = .09). The congru-
ency–condition interaction effect was close to 0 in all 
studies, and all 95% HPD intervals included 0 (Table 
2), which suggests that the condition effect did not vary 
as a function of Stroop congruency.

Behavioral effects: Stroop reaction time

We also modeled Stroop reaction time (trials with cor-
rect responses) as a function of congruency, condition, 
and their interaction. As expected, the congruency 
effect was strong and consistent across studies (Table 
2): Results from the three-level multilevel-model meta-
analysis indicate that reaction times were slower on 
incongruent trials (M = 0.72 s, SD = 0.14) than on congru-
ent trials (M = 0.62 s, SD = 0.10), b = 0.11, 95% HPD = 
[0.10, 0.11], BF > 500, d = 1.73, 95% HPD = [1.63, 1.82]. 
However, evidence for the condition effect (high 
demand vs. low demand) was less strong and mixed: 
The 95% HPD intervals for Studies 3 and 4 did not 
include 0 (Study 3: b = −0.01, 95% HPD = [−0.02, 
−0.003], d = −0.19; Study 4: b = −0.01, 95% HPD = 
[−0.02, −0.004], d = −0.25), whereas the 95% HPD inter-
vals for Studies 1 and 2 included 0 (see Table 2). The 
three-level multilevel-model meta-analysis provided some 
evidence that across the four studies, overall reaction times 
were faster in the high-demand condition (M = 0.66 s,  
SD = 0.13) than in the low-demand condition (M = 0.67 s, 
SD = 0.13), although the effect was small, b = −0.006, 95% 
HPD = [−0.01, −0.001], BF = 2.32, d = −0.09, 95% HPD = 
[−0.17, −0.02]. The congruency–condition interaction 
effect was close to 0 in all studies (all 95% HPD inter-
vals contained 0; see Table 2).

Discussion

Our results provide insights into the psychology of 
effort exertion. Across four studies, our demand manip-
ulation (high vs. low) was highly depleting because it 
robustly elicited strong effort and fatigue sensations. 
Diffusion-model analyses provided insights into the 

effects of effort exertion on cognitive processes that 
have been previously unexamined.

For the two preregistered effects on the latent param-
eters, Bayesian analyses provided strong evidence for 
reduced boundary but not drift rate after participants 
completed the high-demand but not the low-demand 
task. The lack of evidence for reduced drift rate sug-
gests that effort exertion did not worsen participants’ 
subsequent task performance or their abilities to pro-
cess information. However, reduced boundary separa-
tion suggests that participants responded less cautiously, 
as if they cared less about the task and had lost some 
of their will to persist and engage fully.

Crucially, the reduced-boundary effect was not lim-
ited to situations involving inhibition (i.e., incongruent 
Stroop trials), consistent with our theoretical position 
that exerting effort leads to task reprioritization and 
disengagement with ongoing tasks (Inzlicht et al., 2014). 
Accordingly, depletion should impair performance on 
incongruent and congruent Stroop trials. Indeed, explor-
atory analyses revealed that overall Stroop reaction time 
and accuracy were lower in the high-demand condition 
than in the low-demand condition, although the effect 
was much weaker relative to the boundary effect. Fur-
thermore, results from an extended diffusion model for 
conflict tasks also suggested that effort exertion affected 
only boundary separation but not controlled or auto-
matic information-integration processes.

Further evidence for our theoretical view comes from 
the finding that participants reported increased bore-
dom in the high-demand than in the low-demand con-
dition, which might indicate unsuccessful attentional 
engagement when people feel either unable or unwill-
ing to engage with ongoing tasks (Westgate & Wilson, 
2018). Moreover, participants who reported increased 
fatigue, demand, or effort also had reduced boundary 
parameters, but these exploratory effects should be 
interpreted with caution.

Our findings suggest that even when tasks elicit 
strong subjective states related to fatigue, traditional 
behavioral measures might lack sensitivity to detect 
downstream effects. Instead, latent variables might be 
more sensitive. For example, the reduced-boundary 
effect was about twice as large as the reduced overall 
Stroop reaction time and accuracy effects, likely because 
the diffusion model solves the speed/accuracy trade-off 
associated with reaction time tasks. Given the strengths 
of the diffusion model (see Evans & Wagenmakers, 
2019), we suggest that other researchers apply similar 
approaches or reanalyze previous depletion studies that 
used speeded reaction time tasks.

Depletion proponents might celebrate because our 
results provide strong evidence for and further insights 
into depletion effects as well as against the null hypoth-
esis that depletion effects do not exist. Skeptics, however, 
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will hasten to highlight various limitations. Only one of two 
hypotheses were confirmed—and only meta-analytically, 
with merely two of four individual studies providing 
evidence for our preregistered hypotheses. Nevertheless, 
the small but meaningful effect size (reduced boundary 
effect: d = −0.15) suggests that researchers hoping to 
examine similar effects should use within-subjects 
designs to ensure sufficient statistical power, especially 
given that the boundary effect was present even after 
we accounted for within-subjects learning effects in our 
studies. Despite these issues, our work has numerous 
strengths—strong manipulations, preregistered hypoth-
eses, and cognitive modeling—that have allowed us to 
rigorously examine the cognitive processes underlying 
effort exertion.

Conclusion

Our paradigm robustly elicited feelings such as effort and 
fatigue, highlighting its utility for studying these subjec-
tive states. Bayesian analyses provided strong evidence 
for the idea that people disengage after exerting effort. 
Although we failed to find support for all our hypotheses, 
we have learned that laboratory depletion effects are 
elusive even with strong manipulations and latent vari-
ables that capture meaningful cognitive processes. But 
our rigorous approach has much potential to facilitate 
future empirical and theoretical developments.
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Notes
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esis, which increases the informativeness of our results by high-
lighting which processes were or were not influenced by effort 
exertion.
3. When exploring Study 1’s data, we found hints of associa-
tions between the two latent parameters and three items assess-
ing phenomenology (frustration, boredom, fatigue) but not two 
others (mental demand, effort exerted). We thus preregistered 
analyses with frustration, boredom, and fatigue, but we con-
sider the analyses with mental demand and effort exploratory.
4. We made this prediction on the basis of Study 1’s results. 
Theoretically, we would have made the opposite prediction 
because incongruent trials are more difficult, and boundaries 
should increase to allow more time for evidence accumula-
tion. Reduced boundaries on incongruent trials could reflect 
reduced drift rates on the same trials: When drift rates are low, 
evidence-accumulation rates are slower, potentially increasing 
in missed responses, which could be avoided by lowering the 
boundaries so the decision processes can still reach a bound 
within the allotted time.
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